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The human gastrointestinal tract (GIT) harbors a diverse microbial ecosystem that plays a crit-

ical role in defining health and disease. Members of the bacterial genus Enterococcus sp. are

common gut-resident microbes that have the potential to cause life-threatening infections

when GIT homeostasis is disrupted due to immunosuppression or prolonged antibiotic treat-

ment [1]. Enterococcus faecalis and Enterococcus faecium, for instance, are predominant gut

inhabitants accounting for the majority of hospital-acquired enterococcal infections [2–5].

The pathogenic success of enterococci is partly attributed to their intrinsic tolerance and

acquired resistance to diverse antimicrobials, as well as their ability to endure and thrive in

harsh environments [1]. Emerging studies suggest that this environmental persistence is in

part mediated by polysaccharides [6], which generally consist of repeating units of diverse oli-

gosaccharides covalently linked to the cell surface [7]. Of note, Enterococcus sp. possess highly

diverse glycobiological arrangements (Fig 1) given their ability to build not only essential

structural polysaccharides, such as peptidoglycan (PG), enterococcal polysaccharide antigen

(EPA), and wall teichoic acids (WTAs), but also the capacity to synthesize capsule polysaccha-

rides (CPs), lipoteichoic acids (LTAs), and other extracellular polysaccharides [7–11]. These

glycans play a prominent role in maintaining bacterial cell integrity and morphology in con-

junction with building a dynamic interface with the environment [11,12]. Enterococcal poly-

saccharides also coordinate major host–pathogen interactions since they modulate cell

adhesion and the formation of microbial multicellular communities. Further, these complex

sugars have been proposed to promote GIT colonization and penetration of intestinal barriers

[13–16] while enhancing resistance to phages, antibiotics, and even the host’s immune system

[17–24]. In this review, we discuss multiple mechanisms through which polysaccharides can

shape the physiology and pathogenicity of enterococci, with an especial emphasis on E. faecalis
and E. faecium.

PAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:olysaccharides in the development of complex multicellular

communities

Enterococci form structurally complex communities (biofilms) in a number of infections,

where they become not only difficult to eradicate, but also a source of bacterial dissemination

and a reservoir for antibiotic resistance [25]. Biofilms mainly consist of a population of cells

bound together and embedded in a self-produced extracellular matrix [26]. The process of bio-

film formation generally involves initial surface attachment, aggregate (microcolony) develop-

ment, structural maturation (or biofilm growth), and cell dispersal [25]. While the role of

polysaccharides in biofilm formation has been extensively delineated in other bacterial species
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[26,27], little is known about how these glycans affect the development of enterococcal com-

munities. Below, we summarize recent findings highlighting the critical role of polysaccharides

in enterococcal biofilms:

Fig 1. Proposed physiological roles of Enterococcus faecalis polysaccharides in the gut. (A) E. faecalis intestinal colonization has been proposed to be mediated by the

formation of multicellular aggregates covered with and connected by a matrix (green) partly composed of exopolysaccharides [34,69]. (B) Formation of these complex

communities may allow enterococci to evade the immune system by promoting survival within phagocytes (macrophages or neutrophils) and (C) to resist the effect of

antibiotics produced by other gut bacteria. (D) Cells within these complex communities possess a variety of glycopolymers that promote aggregate formation and

structural development [25]. Among these polymers, PG creates a layer that protects cells from osmotic pressure, reinforces cell shape and size, and shelters cell

envelope components, including other structural/nonstructural polysaccharides [28]. The proposed scheme was based on previous publications [7,10,11] and shows an

enterococcal cell envelope with relative glycobiological arrangements and positions. These glycopolymers, from left to right, include the membrane-anchored LTA

(yellow), the exopolysaccharides containing polyGlcNAc (cyan), the covalently PG-bound CP (fuchsia), the WTA (light purple) that may also be bound to PG, and the

EPA, which possesses a rhamnan backbone (dark purple) possibly anchored to PG and extracellular exposed WTA decorations (light purple). (E) WTAs, LTAs, EPA,

and/or CPs allow E. faecalis to evade phagocytosis by macrophages or neutrophils [24,76,80,81,84–86]. These cell envelope components likely act as a shield that prevent

complement detection and mediate resistance to phagocytosis. Changes to these polysaccharides may disrupt the cell envelope topography, leaving the bacteria naked or

likely exposing “neoepitopes” for recognition by the complement system. (F) Changes in PG and EPA structure or composition may also be contributing factors in the

resistance to antibiotics, such as those targeting the enterococcal cell envelope [13,17,20,24,53,55,57]. (G) E. faecalis may resist the intestinal bile salt toxicity through

rearrangements in the composition of EPA and/or PG that counteract the detergent activity of these amphipathic molecules and the induced external osmotic pressure.

(H) This bacterium can evade the immune response and persist in the gut by resisting the antimicrobial effect of lysozymes through modifications of their PG structure

[81,95–97]. (I) EPA also acts as a “receptor” that is recognized by phages during viral infection, and changes in EPA decoration can confer resistance to these phages by

E. faecalis [18,47]. (J) Upon intestinal overgrowth, this bacterium can exit the intestinal lumen to reach the bloodstream and colonize distal anatomical sites. The

formation of matrix-covered enterococcal aggregates may represent a new mechanism that promotes E. faecalis translocation across the gut epithelial barriers in

susceptible hosts, where EPA or/and polyGlcNAc-containing exopolymers may facilitate this migration. (?) denotes that the exact localization of EPA, polyGlcNAc-

containing polysaccharides, and WTA in the enterococcal cell envelope is uncertain. CAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs1and2:Pleaseverifythatallentriesarecorrect:P, capsule polysaccharide; EPA, enterococcal polysaccharide antigen; LTA,

lipoteichoic acid; PG, peptidoglycan; polyGlcNAc, β-(1,6)-GlcNAc polymers; WTA, wall teichoic acid.

https://doi.org/10.1371/journal.ppat.1009822.g001
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Cell and surface attachment

Enterococcal glycopolymers, such as PG, LTAs, EPA, and other exopolysaccharides, contrib-

ute to the initiation of biofilm formation. PG, which consists of a polymeric mesh (PG saccu-

lus) with strands of repeating β(1,4)-linked N-acetylglucosamine (GlcNAc) and N-

acetylmuramic acid (MurNAc) disaccharides cross-linked through short peptide stems, can

undergo constant remodeling in response to changing environmental conditions [28]. Hence,

during biofilm growth, it has been shown that E. faecalis alters its PG through modifying its

peptide stems, increasing cross-linking, N-deacetylation, and reducing O-acetylation, in com-

parison to PG extracted from free-living (planktonic) enterococcal cells in vitro [8]. These

changes may impact PG’s interactions with other ions and the overall cell charge, which modi-

fies E. faecalis’ ability to attach to surfaces and enhances cell-to-cell aggregation for biofilm for-

mation. PG also contributes to maintaining cell shape and serves as a scaffold for other

components involved in attachment and biofilm formation, including cell wall–anchored

LPxTG surface proteins, such as enterococcal surface protein (Esp), and the endocarditis and

biofilm-associated pili (Ebp) [29–31]. Along with surface proteins, WTAs, LTAs, CPs, and the

EPA polymer are sheltered by the PG layer (Fig 1).

LTAs have also been shown to promote the initial steps of biofilm formation, with the inter-

action of these long anionic polymers with cell surface adhesins facilitating the attachment of

E. faecalis to itself and/or other surfaces such as epithelial tissues [9]. FAU : PleasecheckwhethertheeditstothesentenceFurthermore; differentmodificationsinthecarbohydrate:::arecorrect; andprovidecorrectwordingifnecessary:urthermore, different

modifications in the carbohydrate composition of EPA, a rhamnan polymer backbone (EPA

core) that binds to cell wall–exposed WTAs (ribitol teichoic acids; EPA decorations) [10], alter

surface hydrophobicity and charge, thus affecting cell-to-cell attachment [22,24]. Several bio-

film-related phenotypes have been attributed to this polymer. For instance, while Teng and

colleagues reported that mutations in genes encoding the EPA core (epaA, epaB, epaE, epaN,

and epaM; Fig 2) reduced E. faecalis OG1RF biofilm formation [32,33], recent studies using

the same parental strain demonstrated that mutants involved in either EPA backbone synthesis

(ΔepaI and ΔepaQ) or EPA decoration (ΔepaOX) decreased biofilm biomass only when grown

in different settings with subinhibitory concentrations of antibiotics [20,22]. Moreover, strains

carrying insertion mutations in epaJ or epaK showed no phenotypic differences compared

with wild-type (WAU : PleasenotethatWThasbeendefinedaswild � typeinthesentenceMoreover; strainscarryinginsertionmutations::::Pleasecheckandcorrectifnecessary:T) biofilms in the described assays [22]. Consistent with these results, it has

been demonstrated that biofilm formation is influenced by the growth medium and nutrient

availability [34–36] and that the media composition can also affect the polysaccharide profile

of a mutant altered in decorating its EPA backbone [14,15]. Hence, these observations suggest

that EPA may be modified in response to external growth conditions, impacting enterococcal

biofilm development in multiple ways.

Microcolony formation and biofilm maturation

After initial attachment, the continuous growth of a surrounding matrix composed of exopoly-

saccharides and other macromolecules promotes cell aggregate/microcolony formation and

biofilm growth [37]. The EPA polysaccharide, for instance, has been shown to define the E.

faecalis biofilm architectural arrangement by stabilizing the maturation of the transient aggre-

gates [22,38]. Indeed, deletion of genes in the core or variable region of the epa loci (Fig 2)

affects E. faecalis cell shape, polysaccharide composition, and membrane potential

[14,15,22,38]. This, in turn, promotes the formation of microcolonies that exhibit reduced

structural integrity, compared with parental biofilms [22,38], likely due to induced changes in

enterococcal adhesion traits. E. faecalis biofilm architecture has been found to be altered by

specific epa mutations [20,22]. In contrast to WT (strain OG1RF) or ΔepaOX, which formed

biofilms consisting of monolayers or clumped cells and long chain areas, respectively [20,22],
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ΔepaQ developed thicker structures of combined architectures including cells arranging in

monolayers and large aggregates [22]. While the chemical nature of the exopolysaccharides

composing the enterococcal matrix is still unclear, our group identified by immunostaining

that E. faecalis’ aggregates are covered by exopolysaccharides formed partly by polymers of β-

(1,6)-GlcNAc (polyGlcNAc) [15]. Although the precise structure of these polysaccharides has

not been fully elucidated, we demonstrated that the deletion of epaX in E. faecalis V583, a gene

involved in EPA decoration (Fig 2) [10], caused a marked reduction in the matrix surrounding

the aggregates [15]. Notably, this defect correlated with the lack of detection of polyGlcNAc-

containing polymers by antibody-based methods, in comparison with the parental counterpart

[15]. Studies by Guerardel and colleagues did not find detectable amounts of polyGlcNAc-con-

taining polymers in planktonic cultures of E. faecalis [10], indicating that the culture condi-

tions may account for such observations by impacting E. faecalis exopolysaccharide

production. In fact, it has been reported that the exopolymers’ chemical composition can be

altered in response to the specific nutrients supplemented [39]. Future work using different

Fig 2. Comparison of predicted epa-like loci among enterococcal strains. In Enterococcus faecalis V583 and OG1RF, EPA biosynthesis is encoded by a cluster of genes

organized in 2 genetic loci: first, a conserved region, consisting of 18 genes, from epaA to epaR, which participate in the rhamnan backbone biosynthesis (core region),

and, second, a downstream cluster of approximately 10–20 genes exhibiting genetic variability among strains, which has been proposed to account for the major

differences on EPA decoration among E. faecalis isolates (variable region) [10,14,32,105]. The core region of Enterococcus faecium is differentially organized in

comparison with the EPA core from E. faecalis. It does not have homologs of epaI, epaJ, and epaK. Instead, it has the 2 genes, epaP and epaQ, located at that site

[104,105,107]. E. faecium’s variable locus is proposed to be divided into 4 main variants based on sequence similarities [104,107]. The scheme depicts variants 2 and 4 for

strains 1,141,733 and Aus0004, respectively. Arrow colors correspond to colored boxes (bottom) and indicate predicted open reading frame function according to

genome annotations and BLASTP analysis. Blue shades connect homologs of different strains. The absence/variability of epa genes suggests that the EPA polysaccharides

of the 2 species have different sugar compositions, and, in consequence, may confer diverse physiological functions. The epa loci were adapted from

[10,20,32,54,104,105,107]. All genes are drawn to scale. EPA, enterococcal polysaccharide antigen; GTF, glycosyltransferase.

https://doi.org/10.1371/journal.ppat.1009822.g002
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growth conditions may help explain the link between epaX and the production of the poly-

GlcNAc-containing exopolysaccharides, which might be involved in polyGlcNAc synthesis

and/or contribute to retention or binding of the exopolymer through negatively charged EPA

decorations. Since the absence of polyGlcNAc-like exopolysaccharides decreases the ability to

develop structured biofilms in other gram-positive bacteria [40,41], additional biophysical and

chemical analyses are warranted to comprehensibly understand the role of enterococcal poly-

GlcNAc-containing exopolymers in aggregate/biofilm formation and its matrix physiology.

Polysaccharides in enterococcal adaptation to harsh conditions

Bacteria have evolved sophisticated mechanisms to survive in hostile environments, including

the human body. Polysaccharides provide an adaptive advantage to cope with such external

stressors. In biofilms, for instance, modifications of exopolysaccharides during glucose starva-

tion increased E. faecalis’ hydrophobicity, enabling survival in energy-depleted environments

such as root canals [42]. Moreover, E. faecium probiotic strains have been shown to produce

exopolysaccharides that can scavenge reactive oxygen species in vitro, suggesting a potent anti-

oxidant defense mechanism mediated by these glycopolymers [43]. Below, we summarize how

polysaccharides promote enterococcal resistance to some environmental stressors.

Resistance to osmotic stress

EPA serves a protective role for enterococci in the GIT where bile salts disrupt bacterial mem-

branes and cause osmotic stress [44]. Intestinal bacteria resist bile by activating efflux systems

and remodeling their cell envelope [45]. Under high osmolarity, E. faecalis is capable of up-

regulating expression of epa genes, especially those that code for rhamnose biosynthesis and

glycosyltransferases. For example, mutants in the epa core region (Fig 2), ΔepaB and ΔepaR,

exhibit increased susceptibility to salt-induced osmotic stress [46,47]. Moreover, the absence

of EpaOX considerably affects cell envelope integrity [38] by compromising decorations of

rhamnan backbone required for optimal polymerization of PG by penicillin-binding proteins

[24]. When intact, the PG sacculus protects cells from osmotic rupture and reinforces cell

shape and size [28]. Indeed, strains ΔepaOX in OG1RF and ΔepaX in V583 showed an altered

cell morphology and an increased sensitivity to bile salt components [14,20], suggesting that

EPA and PG may play an important role during the remodeling of the cell envelope to coun-

teract changes in the external osmolarity in enterococci.

Resistance to antibiotics

Polysaccharides are also key players in mediating resistance to antibiotics. PG is a major target

for many antimicrobials in bacteria including β-lactams and glycopeptides (vancomycin).

Enterococci have evolved multiple mechanisms to counteract these antibiotics (for compre-

hensive reviews, see [48,49]). E. faecium, for instance, modifies its PG intermediaries by replac-

ing the D-alanine–D-alanine (vancomycin’s target) with D-alanine–D-lactate as the terminal

amino acids in lipid II [50]. This modification decreases the interaction between vancomycin

and PG due to loss of a single hydrogen bond, conferring high levels of resistance to this bacte-

rium [50]. E. faecalis, on the other hand, synthesizes vancomycin-resistant PG precursors ter-

minating in D-alanine–D-serine [51]. The additional hydroxyl group of D-serine also

introduces a steric hindrance for interaction with vancomycin, lowering this antibiotic affinity

for PG [52,53]. Many of these glycopeptide resistance mechanisms in these strains are encoded

in transposons or plasmids and involve the concerted action of multiple enzymes altering the

basic structure of the cell envelope to overcome the damaging action of vancomycin [48,49].
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Changes in the composition of EPA caused by mutations in the epa loci have also been

shown to decrease sensitivity to antibiotics that target cell envelope synthesis, such as ceftriax-

one or carbapenems in agar plates with Etest strips [54,55]. This adaptation is thought to result

in part from reduced rhamnose and/or increased mannose abundance in some of these strains’

cell wall polysaccharides [55]. Moreover, a prior study reported that changes in the minimal

inhibitory concentration between parental and epa core mutants were modest in agar plates

with daptomycin using Etest strips [55], whereas Dale and colleagues showed that the deletion

of epaI (EPA core) and epaOX resulted in enhanced susceptibility of E. faecalis OG1RF plank-

tonic cells to the same antibiotic [20]. These contrasting findings suggest that the growth con-

ditions used in both studies may differentially affect EPA synthesis/composition, and, thus, the

cell envelope integrity necessary to prevent daptomycin from reaching the division septum.

Reinforcing the role of EPA in modulating enterococcal resistance to antimicrobials, a recent

study demonstrated that mutations in galU, which encodes UTP-glucose-1-phosphate uridy-

lyltransferase (an enzyme involved in generating the UPD glucose required for E. faecalis
galactose fermentation), affects EPA synthesis and changes the enterococcal susceptibility to β-

lactams in agar dilution assays [56]. Additional studies have demonstrated that the EPA con-

fers protection to multiple antibiotics, including gentamicin, vancomycin, and fusidic acid

exposure under distinct growth conditions [13,17,20,55,57]. While informative, further

research considering environmental factors and/or culture settings that may impact polysac-

charide composition is needed to understand the precise mechanisms that mediate EPA-

driven antibiotic resistance in enterococci.

Enterococci can also acquire antibiotic resistance by forming biofilms. Several characteris-

tics of these structures contribute to enhance antibiotic resistance relative to planktonic cul-

tures, including poor antibiotic penetration into the biofilm, antibiotic sequestration, and the

presence of persister cells within the biofilm (for an excellent review, see [25]). Although E. fae-
cium is intrinsically more resistant to antibiotics, E. faecalis forms thicker biofilms that pro-

mote tolerance to antimicrobials [58,59]. It has been previously reported that certain genes of

the epa loci contribute to biofilm-associated antibiotic resistance [20,22,38]. Mutations in epaI,
epaQ, and epaOX have demonstrated reduced biofilm formation in the presence of daptomy-

cin, and only the latter showed to be more sensitive to gentamicin exposure. In sharp contrast,

all 3 deletion mutants showed increased resistance to ceftriaxone [22]. Resistance to this antibi-

otic involves 2 interacting signaling pathways: the eukaryotic-like Ser/Thr kinase ireK and the

CroS/R 2-component regulatory system [60–62]. IreK is considered to monitor the cell wall

integrity and respond to cell wall stress [63]. Hence, EPA alterations resulting in cell wall and

shape changes [14,20,22], especially in biofilms, may lead to IreK activation of this pathway,

leading to a higher intrinsic resistance to ceftriaxone. In fact, dysregulated IreK or CroS/R

pathways (like strains lacking negative regulators for these systems) display increased cephalo-

sporin resistance [64,65]. Further analysis to establish the connection between the cephalospo-

rin resistance phenotype of epa mutants and the IreK and CroS/R pathways could provide

insights into the cell envelope stress signals detected by these systems.

Resistance to bacteriophages

To infect bacteria, phages must bind to cell wall–associated molecules, such as polysaccharides,

which serve as receptors during viral infection [66]. EPA can operate as one of these “recep-

tors,” coordinating phage absorption and subsequent infection by lytic E. faecalis phages [17].

The ability for phages to infect E. faecalis depends specifically on certain genes of both the core

and the variable region of the epa loci [18,47]. Mutations in these genes have been found to

promote phage resistance, but they also increase E. faecalis’ sensitivity to osmotic stress and
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antibiotics that target the cell wall [17,18,47], suggesting that phage resistance in enterococci

might be a fitness trade-off. Furthermore, in E. faecium, it has been reported that changes in

the composition of cell wall polysaccharides like CPs and EPA promote phage resistance adap-

tation. Notably, mutations in epaR and epaX limit phage adsorption to E. faecium, although to

a lesser extent than similar mutations in E. faecalis [54]. These adaptive traits act as gatekeepers

to phage absorption, conferring additional means through which Enterococcus thrives.

Glycopolymers in GIT colonization, exit, and distal spread

Enterococci have been found in the intestinal lumen as well as in the complex mucus layer

and crypts of the small intestine [67,68]. GIT colonization by E. faecalis seems to be medi-

ated by the formation of microcolonies rather than structured biofilms, as evidenced by the

formation of enterococcal aggregates covered by a fibrous, sweater-like, matrix predomi-

nantly localized throughout the GIT of germ-free mice [34]. Similarly, McKenney and col-

leagues demonstrated that vancomycin-resistant E. faecium substantially increased the

formation of aggregates in the cecum of antibiotic-treated mice supplemented with litho-

cholic acid. This secondary bile acid, prevalent in the intestine of mice and humans,

impaired the separation of growing enterococcal diplococci, causing the formation of long

chains in vitro. Thus, mutants locked in the diplococci state were deficient in mouse tissue

colonization and persistence, likely due to their inability to form aggregates and compete

with the intestinal microbiota [69].

In addition, it has been demonstrated that EPA plays a role in GIT colonization. Studies

involving the deletion of epaX and epaS, or the entire loci variable region, showed decreased

intestinal colonization by E. faecalis, as evidenced by lower colony-forming units obtained

from stool samples of mice treated with the mutants relative to WT V583 [13,14,17]. Notably,

ΔepaS could not overgrow upon antibiotic-driven dysbiosis and failed to be efficiently trans-

mitted to young mice following birth [17], suggesting that EPA promotes E. faecalis aggregate

stability during GIT colonization. Indeed, loss of a glycosyltransferase from the epa variable

loci reduces biofilm formation in the presence of sodium cholate (a bile acid component), and

aggregates formed by a mutant in this locus exhibit reduced structural cohesion in vitro

[20,38]. Although it has been observed that the aggregates formed by E. faecalis in vivo are

morphologically similar to those formed in continuous flow bioreactors [34,38], the determi-

nants of microcolony structural development in vivo are poorly characterized. Therefore, anal-

yses to determine the role of EPA in aggregate formation/architecture using microscopic

imaging of the GIT in murine models deserve further attention.

Upon damage of the gut barrier, enterococcal overgrowth in the lumen can promote

breaching of the intestinal epithelium, a process known as translocation [70–72]. Some intrin-

sic factors have been proposed to contribute directly or indirectly to enterococcal egress from

the GIT [15,16,73,74]. Among them, genes in the core and variable region (epaX) of the epa
loci have shown to be necessary for efficient migration through intestinal epithelial barriers in

vitro [15,16]. Moreover, using immunofluorescence microscopy, we found that E. faecalis WT

formed aggregates covered by polyGlcNAc-containing exopolysaccharides that localized with

the epithelial actin cytoskeleton during translocation. These polymers, however, were not

detected when ΔepaX strains were used in the same experimental setting [15]. Hence, forma-

tion of matrix-covered enterococcal aggregates might represent a new mechanism that pro-

motes colonization and/or migration across the intestinal barriers in susceptible hosts. Further

studies using in vivo models are needed to gain a deeper knowledge of the role of EPA and

other uncharacterized enterococcal polysaccharides in bacterial translocation through the

intestinal epithelium, a key step for switching from gut commensal to pathogen.
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Enterococcal polymers facilitate immune resistance and evasion

Once outside the intestine, enterococci can spread and colonize other body sites, where they

can become drivers of disease. Both as successful inhabitants of the GIT and potential patho-

gens, enterococci have developed mechanisms partly mediated by their cell surface polysaccha-

rides to modulate, resist, or evade the host innate immune system (see review for further

mechanisms [23]). The host immune response involves physical and chemical barriers, includ-

ing soluble proteins, pattern recognition receptors, and phagocytes. The formation of biofilms

has been proposed as a key strategy used by enterococci to evade the immune system. For

instance, when the host epithelial barrier is disrupted, E. faecalis has been found to form

matrix-encased microcolonies that can be internalized and encapsulated by the wounded tis-

sue. In these settings, reduced cytokine and chemokine induction has been evidenced, suggest-

ing that this bacterium can modulate the immune response to promote its persistence in

wounded tissues [75]. Consistent with this finding, previous studies demonstrated that E. fae-
calis biofilms induce lower pro-inflammatory responses and promote survival within phago-

cytes in comparison with planktonic cells in vitro [76–79]. Thus, biofilms may be better

adapted to overcome host defenses in vivo. Further analyses to determine the role of entero-

coccal polysaccharides in biofilm-mediated immune resistance using animal models deserve

attention.

Several intrinsic components of the enterococcal cell envelope also play important roles

during these host–pathogen interactions (Fig 1) [24,80]. For example, an E. faecalis deletion

mutant defective in LTA D-alanylation demonstrated lower capacity to form biofilms and

greater antibody recognition, which is an integral part of the humoral immune response capa-

ble of blocking adhesion and entry of a pathogen into tissues while promoting opsonophago-

cytosis [76,81]. Enterococcal LTA has also been proposed to alter macrophage function by

promoting autophagy, a lysosome-mediated degradation process of internal cell components

[82]. The LTA of E. faecalis can also inhibit Toll-like receptor (TAU : PleasenotethatTLRhasbeendefinedasToll � likereceptorinthesentenceTheLTAofE:faecaliscanalsoinhibit::::Pleasecheckandcorrectifnecessary:LR)-mediated responses in

periodontal tissues, which may represent an additional mechanism of macrophage suppression

[83]. Disruption of epa core genes result in “naked” enterococcal cells lacking the EPA polymer

that are more sensitive to killing by phagocytes [84]. While the mechanisms behind this pro-

cess remain elusive, it is likely that changes in the carbohydrate composition of these mutants

may expose “neoepitopes” for recognition by the complement system. However, it is unclear

whether EPA is directly recognized by immune cells or it encases other cell factors to prevent

E. faecalis phagocytic clearance. Additional research then demonstrated that EPA decorations

also aid in protection against complement-mediated phagocytic killing [24], suggesting that

modifications in EPA, like the covalent link of 2 ribitol-containing WTAs [10], rather than the

backbone itself, support phagocyte evasion. Consistent with these findings, mutations in tagB
resulting in the loss of these 2 ribitol-containing WTAs and secondary changes in EPA also led

to increased complement recognition and augmented phagocytic killing of E. faecalis in vitro

[85]. It is conceivable that the absence of WTAs in these mutants could disrupt the cell enve-

lope topography, rearranging the surface localization of EPA, LTAs, and/or CPs. Hence,

WTAs may mediate resistance to phagocytosis indirectly by acting as a shield for other surface

glycopolymers and preventing complement detection [80,81,85,86]. Whether E. faecalis’ ribitol

teichoic acids are only linked to EPA backbone or also covalently attached to MurNAc on PG

as described in other gram-positive bacteria [87,88] deserves further investigation.

Enterococci are also capable of evading the immune system by resisting the antimicrobial

effect of lysozymes, which are critical components of the host innate immune response. In

mammals, these enzymes are found abundantly in the blood, liver, secretions, phagocytes, and

at mucosal surfaces [89–92]. Lysozymes can hydrolyze the β-(1,4) glycosidic bonds linking PG

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009822 September 9, 2021 8 / 16

https://doi.org/10.1371/journal.ppat.1009822


monosaccharides (muramidase activity) and/or bind and create pores in negatively charged

bacterial membranes, acting as cationic antimicrobial peptides (CAMPs) [93,94]. These lyso-

zyme-dependent effects kill bacteria and release immunomodulatory bacterial components,

including PG fragments [89]. E. faecalis has developed mechanisms to counteract lysozymes,

including modifying its PG structure through GlcNAc deacetylation, MurNAc O-acetylation,

or/and reduction of the cell net negative charge with the addition of positively charged D-ala-

nine residues to WTA and LTA [81,95–97]. Recent studies have specifically shown that expos-

ing E. faecalis to lysozyme triggers the production of a PG deacetylase that contributes to this

bacterium’s virulence in the Galleria mellonella insect model [97]. Enterococci are also exposed

to other CAMPs, which are positively charged products secreted by host cells or intestinal

microflora. Mutations that increase the cell envelope’s negative charge (deletion of tagB,

required for WTA biosynthesis) affect LTA D-alanylation (deletion of dltA) or/and alter EPA

decoration (epaX-like mutations) result in increased sensitivity to CAMPs by E. faecalis
[24,81,85].

CP expression is another strategy that allows enterococci to evade the immune system.

These glycopolymers are localized at the cell surface and function as shields to mask underly-

ing cell surface structures to reduce opsonization [98]. In E. faecalis and E. faecium, insertional

inactivation of genes in the CP biosynthetic pathway yielded mutants with enhanced suscepti-

bility to phagocytic killing by neutrophils and compromised Enterococcus’ ability to persist in

regional lymph nodes [99,100]. E. faecalis specifically produces 2 CP serotypes (C and D) with

higher resistance to complement-mediated opsonophagocytosis than unencapsulated strains

[101], contributing to innate immune evasion and increased pathogenesis [102]. These differ-

ences observed in opsonophagocytosis have been attributed to the ability of CPs to mask the

detection of LTAs and surface bound C3 (a complement component required for activation of

this pathway), thus preventing macrophage activation and reducing pro-inflammatory cyto-

kine production such as tumor necrosis factor α [101,103]. However, to date, the chemical

structures of these CPs have not been published. On the other hand, genome sequencing anal-

yses revealed that, although several E. faecium strains do not possess cpsC-cpsK homologs

required for CP synthesis in E. faecalis, a putative CP biosynthetic region is conserved among

all enterococcal species except E. faecalis [101,104,105]. Notably, in vancomycin-resistant E.

faecium, mutations in this novel locus correlate with enhanced biofilm formation, antibiotic

tolerance, and lysozyme resistance in vitro [106], suggesting that the absence/modification of

CP may confer a fitness advantage to E. faecium in the host.

Enterococci have therefore adopted multiple strategies to evade immune surveillance, con-

tributing to its successful transition to a resilient pathogen. It is evident that polysaccharides

influence their physiology by enhancing enterococci’s ability to form multicellular aggregates,

colonize the GIT and extraintestinal sites, endure environmental stressors, evade the host

immune system, and resist antibiotics. Upon loss of functional WTAs, LTAs, CPs, or EPA

genes, Enterococcus sp. lose these remarkable capabilities. Clearly, the diversity of polysaccha-

rides able to be produced in different growth conditions or by strains/species is likely to influ-

ence enterococcal fitness and survival. Examples of this diversity are reflected in the

differences found in the variable region of the epa loci that may change the EPA decoration or

structure (Fig 2). Thus, enterococcal polymers represent a high-profile target for future thera-

peutics, potentially leading to new strategies to effectively control systemic and persistent

enterococcal infections. Understanding the vastly unexplored connections between the host,

gut microbiota, and enterococcal polysaccharides will provide “sweet” insights into the mecha-

nisms of enterococcal colonization and pathogenesis.
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