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Endre Károly Kristóf,
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The m6A methylation is the most numerous modification of mRNA in

mammals, coordinated by RNA m6A methyltransferases, RNA m6A

demethylases, and RNA m6A binding proteins. They change the RNA m6A

methylation level in their specific manner. RNA m6A modification has a

significant impact on lipid metabolic regulation. The “writer” METTL3/

METTL14 and the “eraser” FTO can promote the accumulation of lipids in

various cells by affecting the decomposition and synthesis of lipids. The

“reader” YTHDF recognizes m6A methylation sites of RNA and regulates the

target genes’ translation. Due to this function that regulates lipid metabolism,

RNA m6A methylation plays a pivotal role in metabolic diseases and makes it a

great potential target for therapy.
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Introduction

Lipid metabolism exerts a profound impact on the maintenance of human physiology

and health status. Adipose tissue is an important site for lipid storage, and energy

homeostasis (1, 2). It is important to understand the mechanisms involved in adipose

tissue development (3). Adipogenesis of the white and brown adipocytes is regulated by

several endocrine hormones (1, 3). Fat mass and obesity-associated protein (FTO) pro-

obesity rs1421085 T-to-C single-nucleotide polymorphism (SNP) shifts differentiation

programming towards white adipocytes in subcutaneous fat (4). Meanwhile in community,

unhealthy lifestyles such as nutrient surplus and unhealthy eating patterns (5) act as the

main reason for the high incidence of lipid metabolism disorder. Furthermore, types of

diseases caused by abnormal lipid metabolisms like diabetes (6), hyperlipidaemia (7),

cardiovascular disease (8, 9), and non-alcoholic fatty liver disease (NAFLD) (10) are

becoming more and more pervasive all over the world. Therefore, there is a great desire to

deepen the understanding of the regulation of lipid metabolism.
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In mammals, the m6A methylation is the most numerous

modification of mRNA and accounts for more than sixty percent

of all RNA modifications (11, 12). The RNA m6A modification

is a kind of methylation modification positioned at the nitrogen

atom in the sixth position of adenosine (13). The process of RNA

m6A methylation is dynamically and reversibly coordinated by

m6A demethylases, m6A methyltransferases, and m6A binding

proteins, which are also referred to as “Writer”, “Eraser”, and

“Reader”, respectively (14). The writers methyltransferase-like 3

(METTL3), methyltransferase-like 14 (METTL14), and Wilms’

tumor 1-associated protein (WTAP) have m6A methylation

activity to catalyze m6A modification (15). Demethylases are

predominantly made out of ALKB homolog 5 (ALKBH5) and

FTO (16), catalyzing the demethylation process (17).

Furthermore, m6A binding proteins are found principally in

the YT521-B homology (YTH) family (18), which have the

potency to recognize and specifically bind to m6A-modified

transcripts (19). All kinds of RNA m6A methylation regulators

are involved in different physiological processes, while many

remain unknown.

In this article, we introduce the novel RNA modification and

its regulatory function for RNA. We summarize the main

regulators of RNA m6A methylation and describe their

function and regulatory mechanism toward mRNA. The

possible target gene by which RNA m6A methylation

regulators affect lipid metabolism is claimed. Finally, we

reviewed the RNA m6A methylation regulators on the

NAFLD, diabetes, and cardiovascular diseases and its

regulating pathway to provide some reference to the clinical

prevention, diagnosis, and therapy research in lipid metabolism-

related diseases.
Epigenetic regulatory mechanisms
of RNA m6A methylation

M6A methylation is a newly discovered epigenetic

regulatory mechanism in recent years. Among the more than

170 RNA modifications (20), m6A modification accounts for a

large proportion in eukaryocyte (21). It is a methylation

substitution reaction that takes place on the sixth nitrogen

atom of the RNA molecule adenosine, which is observed

enriching in 3’UTR and consensus motif RRACH in coding

region (22, 23).

M6A methylation is essential in determining the fate of

RNA, showing a regulatory function in multiple mRNA

biological processes. Firstly, it can regulate the stability of

mRNA. Facts that mRNA with lower m6A methylation level

had longer half-life was first revealed in 1978 (24). The m6A

reader YTHDF2 can recognize methylation sites in the coding

region of mRNA and destabilized mRNA (25, 26) while, the
Frontiers in Endocrinology 02
newly identified reader Insulin-like growth factor-binding

proteins (IGFBP) recognized m6A in 3‘UTR inversely make

the mRNA more stable (27, 28). The opposite regulatory effect

may account for the different recognizing mRNA sites. Secondly,

m6A facilitates the initiation of the translation process of

mRNA. After reading the m6A methylation site, the m6A

reader like YTHFD1/3 can recruit eIF3 to connect to mRNA.

In addition, m6A at 5‘UTR can directly connect to eIF3 to

enhance mRNA translation (29–31). Furthermore, it also

regulates mRNA splicing, processing, and nuclear export (32,

33). Recent research also shows it to to exist in lncRNA,

microRNA, and non-coding RNA (32, 34, 35), considered a

widespread RNA modification.

In RNA molecules, methylation levels are regulated by a

series of enzymes reversibly and dynamically, which can be

identified as “Writer”, “Eraser”, and “Reader” and all specifically

interact with the m6A methylation site as follow.
The writer of m6A can catalyze
mRNA methylation

METTL3 is a high molecular weight subcomplex whose

component is still not fully understood, and METTL14 is its

homologues (21, 36). WTAP is the regulatory subunit of

methyltransferase by which METTL3 and METTL14 anchor to

mRNA to methylate subsequent target adenosine residues.

WTAP recruits METT3 and METT14, enabling the METTL3-

METT14 complex to perform m6A methyltransferase activity,

affecting m6A methylation, and thus RNA shearing (37). Junho

Choe’s team found that METTL3-elF3h interacts with each

other to mediate mRNA cycling and translation through the

association between the elF3h subunit at the mRNA 5‘end and

METTL3 binding to the specific site near the translation

termination codon. METTL3-elF3h mediates mRNA

cyclization. Thus, efficient translation of target mRNA was

promoted (38).
The eraser of m6A can remove
m6A from RNA

FTO was the first eraser to be identified, in 2011 (21). Since its

discovery, much research on its regulation in enormous

physiological and pathological processes has been carried out.

FTO in humans is an approximate 400 kb gene, containing 8

introns and 9 exons, located on 16q12.2 (39). FTO can remove the

m6A methylation from multiple mRNAs through an a-
Ketoglutarate (a-KG) and Fe (II)-dependent manner (40). Its

modification process is claimed in detail in previous research. In

brief, initially, FTO oxidizes m6A methylation to the intermediate

N6-hydroxymethyl adenosine (hm6A). In the second step, FTO
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oxidizes metastable hm6A in the same way as m6A, forming

further oxidized production N6 -formyladenosine (f6A) (41). As a

result, hm6A and f6a spontaneously break down to adenine and

the m6A methylation in RNA is removed (41, 42).

ALKBH5 is another eraser identified later which demethylates

the RNA efficiently (43). Research has shown its regulator

function in many regulator pathways by mRNA methylation.

However, the underlying mechanism remains mysterious.
The reader of m6A can capture
mRNA methylation

YTH domain is a module recognizing the methylation of m6A

dependently, consisting of YTHDC1, YTHDC2, YTHDF1,

YTHDF2, and YTHDF3 (25). The stability of m6A methylation

modifiedmRNA is regulated by YTHDF2 in the way of recognizing

m6A methylation and reducing the stability of the target transcript.

In addition, another m6A reading protein, YTHDF1, was found to

interact with the translation machinery of the related genes and

promote protein synthesis. The m6A mRNA modification enforces

rapid response of gene expression and controlled protein

production, improved translation efficiency through YTHDF1-

mediated translation, and controls target transcripts’ lifetime

through YTHDF2-mediated degradation (29).
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RNA m6A methylation regulates the
lipid metabolism

Lipid, which mainly consists of triglycerides, cholesterol,

phospholipids, and glycolipid, is involved in body energy

metabolism and is the component of the cell membrane. It is

also the precursor of various molecules that play important

biological roles. Thus, lipid metabolism, such as digestion,

absorption, synthesis, and decomposition is essential for the

maintenance of cellular homeostasis (44, 45).

The RNA m6A methylase METTL3 and METTL4 are also

involved in the regulation of lipid accumulation in cells.

METTL3-mediated m6A methylation makes the metabolism-

related gene’s mRNA more unstable, leading to metabolic

disorders and lipid accumulation in the liver (46). Likewise, in

cardiac cells, METTL3 deficiency decreases the RNA m6A

methylation and the triglyceride deposition (47). Fatty acid

synthase (FASN), acetyl-CoA carboxylase (ACCY), and

stearoyl-CoA desaturase 1 (SCD1) are the regulator targets, as

recently reported (Figure 1). Mechanistically, METTL3/

METTL14 complex induces the increase of mRNA to

accelerate the production of lipid (48, 49). Consistently,

METTL3 and the recognizing and binding protein YTHDF2

increase the m6A methylation level of peroxisome proliferator-

activated receptora(PPARa) and its expression, impacting the
FIGURE 1

The main steps of lipogenesis and the regulation of FTO and METTL3/14. SREBP, sterol regulatory element-binding protein; FASN, fatty acid
synthase; ACCY, acetyl-CoA carboxylase; SCD, stearoyl-CoA desaturase.
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downstream lipid accumulation (50). Inflammation is also

involved in the lipid accumulation procedure. METTL3

deficiency induces a lower level of m6A methylation of TNF

receptor-associated factor 6 (TRAF6) and therefore the

transcripts are entrapped in the nucleus, leading to the

downstream mitogen-activated protein kinase (MAPK) and

nuclear factor k-B (NF-kB) to be suppressed. In consequence,

inflammation and the absorption of long-chain fatty acids

(LCFA) are reduced (51).

Once introduced in 1974 (52), RNA m6A methylation

modification was found to affect diverse physiological and

pathological progressions in cardiomyocytes (53), hepatocyte

(54), axoneuron (11), and so on. Its regulation function in the

lipid metabolism is revealed over decades. In general, its

regulation function depends on the enhancement or reduction

of the m6A level and recognition of the m6A site by various

regulatory enzymes. But its interaction with genes related to lipid

synthesis and decomposition is complicated and remains to be

elucidated by research.

The first identified RNA m6A demethylase, FTO, is strongly

connected with lipid accumulation in multiple cells and tissues.

In the obesity group, high FTO level is positively correlated with

Body Mass Index (BMI) and body fat (55, 56). In vitro, it

promotes intracel lular l ipid accumulation by RNA

demethylation while FTO knockdown did not (57, 58).

As an enzyme that demethylates m6A (59), FTO regulates

m6A methylat ion levels of multiple RNA in l ipid

anabolism and catabolism. The process of lipid synthesis can

be improved by FTO-mediated RNA demethylation. In the

3’UTR region of multiple lipogenic genes’ mRNA such as

SCD, PPARg, and sterol regulatory element-bindin protein-1

(SREBP1), which are all involved in the triacylglycerol and

Cholesterol Synthesis. (Figure 1) FTO decreases their level of

m6A methylation to improve the stability of mRNA (60, 61). In

the hepatocyte, the m6A methylation level in FASN mRNA is

enhanced and lipogenesis is inhibited by the FTO knockdown

and YTHDF2 recognition (62). Angiopoietin-like protein 4

(ANGPTL4) is also the key target of triglycerides synthesis

and hydrolysis intracellularly and extracellularly. It inhibits

lipoprotein lipase(LPL), leading to inhibiting extracellular

lipolysis (63). FTO decreases the level of the translation of

ANGPTL4, hence hydrolysis of extracellular triglycerides is

promoted. The fatty acid is transported into adipocytes,

inducing lipid accumulation (39, 63). Conversely, ANGPTL4

promotes intracellular lipolysis (64). Evidence has shown

knockout of FTO affects intracellular ANGPTL4 level and

intracellular lipolysis (65). The different results may account

for the different mRNA sites where the m6A methylation is

located. It is an interesting issue to explore.

Nevertheless, the role played by FTO in lipolysis remains

disputed. FTO decreases the expression of interleukin 6 (IL-6)

mRNA in adipose tissues (66) and consequently inhibits the

lipolysis genes (67). In addition, FTO reduces lipolysis and fatty
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acid oxidation by reducing the adipose triglyceride lipase

(ATGL), hormone-sensitive lipase (LIPE), and carnitine

palmitoyltransferase 1 (CPT1) mRNA expression (68).

Interestingly, another FTO regulator pathway revealed that

the promotion of FTO downregulated the obesity-related gene

iroquois homeobox protein 3 (IRX3) level in the hypothalamus

and macrophage. So, lipolysis was inhibited through affecting

whole body modulated energy expenditure and metabolic

inflammation (69, 70). However, it should be noted that the

interaction of FTO and IRX3 is not the traditional m6A

methylation modification, but the noncoding regions of FTO

serve as a long-range regulatory element to influence the

expression of IRX3 (71).

Furthermore, FTO-mediated RNA m6A methylation shows

a close correlation with cellular triglyceride (TG) uptaking that is

regulated by adenosine 5’-monophosphate-activated protein

kinase (AMPK) (72, 73). AMPK suppresses the expression of

FTO to upregulate the m6A level of Parkin2 mRNA and

promote its decay. Then CD36 was translocated to the

membrane and LCFA uptaking of cells is increased (74, 75).

In summary, both FTO and METTL3 play vital regulatory

roles in lipid metabolism and can promote the accumulation of

lipids in various cells, affecting the decomposition and synthesis

of lipids. The regulation pathways of FTO and METTL3/

METTL14 are complex and diverse, which can methylate or

demethylate the RNA m6A of targets in multiple pathways such

as inflammation, energy homeostasis, nerve-related lipid

regulation, lipid metabolism balance, resulting in corresponding

high or low gene expression (Figure 2). In addition, YTHDF

protein plays an epigenetic role in recognizing m6A methylation

sites of RNA and regulates the translation. Although the area of

RNA m6A methylation is a popular spot in recent years, a

convincing and authoritative theory is urgently needed. The

function of RNA m6A methylation in many genes remains

controversial and the deeply regulation process requires

further investigation.
m6A methylation and lipid-related
metabolic diseases

When the cellular lipid metabolism is disordered, excessive

lipid accumulation or lipid accumulation in ectopic tissues due to

the imbalance of lipid uptake, decomposition, and synthesis in the

cell, can result in a series of intracellular pathophysiological

reactions. Inflammation (76), oxidative stress (77), chromatin

histone modification (78), etc. caused by lipid accumulation can

lead to cellular dysfunction, apoptosis, and even death. As

mentioned above, RNA m6A methylation is involved in

multiple pathways in lipid metabolism, and it also shows a vital

function in the occurrence and development of lipid metabolic

diseases (Table 1). Over the past decades, studies have investigated

some possible targets for the diagnosis, physiopathology process,
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FIGURE 2

RNA m6A regulators influence lipid cellar accumulation in various ways. TG, triglyceride; ANGPTL4, angiopoietin-like protein 4; IRX3, iroquois
homeobox protein 3; MAPK, mitogen-activated protein kinase; FFA, free fatty acid; IL-6, interleukin 6; Plin5, perilipin5; CPT1, carnitine
palmitoyltransferase 1; LIPE, hormone-sensitive lipase; ATGL, adipose triglyceride lipase; PPAR, peroxisome proliferator-activated receptor;
FASN, fatty acid synthase; LPL, lipoprotein lipase; SREBP1, sterol regulatory element-bindin protein-1; SCD, stearoyl-CoA desaturase; Traf6, TNF
receptor associated factor 6; ACCY, acetyl-CoA carboxylase; NF-kb, nuclear factor kappa-B; AMPK, adenosine 5’-monophosphate-activated
protein kinase.
TABLE 1 Multiple functions of RNA m6A methylation regulator in lipid metabolic disease.

Regulator Disease Influence
towards
disease

Target Function Year Ref.

METTL3 NAFLD NEGATIVE DDIT3 Loss of METTL3 results in increasing in DDIT 2021 (79)

METTL3 NAFLD NEGATIVE Rubicon axis METTL3 and its partner YTHDF1 promote the stability of Rubicon
mRNA

2021 (80)

METTL3 NAFLD/NASH POSITIVE CD36,CCL2 METTL3 inhibits the expression of CD36 and CCL2 2015 (81)

FTO NAFLD NEGATIVE SREBP1c, CIDEC Knockdown of FTO down-regulates the expression of SREBP1c and
CIDEC

2018 (82)

FTO NAFLD NEGATIVE FASN, SCD, MGAT1,
MTTP, APOB, LIPC

FTO overexpression in HepG2 cells positively regulate FASN,
SCD1, MAGT1 while negatively regulate MTTP, APOB, LIPC

2018 (57)

IGF2BP2 NAFLD NEGATIVE CCL2 Overexpression of p62/IMP2-2/IGF2BP2-2 elevated CCL2
expression levels

2014 (83)

IGF2BP1/
IGF2BP3

NAFLD/HCC NEGATIVE LINC01138 IGF2BP1/IGF2BP3 stabilized LINC01138 transcript 2018 (84)

METTL3 T2DM NEGATIVE FASN METTL3 silencing could decrease the m6A mRNA levels of FASN 2019 (48)

METTL3 HCC NEGATIVE SOCS YTHDF2 cooperates with METTL3 depressing the level of SOCS 2018 (85)

YTHDC2 NAFLD CRITICAL SREBP1c, FASN,
SCD1, and ACCY1

YTHDC2 decreases the stability of mRNA of SREBP1c, FASN,
SCD1, and ACCY1 and inhibit gene expression

2020 (86)

FTO HYPERLIPIDAEMIA NEGATIVE – the secretion of inflammatory factors IL-1band
the expression of FTO was high in dyslipidemia induced by LPS

2016 (87)

METTL14 ATHEROSCLEROSIS NEGATIVE ZFAS1/RAB22a METTL14 mediated m6A modification to LncRNA ZFAS1/RAB22a 2020 (88)
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and therapy of metabolic diseases such as NAFLD, diabetes,

hyperlipidemia, and atherosclerosis (Figure 3).
m6A methylation and the lipid
metabolism in NAFLD

The liver is one of the most significant organs in fatty acid

synthesis and decomposition. Recent studies have revealed that

RNA m6A methylation happened in hepatocyte matters in lipid

metabolism disorder. Patients who suffered from NAFLD were

detected to have a higher level of FTO mRNA in the liver (46).

Similar results were observed in several studies (89–91), which

have been widely acknowledged by researchers.

Thus, exploring the further mechanism is imperative. The

“writer” METTL3 is also considered to be related to liver lipid

accumulation (50, 92). Forkhead box O1 (FOXO1), Enoyl-CoA

Hydratase And 3-Hydroxyacyl CoA Dehydrogenase

(EHHADH), PPARa, FASN, and Sirtuin 1 (SIRT1) were the

regulator targets that had been reported (93). Furthermore, in

the recent 2 years of research, some other regulation targets have

been put forward. METTL3, as the m6A writer, improves DNA

damage-inducible transcript 4 (DDIT4) mRNA the methylation

level, as a result, affects its stability. When METTL3 is knocked

down, DDIT4 reduces the level of lipid accumulation and the

activity of inflammation in hepatocytes of the NAFLD patients

by the signaling pathway of the mechanistic target of rapamycin

complex 1 (mTORC1) and NF-kB (79). Autophagy also plays a
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role in RNA m6A methylation of the NAFLD progression.

METTL3 and its partner YTHDF1 inhibit the autophagic flux

in hepatocytes and block the clearance of lipid droplets by the

means of promoting the stability of Rubicon mRNA, which

inhibited the autophagy process of autophagosome-lysosome

fusion (80).

Conversely, METTL3 knockdown increased the free fatty

acid uptake mediated by CD36, and the inflammation reaction

induced by C-C motif chemokine ligand 2 (CCL2), as the result,

lead to the progression from NAFLD to non-alcoholic

steatohepatitis (NASH) (81). The regulation of METTL3 on

NAFLD may be diverse.

FTO can affect the expression of FASN, SCD,Monoacylglycerol

acyltransferase (MAGAT), SREBP1c, and cell death-inducing

DFF45-like effector C (CIDEC) (82) to regulate the lipogenesis in

hepatocytes. Meanwhile, FTO up/down-regulates the lipid

transport protein of microsomal triglyceride transfer protein

(MTTP), hepatic lipase (LIPC), apolipoprotein B (APOB) (57),

inducing the process of lipid transport (93). As a result, excessive

lipid deposition in hepatocytes results in hepatocyte steatosis.

Furthermore, the “reader” YTHDF2 is also involved in the

regulation of TG homeostasis and lipogenesis in NAFLD, and

SREBP1c, FASN, and SCD1, and ACCY1 is the gene related to the

process (86). In the next section, IGF2BP2, a recently identified

m6A reader, was also reported to be a promoter of NAFLD (83),

which can promote the stability of mRNA (28), and IGF2BP1/

IGF2BP3 was also reported to be associated with poor outcomes

of liver cancer (84).
FIGURE 3

RNA m6A regulators are involved in the regulation of lipid metabolic diseases in various ways. NAFLD, non-alcoholic fatty liver disease; CCL, C-
C motif chemokine ligand 2; SREBP1c, sterol regulatory element-bindin protein-1; FASN, Fatty acid synthase; SCD1, stearoyl-CoA desaturase;
ACCY1, acetyl-CoA carboxylase, CIDEC, cell death-inducing DFF45-like effector C; MAGAT, monoacylglycerol acyltransferases; LIPC, hepatic
lipase; APOB, apolipoprotein; ZFAS1/RAB22a, zinc finger antisense 1/ras-related protein rab-22a; DDIT3, DNA damage-inducible transcript 4;
T2DM, diabetes mellitus type 2; METTL, methyltransferase-like 3; YTHFD, YT521-B homology domain family; FTO, fat mass and obesity-
associated protein; IGFBP, Insulin-like growth factor-binding proteins; MTTP, microsomal triglyceride transfer protein.
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NAFLD is a complex metabolic disease and many

pathological changes happened in liver tissue (94).The RNA

m6A methylation regulator FTO, METTL3, and the recognition

protein family YTHDF affect the progression of NAFLD to

hepatocellular carcinoma (HCC) by the means of disorder

lipid metabolism, oxidative stress (87), and autophagy (80),

making it an important potential treatment target. Altering the

RNA m6A methylation level of various proteins reduces the

hepatic abnormal lipid accumulation, thereby further relieving

the abnormal state of cells. This epigenetic regulation may

significantly improve the development of NAFLD and even

reverse hepatocyte degeneration.
m6A methylation and lipid metabolism
in diabetes

Diabetes is one of the highest prevalence diseases and over

400 million patients live with this disease worldwide. Its

complication causes severe disease burden (95, 96). It has been

revealed that multiple m6A methylations target pathways like

Insulin-like growth factor 1-protein kinase B-pancreatic and

duodenal homeobox 1(IGF1-AKT-PDX1) and genes like

diacylglycerol acyltransferase 2 (DGAT2), glucose-6-

phsophatase catalytic subunit (G6PC), and FOXO1, are

involved in the glucose and insulin secretion regulation of

pancreatic islet B cell (97, 98). Besides, lipid metabolism

disorder related to m6A methylation also plays an important

part in insulin resistance.

FASN, the key protein in lipid metabolism, has proved to be

closely connected to insulin resistance by research that in

adipose tissue, FASN expression was increased and insulin

sensitivity was impaired (99). METTL3 also inhibits insulin

sensitivity via the modification of FASN mRNA. Along with

the overexpression or the METTL3 deficiency in high-fat diet

(HFD) rats, the level of FASN mRNA and lipid content in the

liver is higher or lower accordingly, and the insulin sensitivity is

improved (46, 48). However, further studies are still needed to

claim how exactly m6A interacts with insulin sensitivity.
RNA m6A methylation and lipid
metabolism in cardiovascular diseases

Cardiovascular disease is the leading cause of death

worldwide, while hyperlipidemia is responsible for about one-

third of all cardiovascular diseases (100, 101). The RNA m6A

methylation involved lipid metabolism disorder and chronic

inflammation reaction has been reported as a possible

mechanism in the past few years. Research has revealed that

hyperlipidemia level is highly connected with m6A-SNPs (102)

and FTO-associated inflammatory factor IL-1b, IL-6, and LPS

which induce hyperlipidemia may be the factors in the
Frontiers in Endocrinology 07
development of chronic heart disease (38, 87). Additionally, 6-

phosphogluconate dehydrogenase (6PGD) is also considered a

key point. YTHDF2 binds to 6PGD mRNA and promotes its

translation, while 6PGD deficiency can lead to lower blood

cholesterol making YTHDF2 a possible target for lowering

blood cholesterol (103–105). Moreover, very recent research

mentioned that the METTL14 mediating lncRNA zinc finger

antisense 1/ras-related protein rab-22a (ZFAS1/RAB22a) m6A

methylation modification is also a possible pathway to

atherosclerosis (88).
Conclusion and discussion

After decades of research, RNA m6A methylation remains a

broad research space that structures functions and regulation

mechanisms of many regulators remain critical and unknown

(106). RNA m6A methylation is an important and novel

regulatory manner in epigenetics. It has a regulatory role in

adipogenicity differentiation and adipogenesis in adipose tissue

(107, 108). In addition, it also exerts vital functions in lipid

metabolism, which is interwoven with human health. A greater

understanding of the regulatory mechanism of lipid metabolism

also leads to advances in life science research.

In the process of RNA m6A methylation regulating the lipid

metabolism, the m6A “writers”, “erasers”, and “readers” can add,

remove, or recognize the RNA m6A methylation sites in mRNA

and affect its translation, decay, splicing, and export, leading to

thousands of biological processes (109). Inflammation is one of

the parts, and it has proved closely connected with obesity and

fatty acid absorption (110, 111). In the process of RNA m6A

methylation regulating lipid metabolism, IL-6, CCL2, IRX3,

TRAF6, and many inflammation factors-related proteins

become the central regulatory targets. The lipid synthesis and

decomposition genes such as FASN, SREBP, and CES2 (112) are

also affected by mRNA m6A methylation and demethylation.

Lipogenesis and lipolysis are directly regulated. In addition,

some other cell signaling pathways are also involved. The

regulation of RNA m6A methylation is a complex process that

involves a variety of mechanisms in multiple cells. Research in

this area still has much to be done.

Disorder of the global or partial lipid metabolism causes

intractable chronic diseases. In the occurrence and development

of NAFLD, abnormal lipid accumulation in hepatocytes is one of

the major pathological changes, and METTL3, METTL14, FTO,

and YTHDF mediated key gene mRNA m6A methylation are all

related to it. Furthermore, lipid metabolism disorder is

responsible for insulin resistance, hyperlipidemia, and

atherosclerosis (113), in which RNA m6A methylation all

plays a critical part, making it a great potential therapeutic target.

At the present stage, further research on m6A mRNA

methylation in its effective metabolism is needed. Many

studies remain controversial, and m6A mRNA methylation
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may affect the expression of mRNA or protein levels of different

key positive or negative regulatory factors in different

pathophysiological processes, so, likely, the “Writer”, “Eraser”,

and “Reader” of the same RNAm6Amethylation regulators may

coregulate two pathophysiological processes with opposite

effects. Moreover, future studies on the regulatory mechanism

of m6A mRNA methylation on adipose metabolism should not

be limited to METTL3, FTO, and YTHDF2, and other “Writer”,

“Eraser”, and “Reader” of m6A mRNA methylation may also

participate in the occurrence of lipid metabolism through

different pathways while researches remain limited. In

summary, RNA m6A methylation regulates many targets,

including lipid synthesis, breakdown, as well as accumulation.

Moreover, RNA m6A methylation has the therapeutic potential

to be a target for metabolic diseases like obesity, NAFLD, and

diabetes which will foster the treatment of them and related

diseases better in humans in the future.
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