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Non-Cartesian sampling is widely used for fast magnetic resonance imaging (MRI). Accurate and fast image reconstruction from
non-Cartesian k-space data becomes a challenge and gains a lot of attention. Images provided by conventional direct reconstruc-
tion methods usually bear ringing, streaking, and other leakage artifacts caused by discontinuous structures. In this paper, we
tackle these problems by analyzing the principal point spread function (PSF) of non-Cartesian reconstruction and propose a leak-
age reduction reconstruction scheme based on discontinuity subtraction. Data fidelity in k-space is enforced during each iteration.
Multidimensional nonuniform fast Fourier transform (NUFFT) algorithms are utilized to simulate the k-space samples as well
as to reconstruct images. The proposed method is compared to the direct reconstruction method on computer-simulated phan-
toms and physical scans. Non-Cartesian sampling trajectories including 2D spiral, 2D and 3D radial trajectories are studied. The
proposed method is found useful on reducing artifacts due to high image discontinuities. It also improves the quality of images
reconstructed from undersampled data.
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1. INTRODUCTION

Non-Cartesian data sampling, such as radial and spiral en-
coding, is often performed for fast data acquisition in MRI
to capture the rapidly decaying signals. Therefore, non-
Cartesian trajectories have gained increased attention in var-
ious applications such as functional brain imaging, hyper-
polarized gas imaging, contrast-enhanced MR angiography,
and cardiac imaging. However, their disadvantages lie pri-
marily in more complicated image reconstruction. The most
widely used MRI reconstruction scheme generally consists of
three steps: preweighting, gridding by convolving the orig-
inal data with interpolation kernels, and d-dimensional in-
verse Fourier transform [1]. Conventional gridding meth-
ods have used predefined gridding kernel functions, such as
triangle, Gaussian, sinc, and Kaiser-Bessel functions, and so
forth [1, 2].

The recent introduction and development of NUFFT al-
gorithms [3–7] provide an efficient tool to evaluate the non-
uniform discrete Fourier transform (NUDFT). The NUFFTs
calculate optimal kernels with selected scaling function, so
that the interpolation error is minimized in a least-square

sense. Some of these NUFFT algorithms have been applied
to spiral and radial MRI reconstructions [8, 9] and achieved
better accuracy-speed trade off. These NUFFT-based direct
reconstructions are referred to as direct reconstruction meth-
ods in the rest of the paper.

Unfortunately, NUFFT reconstruction, under the same
gridding scheme, provides improvement only on the inter-
polation accuracies. In fact, image quality is still challenged
by k-space truncation and density compensation for the non-
Cartesian sampling, and as a result, the point spread function
(PSF) is not as sharp. For an imaging system, PSF is one of the
most important characteristics and ideally should be a sin-
gle delta function. Lauzon and Rutt [10] studied the “prin-
cipal PSF,” the Fourier transform of the sampling function,
for polar (2D radial) sampling trajectory and observed in-
tensity leakage (existence of sidelobes and broadening of the
mainlobe). Since the final image is a convolution of the PSF
with the true magnetization distribution, the leakage of PSF
then results in intensity leakage in the reconstructed image.
Furthermore, the intensity of artifacts is proportional to the
intensity of the region being convolved. As a result, the arti-
facts leaked by high intensity regions into their surrounding
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low intensity regions become most visible. For example, the
skull in brain images usually has very high intensity and its
leakage into inside of the brain significantly degrades the im-
age quality in various regions of interest.

A straightforward approach to improve the reconstruc-
tion result is to sharpen the PSF, which directly corresponds
to an optimized selection of density compensation function
(DCF). For non-Cartesian sampling, DCF is applied to the
raw data to compensate for the sampling density. However,
the mathematically ideal DCF [1, 11–13] may not provide
highest image quality. Some recent works [14–17] formulate
the DCF computation as an optimization problem to empha-
size certain PSF characteristics, for example, narrow main-
lobe and low sidelobes. Nevertheless, the optimized solutions
are rarely close to being ideal and the computational cost of
optimization becomes inevitably high when large data sets
are processed.

Instead of correcting PSF itself, this paper develops an
alternative method with discontinuity subtraction, based on
the fact that intensity leakage is most severe at high disconti-
nuities. Here we define “high discontinuity” as the structural
region that has high intensity difference (contrast) with the
surrounding regions, such as the skull. Similar ideas can be
found in some other applications such as computerized to-
mography [18] and seismic data processing [19]. However,
the proposed method does not require any a priori knowl-
edge about the image, which is needed in [18]. The compu-
tational cost is slightly higher than direct reconstruction but
much lower than iterative methods.

The paper is organized as follows. Section 2 develops
multidimensional NUFFTs that are used for reconstruc-
tion and k-space simulation. These NUFFTs (NUFFT-1 and
NUFFT-2) are extensions of Liu and Nguyen’s idea of 1D
least-square NUFFT [5, 6]. In Section 3, the principal PSF of
the direct NUFFT reconstruction method [9] is analyzed and
the scheme of the discontinuity subtraction method is de-
scribed. The proposed method is then compared with the di-
rect NUFFT reconstruction method on both spiral and radial
trajectories through computer simulation and physical scan
studies in Section 4, followed by discussions in Section 5.

2. THEORY

2.1. k-space simulation and reconstruction

In MRI, the spatially encoded MRI signal s(k) in k-space can
be modeled as the spatial-frequency response of the distri-
bution of the initial transverse magnetization Mxy in spatial
domain x. The acquired raw data are therefore Fourier coef-
ficients of the underlying Mxy whose image Ix can be recon-
structed by taking inverse Fourier transform of the sampled
signal in k-space. Generally, in d-dimension,

s
(

k(t)
) =

∫

x
Mxy(x)e−i2πk(t)·xdx, (1)

Ixy(x) =
∫

k
s
(
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ei2πk(t)·xdk, (2)

where t is the readout time.

For numerical evaluation, the integrands must be trun-
cated and discretized. Note that in (1), Mxy(x) usually has a
finite support because the object is physically bounded, and
thus no truncation is needed. Equation (1) does not need
a density compensation either since the image is uniformly
sampled. However, (2) would require both truncation and
density compensation because of the infinite k-space support
and nonuniform sampling. Discretizing (1) in Cartesian spa-
tial domain and (2) in non-Cartesian k-space gives
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which assumes the image voxel size in any pth dimension
Δxp = 1, and

I
(

xn
) ≈

M−1∑

m=0

w
(

km
)
s
(

km
)
ei2πkm·xn , n = 0, 1, . . . ,N − 1,

(4)

wherew(k) is the preweighting factor (or DCF). In this work,
we use Voronoi DCF [13] for spiral trajectory and the Jaco-
bian DCF for radial trajectory.

Equation (3) is named as “k-space simulation formula”
that simulates non-Cartesian k-space samples from a known
image, and (4) as “reconstruction formula” that recovers the
image from known non-Cartesian k-space samples. Since (4)
only involves the inverse Fourier transform once, we refer to
this reconstruction as direct reconstruction.

In this work, (3) and (4) are evaluated by the multi-
dimensional NUFFTs, which will be briefly summarized in
Section 2.2. Comparison of these NUFFT reconstruction and
NUFFT k-space signal simulation to conventional gridding
methods can be found in detail in our previous work [9].
Again, one should note that (3) provides high-fidelity esti-
mation, while (4) is limited in accuracy and usually consists
of leakage artifact, which will be discussed in later sections.

2.2. NUFFT-1 and NUFFT-2

Multidimensional NUFFT-1 (NUFFT of the first type) and
NUFFT-2 (NUFFT of the second type) [9] are developed for
fast evaluation of the NUDFTs between the non-Cartesian k-
space and the Cartesian image space. NUFFT-1 evaluates

hn
Δ=
M−1∑
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Hme
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(5)

where L(Ni) = [−Ni/2, (Ni/2 − 1)]. It is evaluated by (1)
calculating the kernels Ψm for each Hm; (2) convolving Ψm

with Hm; (3) taking regular FFT to find hn.
Similarly, NUFFT-2 calculates

Gm
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· · ·
Nd/2−1∑
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gne
i2πvm·n, m = 0, 1, . . . ,M − 1

(6)
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with the following procedures: (1) calculate a set of d-
dimensional kernels Ψm with least-square criterion for each
of the non-Cartesian samples Gm at vm; (2) take the d-
dimensional regular FFT on gn; (3) convolve the FFT results
with Ψm and find Gm.

Take NUFFT-1 as an example. Each kernel Ψm is com-
puted as a tensor product of 1D least-square kernels [5, 6]
solved by ψm = F−1α(vm), where

Fjk =
⎧
⎪⎨

⎪⎩

N , j = k,

w( j−k)N/2 −w(k− j)N/2

1−w(k− j) , j �= k,
(7)

αm = i
∑

γ=−1,1

sin
[
(π/2μ)

(
2m− γ − q − 2

{
μvm′

})]

1− ei(π/μN)(2{μvm′}+q−2m+γ) , (8)

where μ is the oversampling factor and q is the kernel size.
The kernel varies from sample to sample, but it is only de-
pendent on the location of each sample. NUFFT-1 is uti-
lized to evaluate (4) and NUFFT-2 is used for (3). Note when
NUFFT-2 is used to evaluate (3), the kernel is in fact the con-
jugate of Ψm due to the negative sign in the exponent. As a
result, when NUFFT-1 and NUFFT-2 are used together, the
two kernels only need to be calculated once and stored to be
called at every NUFFT operation.

Our numerical studies find that the NUFFTs compute
(6) and (5) at a computational cost which asymptotically ap-
proaches that of a regular FFT with L2 approximation error
of 10−4. In this work, we use μ = 2 and q = 4.

3. METHODS

3.1. The point spread function and intensity leakage

System impulse response, also known as point spread func-
tion (PSF), is one of the most important performance mea-
surements of an imaging system. The resulting image can be
interpreted as a convolution of the object and the system PSF.
If we assume the system is ideal before image reconstruction,
that is, the raw data are exact spatial frequency responses at
the sampling locations, the system PSF becomes simply the
Fourier transform of the sampling function

PSF(x) =
∫

k
III(k)ei2πk·xdk =

M−1∑

m=0

W(k)ei2πkm·x, (9)

where the sampling function

III(k) =
M−1∑

m=0

δ
(

k− km
)

(10)

and W(k) is the DCF. We define (9) as principal PSF, to be
consistent with the one of the polar (radial) MR imaging sys-
tem given by [10]. It is shown that the PSF is the DFT of
DCF. The desired PSF function should have narrow main-
lobe width and low sidelobe level.

In Figure 1, we show PSFs of radial and spiral sampling
trajectories. The radial trajectory has 400 rays and each ray is
oversampled with 183 points within a k-region of [−0.5, 0.5].

The spiral trajectory has 16 interleaves and 2048 samples on
each interleave. The PSFs are calculated on a 128×128 Carte-
sian grid. Both PSFs, as shown in Figure 1, have significant
sidelobes and the mainlobe is broadened. When convolved
with the ideal object, these PSFs introduce significant inten-
sity leakages. The caused ringing artifacts are most visible at
high intensity discontinuities.

In practice, undersampled radial or spiral acquisitions
are widely used by MRI researchers to capture rapid physi-
ological images. In these functional studies, temporal resolu-
tion usually trades off spatial resolution, so that undersam-
pling is often used to improve the temporal resolution. For
non-Cartesian sampling, wellsampling refers to a sampling
scenario whose lowest sampling density still satisfies Nyquist
criterion, and any scenarios with lower sampling density than
that are considered as undersampling. Figure 2 shows that
undersampling introduces replica sidelobes besides the nor-
mal leakage. These PSF imperfections will be translated to
ringing artifacts and streaking artifacts in the images.

3.2. Reconstruction and leakage reduction

To reduce these artifacts, one approach is to optimize DCF
for the desired properties of PSF, that is, narrow mainlobe
and low sidelobes. However, this approach is quite compli-
cated and minimizing the sidelobes is usually at the cost of
widening the mainlobe. Alternatively, we consider the prob-
lem from a new perspective and propose a discontinuity sub-
traction method to reduce the artifacts caused by the high
discontinuities. Furthermore, unlike the subtraction method
suggested by [18], we use direct reconstruction result to find
the discontinuities so that no a priori information about the
image is needed. During each iteration thereafter, everything
is transformed back to k-space as a projection onto convex
sets (POCS). Subtraction is applied in k-space and the data
fidelity is ensured. The detailed procedures of our NUFFT-
based leakage reduction method are the following.

(1) Given the non-Cartesian k-space data s0(k), apply (4)
to find the estimated image Î0(x). Here, gradient edge
detection and thresholding segmentation techniques
are used for simplicity.

(2) Detect the highest discontinuity Îd1 in the estimated
image with existing edge detection and image segmen-
tation techniques.

(3) Apply (3) to calculate the k-space signal sd1 (k) corre-
sponding to Îd1 and subtract it from the original signal
s0.

(4) Reconstruct the updated k-space data s0 to get a new
smoother image Î0(x) without the highest discontinu-
ity.

(5) Repeat (2), (3), and (4) until all the large disconti-
nuities above a threshold are subtracted. Add up the
subtracted discontinuities (Id1 , Id2 , . . .) and the final
smooth image Î0.

A flowchart of the algorithm is shown in Figure 3. Since
all the reconstructions and k-space simulations are based
on a same sampling trajectory, the kernel function used in
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Figure 1: Point spread functions of non-Cartesian sampling functions in dB scale. (a) Radial PSF. (b) Spiral PSF. (c) A center line profile of
the radial PSF. (d) A center line profile of the spiral PSF.

(a) (b)

Figure 2: Point spread functions of well-sampled and undersampled radial scans in dB scale. (a) PSF of well-sampled case. (b) PSF of 70%
undersampled case.

NUFFT-1 and NUFFT-2 needs to be calculated only once.
For example, an image with m high discontinuities will need
only one pre-processing, m + 1 NUFFT-1 and m NUFFT-
2. It takes less than 2m + 1 times as long as direct recon-
struction. Given the number of high discontinuities m in a
practical medical image is usually small, the method is faster
than most iterative reconstruction methods. For example, m
is typically 2-3, which corresponds to 2-3 iterations and takes
5–7 times as long as direct reconstruction.

4. RESULTS

4.1. Computer simulation study

The Shepp-Logan phantom is utilized here for computer
simulation study. It is known as the phantom of “head,”
which is usually used to simulate brain image with the skull.
The non-Cartesian k-space signal samples on both radial
and spiral trajectories are accurately simulated using (3). The
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Acquired data in k-space
s0(k)

Enforce data fidelity in k-space

s0(k) = s0(k)� ŝdi (k)(4)

Direct reconstruction into
image space
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Transform Îdi (x) back to
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Final image in image space

Î(x) = Î0(x) +
m∑

i=1
Îdi (x)

Extract discontinuity in
image space

Îdi (x)

Figure 3: Flowchart of the discontinuity subtraction reconstruction
algorithm.

proposed leakage reduction method is compared with the di-
rect reconstruction on both 2D and 3D phantoms.

Figure 4 shows reconstruction results of a 128 × 128
phantom simulated with a 16-interleaved spiral trajectory.
Two discontinuities are subtracted during the reconstruc-
tion. For illustration purposes, the first high discontinu-
ity image, the corresponding subtraction remainder, and
the smoothed remainder are shown in the figure. The di-
rect reconstruction in Figure 4(a) suffers from ringing ar-
tifacts caused by the high discontinuity at the “skull.”
Figure 4(b) shows the highest discontinuity being subtracted,
and Figure 4(c) is the remainder. After one POCS iteration,
image of Figure 4(c) becomes Figure 4(d). The final recon-
structed image by the proposed method is shown in Figure
4(f). Figures 4(g) and 4(h) are error images of Figures 4(a)
and 4(f), and horizontal center line profiles are compared
in Figure 4(i). The oscillations around the “skull” are visi-
bly mitigated by discontinuity subtraction. Reconstructions
of the same 128 × 128 phantom simulated with 400 radial
rays are shown in Figure 5. Again, the intensity leakages are
well improved by discontinuity subtraction.

Table 1 compares the performance of the two reconstruc-
tion methods quantitatively and lists the L2 reconstruction
errors defined as e2 = ‖Irecon − I‖2/‖I‖2, where Irecon is the
reconstructed image and I is the original phantom. Both er-
rors decay with increased spatial resolution, but the proposed
leakage reduction method performs consistently better than
the direct reconstruction method.

In Section 3.1, we discussed the influences of undersam-
pling on the principal PSF. Reconstructing these undersam-
pled data sets becomes more challenging. In Figure 6, we
simulated the k-space samples of a 128 × 128 phantom on
only 120 rays (70% undersampled) and applied both direct
and leakage reduction methods to reconstruct the image. The
streaking artifacts are much less significant when discon-
tinuity subtraction (Figure 6(b)) is applied. The three tiny
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Figure 4: Shepp-Logan phantom reconstructed from spiral sam-
ples. (a) Original Shepp-Logan phantom image. (b) Direct recon-
struction. (c) Highest discontinuity to be subtracted. (d) Remain-
ing image after subtraction of (c). (e) Reconstructed remainder im-
age after one iteration. (f) Final leakage reduction reconstruction.
(g) Absolute difference image of direct reconstruction. (h) Absolute
difference image of leakage reduction reconstruction. (i) Center line
profiles of the reconstructed images.
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Figure 5: Reconstructed Shepp-Logan phantom images from radial samples and absolute difference images using (a) direct reconstruction,
and (b) leakage reduction reconstruction. (c) Center line profiles of the reconstructed images.

Table 1: L2 error comparison of reconstruction results with direct
reconstruction (R1) and leakage reduction reconstruction (R2) on
spiral and radial phantoms.

Spiral Radial

1282 2562 5122 1282 2562 5122

R1 11.90% 7.98% 4.37% 8.29% 5.40% 2.66%

R2 5.60% 3.92% 2.11% 3.38% 1.92% 1.35%

ellipses near the bottom of the phantom are not resolvable
in Figure 6(a) but can be clearly differentiated in Figure 6(b).
This is better shown by the line profiles across those three
ellipses in Figure 6(c). This suggests an improvement of res-
olution. In fact, the L2 reconstruction errors are, respectively,
15.91% and 4.33% for Figures 6(a) and 6(b).

A 643 Shepp-Logan phantom is also simulated using 3D
isotropic radial trajectory to study the performance of the
proposed method in 3D. 12868 rays are simulated to make
it a well-sampled case just satisfying the Nyquist sampling
rate. Figure 7 shows the three cross planes of the original
phantom and reconstructed images using direct reconstruc-
tion and leakage reduction reconstruction. The ringing arti-
facts around the “skull” are significant in Figure 7(b) but are
greatly suppressed in Figure 7(c) where discontinuity sub-
traction is applied. The L2 errors are 25.36% for Figure 7(b)
and 11.39% for Figure 7(c), respectively.

Table 2 summarizes the reconstruction processing time
of the above experiments using direct method (T1) and the
proposed method (T2). The 2D experiments in the table used
image size 1282 and the 3D case used 643. All of the re-
construction methods are implemented with MATLAB 7.0
on the same computer (CPU: AMD ATHLON 2600+; RAM:
2MB).

4.2. Physical scan study

Physical MR phantom scans were conducted using spiral and
radial samplings as well. A phantom with sharp edges was
scanned with a 6-interleaved spiral trajectory. Figure 8 shows
the reconstructed images using the two reconstruction meth-
ods and center line profiles. Ringing artifacts were generated
by the high discontinuities in the phantom structure. Apply-
ing the leakage reduction method partially suppressed the
artifacts and improved image quality.

Radial scans were also conducted to study the perfor-
mance of the two methods on undersampled data sets. A
cylindrical water tube phantom was scanned by running a
2D radially encoded spin echo sequences on a 2-Tesla Ox-
ford horizontal magnet. We first collected an 800-ray data
set to support the Nyquist sampling rate for a 256× 256 im-
age, then reduced the number of rays to 200 and collected
another data set. Direct reconstruction was applied to recon-
struct both data sets. It is found that the image of the well-
sampled case (Figure 9(a)) looks decent but the one of 3/4
undersampled case in Figure 9(b) has evident-streaking ar-
tifacts and low signal-to-noise ratio. These artifacts are mit-
igated in Figure 9(c) where the proposed leakage reduction
reconstruction was applied, and the image quality is visually
close to the well-sampled case.

5. DISCUSSIONS

The studies described show that the proposed leakage reduc-
tion method is helpful on reducing the ringing artifacts near
the edges and the streaking artifacts due to undersampling.
In this section, we further the discussion on the challenges
left to the current algorithm, its applicability, and some po-
tential research directions for improvements.
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Figure 6: 128 × 128 phantom reconstruction from 70% undersampled radial k-space data with (a) direct reconstruction and (b) leakage
reduction reconstruction. (c) Line profiles across the three tiny ellipses.
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Figure 7: Three central orthogonal cross sections of the 64 × 64 ×
64 Shepp-Logan phantom. (a) Original object. (b) Reconstruction
from 3D radial k-space data with direct reconstruction, and (c) with
leakage reduction reconstruction.

Table 2: Processing time comparison of reconstruction results with
direct reconstruction (T1) and leakage reduction reconstruction
(T2) on 2D and 3D phantoms.

2D spiral 2D radial 2D undersampled radial 3D radial

T1 1.92 s 1.59 s 0.49 s 59.03 s

T2 6.32 s 3.25 s 0.95 s 137.09 s

We found that discontinuity detection, via image seg-
mentation, is quite important to the algorithm. Although
the method does not require any a priori knowledge of the
object, it should be noted that it does rely on detecting
the discontinuity from the direct reconstruction using post-
processing techniques. The minimum requirement is that the
discontinuities in the direct reconstruction result should be
well detectable. It is found that the algorithm may not im-
prove over the direct reconstruction when segmentation does
not perform well (such as cases with low discontinuities). We
find some cases, for example, those with low signal-to-noise
ratio or significantly undersampled k-space, extremely chal-
lenging. However, it should also be pointed out that the al-
gorithm merely requires a rough segmentation of the current
highest discontinuities, and this is usually not as challenging
as image segmentation tasks in a normal sense. Second, due
to the POCS process that ensures data fidelity in the k-space,
the algorithm at least should not perform worse than direct
reconstruction.
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Figure 8: Reconstruction results of a spiral scan through (a) direct reconstruction and (b) leakage reduction reconstruction.
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Figure 9: Reconstruction results of well-sampled and undersampled radial scans. (a) 800 rays, direct reconstruction; (b) 200 rays, direct
reconstruction; (c) 200 rays, leakage reduction reconstruction.

Given the above challenges, the current algorithm is most
applicable to imaging objects that involve high intensity dis-
continuities, for example, the imaging of brain with skull
and cardiac imaging. In these applications, the lower inten-
sity anatomies are of more interest so that the reduction of
leakages from the higher anatomies into the low intensity re-
gions becomes very useful.

Based on the analysis, we suggest several research direc-
tions. First of all, although segmentation is not the empha-
sis in the work, there is a large body published work on this
topic. We refer the reader to this literature for more effective
segmentation methods, and we believe that integrating them
in the current framework will result in even more improved
results. Second, the proposed method is a good alternative to
trade off image quality and computational complexity, but it

does not guarantee optimal suppression of artifacts. Some re-
cent works [20, 21] suggested encouraging results using con-
strained optimization methods that minimize certain edge
preserving priors (e.g., total variation or wavelet coefficients)
with the constraint of data fidelity. The concept can be inte-
grated into our scheme as well, for example, by updating the
image using the gradient of the prior(s) before applying the
discontinuity subtraction.

6. CONCLUSIONS

A leakage reduction reconstruction method has been pro-
posed for improving non-Cartesian MR image reconstruc-
tion. The study explored two major non-Cartesian sam-
pling trajectories, spiral and radial. Studies have shown that
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principal PSF imperfections cause significant image artifacts
when discontinuous structures exist or when the k-space sig-
nal is undersampled. The proposed method uses disconti-
nuity subtraction and the discontinuity is found in the im-
age space by post-processing techniques. The subtraction is
taken in the k-space, in order to enforce data fidelity. In
this scheme, the multidimensional NUFFTs are exploited for
k-space simulation and direct image reconstruction. Both
computer-simulated Shepp-Logan phantoms and physical
scanned data were reconstructed to compare the proposed
method with the direct reconstruction method. Results sug-
gested that the proposed method successfully reduced arti-
facts in images with discontinuities or ones reconstructed
from incomplete data.
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