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Abstract: Background: Emerging evidence has supported that intensive exercise induces weakened
performance and immune and metabolic disorders. We systematically evaluated the effects of quercetin
against hepatic inflammatory damage caused by repeated intensive exercise and explored the potential
mechanism. Methods: Male BALB/c mice were administered quercetin (100 mg/kg BW) for four weeks,
and performed a treadmill running protocol of 28 m/min, 5◦ slope, 90 min/day concurrently for the
last seven days. Results: Quercetin administration reduced the leakage of aspartic acid and alanine
aminotransferase and improved ultrastructural abnormalities such as swelling, and degeneration
caused by high-intensity running in mice. Quercetin significantly decreased the hepatic and plasmatic
levels of inflammatory cytokines IL-1β, IL-6, TNF-α, inducible nitric oxide synthase, cyclooxygenase-2
and intercellular adhesion molecule-1—provoked by over-exercise. Furthermore, diminished activation
and nuclear translocation of NF-κB were found after quercetin treatment through inhibiting IKKα

and Iκbα phosphorylation of intensive running mice. Conclusion: Quercetin offers protection for
mouse livers against intensive sports-induced inflammatory injury, and the suppression of the
NF-κB signal transduction pathway may play a role in its anti-inflammatory effects. Our findings
broaden our understanding of natural phytochemicals as a promising strategy to prevent excessive
exercise damage.
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1. Introduction

Regular physical exercise is generally deemed to play a protective effect on human against
inflammation [1]. However, mounting evidence suggests that intensive exercise induces weakened
performance, immune dysfunction and metabolic disorders [2]. The liver plays a substantial role
in metabolism and possesses various functions of glycogen storage, glycogenesis and erythrocytes
of decomposition, which is crucial for sports performance. On the other hand, the liver also may
be susceptive to intensive exercise because of sustained energy depletion and violent metabolism
disturbance [3]. Nuclear factor-κB (NF-κB)-mediated inflammatory responses have been presumed as
crucial mechanisms involved in triggering liver damage following intensive exercise. It is documented
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that proinflammatory cytokines, reactive oxygen species, DNA damage, pathogen exposure and
physical stress may activate protein kinases and then phosphorylate IκB, causing NF-κB nucleus
translocation [4,5]. The activated transcription of inflammatory mediators stimulated by translocation
of NF-κB causes tissues proinflammatory response [6,7]. Emerging studies have demonstrated
that unaccustomed exercise induces muscle inflammatory damage, pain and performance deficits
through the NF-κB pathway [8]. To date, however, hepatic inflammatory stress following exercise
remains unclear—especially inflammatory damage mechanisms involving NF-κB during repeated and
high-intensity exercise—which is routine for soldiers, athletes and ultra-endurance sportspeople.

As one of the most common flavonoids, quercetin (3,3’,4’,5,7-pentahydroxyflavone), has been
collectively elucidated to exhibit many beneficial effects, such as anti-inflammatory, immunoregulatory,
antipathogenic and antioxidative activity [9,10]. Some research suggests that quercetin promotes
mitochondrial biogenesis and increases VO2max-endurance exercise performance in vivo models [11–13],
despite some adverse reports [14,15]. Our previous study observed a definite antioxidative role
of quercetin in intensive running-caused malfunctions in mice myocardial mitochondria [16].
Moreover, quercetin can exert an anti-inflammatory role similar to some conventional nonsteroidal
anti-inflammatory drugs (NSAIDs) without any apparent side effects, for example, cardiovascular
complications and gastrointestinal distress [17]. Anti-inflammatory mechanisms of quercetin may
be linked to its inhibiting effects on the inflammatory cascade, particularly the NF-κB signaling
pathway [18,19]. However, there has been little attention paid to the role of quercetin in liver damage
caused by repeated strenuous exercise—especially inflammatory injury and hepatic NF-κB signal
transduction pathway. This study aimed to investigate the beneficial role and the underlying molecular
mechanism of quercetin on intensive running-induced liver damage, with the NF-κB pathway as the
main focus.

2. Materials and Methods

2.1. Chemicals and Materials

Quercetin (≥98%, HPLC) was obtained from Sigma-Aldrich. Mouse β-actin antibody and
horseradish peroxidase (HRP) conjugated goat anti-mouse IgG were obtained from Sigma-Aldrich
(St. Louis, MO, USA) and Cell Signal (Danvers, MA, USA), respectively. Mouse iNOS, COX2 and
ICAM-1 antibodies were obtained from Santa Cruz (CA, USA). Assay kits for aspartate/alanine
transaminase (AST/ALT) were purchased from Mindray (Shenzhen, China). TNF-α, IL-1β, IL-6 and
IL-10 ELISA kits were provided by Joyee Biotechnics (Shanghai, China). Assay kits for nuclear
and cytoplasmic protein extraction and LightShift chemiluminescent EMSA were obtained from
Beyotime Institute of Biotechnology (Haimen, China) and Pierce Biotechnology (Waltham, MA, USA),
respectively. Local reagent retailers provided additional analytical grade chemicals.

2.2. Animals Treatment and Exercise Protocol

BALB/C mice (8 weeks old, 18 ± 1 g, male) were acclimated for one week and then randomly
divided into four groups (eight mice each group): rested controls (Ct), intensive exercise (Ex), intensive
exercise + quercetin administration (Ex + Qu) and rested + quercetin administration (Qu). Quercetin
was supplemented for 4 weeks by gavage at a dose of 100 mg/kg·bw every day, and an intensive
running protocol was performed at the fourth week [20,21]. The mice were acclimated to running on a
motor-driven treadmill for two successive days, beginning at 10 m/min on a 5◦ slope for 10 min/day
and then submitted to daily sessions of intense exercise for seven consecutive days (the fourth week)
following a 2-day rest. The daily sessions of intensive training set of 28 m/min at a 5◦ slope for 90 min
following a 10 min warm-up. The mice were encouraged to exercise with a soft brush when they
were exhausted [21]. We attached the flow chart of the experiment design to the Supplementary
Materials (Figure S1). The experiment was subject to approval by the Tongji Medical College Council
on Animal Care Committee (IACUC number: S407). Tap water and rodent laboratory chow were
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available ad libitum. Blood was sampled from the mice’s eyes; the serum was obtained from the blood
by centrifuging at 3500 g for 10 min at 4 ◦C. Liver samples were collected quickly to fix for morphologic
examination (the central zone of the medial lobe) or to freeze at −80 ◦C for further assays.

2.3. Liver Pathomorphological Examination

Fresh liver sample slices were fixed with paraformaldehyde and then dehydrated and embedded
in paraffin. Approximately 4-µm liver tissue sections were stained with hematoxylin and eosin and
observed with a light microscope. Meanwhile, another smaller fresh liver fragment (1-mm cube)
was fixed in turn with 2.5% glutaraldehyde and 1% osmium tetroxide in a pH 7.4 phosphate buffer.
After dehydration, the sample was embedded in resin and ultrathin sections were stained with uranyl
acetate and lead citrate for ultrastructure examination by a transmission electron microscope.

2.4. Serum Assays by Biochemistry and ELISA

AST and ALT were analyzed by enzymatic kinetic method. Serum TNF-α, IL-1β, IL-6 and IL-10
levels were measured using enzyme-linked immunosorbent assay (ELISA) kits. Absorbance was
measured spectrophotometrically with a SpectraMax M2 microplate reader; the concentration of each
cytokine was calculated by comparison with a calibration curve.

2.5. Liver RNA Extraction and qRT-PCR Analysis

The target mRNAs were quantified by a 7900HT real-time PCR system with SYBR green-based
qRT-PCR kit and specific oligo primers. The β-actin mRNA level was quantified as an endogenous
control. The relative mRNA expression was expressed as fold-change relative to rest control.
The forward and reverse primers were as follows: TNF-α (NM_013693): CATCTTCTCAAAATTCG
AGTGACAA Moreover, TGGGAGTAGACAAGGTACAACCC; IL-1β (NM_008361.3): CTTCAGGC
AGGCAGTATCACTC and TTGTTGTTCATCTCGGAGCC; IL-6 (NM_031168.1): CCACGGCCTTC
CCTACTTC and CTCATTTCCACGATTTCCCAG; IL-10 (NM_010548): GGTTGCCAAGCCTTA
TCGGA and ACCTGCTCCACTGCCTTGC; β-actin (NM_007393.3): CTGAGAGGGAAATCGTGCGT
and CCACAGGATTCCATACCCAAGA.

2.6. Protein Detection by Immunohistochemistry and Western Blot

Liver tissue sections (4 µm) embedded with paraffin from the pathomorphological examination
were incubated overnight with polyclonal rabbit anti-mouse iNOS, COX2 or ICAM-1 antibody
(diluted in 1:100 at 4 ◦C), respectively. Following incubation with goat anti-rabbit horseradish
peroxidase-conjugated secondary antibody (diluted to 1:200 for 1 h) and immunostaining with 3,
3’-diaminobenzidine, the expression of hepatic iNOS, COX-2 or ICAM-1 was observed by light
microscope using integral optical density analytic method.

Liver tissues were homogenized and lysed in RIPA lysis buffer (1% deoxycholate, 1% Triton X-100,
0.1% SDS). Tissue lysates with equal amounts of about 50 µg of protein were subjected to western
blotting. The target protein was probed with specific primary antibody of p-IKKα, IκBα or p-IκBα
and a species-specific secondary antibody. Immunoreactive bands were analyzed with an ECL plus
western blotting detection system. Quantitative analysis of band relative density was used by Gel Pro
3.0 software with correction by background and standardization to β-actin.

2.7. NF-κB Activation Assay by IFL, LSCM and EMSA

The immunoreactivity of NF-κB and IκBα in the liver was observed by the double
immunofluorescence labeling (IFL) method. Briefly, deparaffinized and dehydrated sections (4
µm) were incubated with mouse monoclonal anti-NF-κB (Santa Cruz, CA, USA) antibody and
anti-Iκbα (Epitomics, Burlingame, CA, USA) antibody overnight at 4 ◦C after blocking with 5% BSA
and then with Alexa 594-labeled goat antibody against mouse IgG or Alexa 488-labeled goat antibody
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against rabbit IgG (1:400, KPL). Nuclei were stained by incubating with DAPI for 5 min. The stained
sections were examined using a UltraVIEW Vox (PerkinElmer, Inc., Waltham, MA, USA) with Volocity
software 5.3 for image capturing. Meanwhile, nuclear extracts were prepared from frozen liver tissues
using a nuclear and cytoplasmic protein extraction kit. Meanwhile, nuclear extracts were prepared from
frozen liver tissues using a nuclear and cytoplasmic protein extraction kit (Beyotime, Jiangsu, China).
Activation of NF-κB was analyzed by electrophoretic mobility shift assay (EMSA) using consensus
oligonucleotides of NF-κB (5’-AGT TGA GGG GAC TTT CCC AGG C-3’) as a probe. By using Biotin 3’
End DNA Labeling Kit as per the manufacturer instructions, single-stranded DNA primers was tagging
with biotin (Pierce Biotechnology Waltham, MA, USA). Nuclear protein extract and biotin-labeled
oligonucleotides were mixed and incubated for 20 min at room temperature. The biotin-labeled
oligonucleotide-protein complex was run in 0.5 × TBE buffer non-denaturing polyacrylamide gels at
380 mA for 30 min, then transferred to a nylon membrane. After membrane cross-linking for 20 min
on a UV transilluminator, biotin-labeled DNA was detected with LightShift chemiluminescent EMSA
kit, and optical density of the specific bands was quantified with an imaging densitometer.

2.8. Statistical Analysis

Data are presented as mean ± SD. One-way analysis of variance (ANOVA, San Francisco, CA,
USA) followed by Student–Newman–Keuls multiple range test was used to analyze the data with SPSS
20.0 software package (Microsoft Windows, Redmond, WA, USA). The value of statistical significance
was p < 0.05.

3. Results

3.1. Quercetin Treatment Alleviated Liver Damage of Mice Exposed with Intensive Exercise

Food intake or weight gain was not significantly influenced by intensive exercise or quercetin
treatment (data not shown). Intensive running induced a substantial increase of the mice serum
ALT and AST (p < 0.01), suggesting obvious liver injury was driven by over-exercise. Quercetin
interventions in exercising mice significantly decreased both serum ALT and AST (p < 0.01). Meanwhile,
the effects of serumALT and AST levels by quercetin itself were not observed (Figure 1).
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As shown in Figure 2A, hematoxylin–eosin staining of intensive exercise mice showed sustained 
infiltration of inflammatory cells into liver lobules, tissue destruction and erythrocyte in influx 
(hemorrhage), which was not observed in both rested controls. Administration of quercetin markedly 
attenuated histological abnormalities resulted from exhaustive exercise. The protective role of 
quercetin was further observed by TEM. In Figure 2B, visualized by ultrastructural examination, 

Figure 1. Effect of intensive running with or without quercetin administration on serum aspartate
transaminase (AST) (A) and alanine transaminase (ALT) levels (B). BALB/c mice were pretreated or
not with quercetin for 4 weeks and subsequently exposed to intensive exercise for successive 7 days.
Results presented as mean ± SD (n = 8). Ct—rested control; Ex—intensive exercise; Ex + Qu—Ex and
quercetin; Qu—rested + quercetin. ** p < 0.01 vs. Ct; ## p < 0.01 vs. Ex.

3.2. Quercetin Improved Intensive Exercise-Derived Hepatic Pathomorphological Abnormity

As shown in Figure 2A, hematoxylin–eosin staining of intensive exercise mice showed sustained
infiltration of inflammatory cells into liver lobules, tissue destruction and erythrocyte in influx
(hemorrhage), which was not observed in both rested controls. Administration of quercetin markedly
attenuated histological abnormalities resulted from exhaustive exercise. The protective role of quercetin
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was further observed by TEM. In Figure 2B, visualized by ultrastructural examination, rested control
mice were rich in normal organelles, including well-developed mitochondria with intact membrane
and homogeneously distributed cristae, ribosomal localized on the tidy rough endoplasmic reticulum
and uniform glycogenosomes. The hepatocytes of intensively running mice, however, exhibited
evident swollen and degenerative changes. Intensive running caused a decrease in mitochondria
quantity and structural heterogeneity, including destruction of mitochondrial membranes, cristae and
electron–lucent matrix, together with severe swelling. RER was considerably swollen, degenerated and
decreased. Glycogenosomes were significantly reduced and even vanished. Intensive exercise-induced
abnormal ultrastructural or disordered RER, and glycogenosomesmitochondria distribution was partly
normalized by quercetin. However, the quantity of RER and glycogenosomes remained unchanged.
Meanwhile—compared to normal control—the addition of quercetin alone had no apparent effect on
hepatic ultrastructure.
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Figure 2. Effect of quercetin intervention on liver morphology disturbed by intensive exercise. Liver
samples processed by hematoxylin–eosin were observed by Olympus BX50 light microscope with
HMIAS-2000 medical imaging system (×200) (A). The ultrastructure of the liver was shown in a
transmission electron microscope (TEM) images (B). Ct—rested control; Ex—intensive exercise; Ex +

Qu—Ex and quercetin; Qu—rested + quercetin.

3.3. Quercetin Alleviated Intensive Exercise-Derived Inflammatory Stress

Data for serum cytokines are indicated in Figure 3. Intensive exercise remarkably increased serum
levels of TNF-α, IL-1β and IL-6—and quercetin pretreatment improved the adverse effects. Notably,
increased anti-inflammatory factor IL-10 was discovered in the exercise group, but no significant
improvement occurred on IL-10 level after quercetin treatment. Quercetin itself had no impact on
the level of serum cytokines compared to intact normal control. Likewise, repeat intensive exercise
resulted in increased hepatic mRNA levels of TNF-α, IL-1β, IL-6 and IL-10. Quercetin pretreatment
showed significant effect on IL-1βand IL-6 and insignificant effect on TNF-α and IL-10mRNA levels
enhanced by intense exercise.

Further, exercise resulted in a notable rise of hepatic iNOS, COX-2 and ICAM-1 mRNA levels
by 3.2-fold, 1.6-fold and 0.7-fold, respectively, whereas these negative changes were partially blinded
by quercetin administration (Figure 4A). Moreover, hepatic protein levels of iNOS, COX-2 and
ICAM-1 showed similar influence as the findings on mRNA levels following over-exercise or quercetin
intervention (Figure 4B).
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prophylaxis. (A) Serum inflammatory cytokines were quantified by ELISA; results represented as
mean ± SD (n = 8); (B) liver TNF-α, IL-1β, IL-6 and IL-10 levels evaluated by qRT-PCR; values presented
as multiples of control following normalization by β-actin and mean ± SD (n = 8). Ct—rested control;
Ex—intensive exercise; Ex + Qu—Ex + quercetin; Qu—rested + quercetin. * p < 0.05, ** p < 0.01 vs. Ct;
# p < 0.05, ## p < 0.01 vs. Ex.
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intensive exercise. (A) mRNA expression determined by real-time PCR following normalization to
β-actin; data expressed as fold-change compared to the control group (mean ± SD, n = 8); (B) protein
expression determined by immunohistochemistry and observed by Olympus BX50 light microscope
with HMIAS-2000 medical imaging system (×200). Ct—rested control; Ex—intensive exercise; Ex +
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3.4. Quercetin Ameliorated Exercise-Induced Inflammatory Stress through Suppressing NF-κB Activation

Given the finding that nuclear translocation and activation of NF-κB often coincides with increased
protein degradation of IkBα regulated primarily by IKKα [22], we measured the protein expression
of IkBα (unphosphorylated and phosphorylated forms) and its crucial regulating kinase IKKα.
As is illustrated in Figure 5, exhausting exercise generated a decline of the nonphosphorylated way
(–0.59-fold), while phosphorylated IκBα protein level was significantly raised (+1.7-fold). Accordingly,
IKKα protein was upregulated in exercised mice by 9.9-fold, compared with the rested control (p < 0.01).
IκBα phosphorylation and IKKα upregulation induced by repeated intensive exercise was partially
abolished by quercetin prevention. However, quercetin itself did not affect IκBα phosphorylation and
IKKα expression in contrast to the rested control.
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intensive running with or without quercetin pretreatment. Figures show representative western blot
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NF-κB translocation was also assessed by immunofluorescence using a laser scanning confocal
microscope (LSCM). Note that in the rested control and quercetin controls, NF-κB was not found
concentrated in the hepatocyte nuclei (stained with DAPI, left). Also note that in the exercised mouse
that the colocalization of NF-κB (green) with several nuclei (blue). As shown in Figure 6A, we found
that more green fluorescence (NF-κB) was colocated with blue-fluorescent nuclei in over-exercised mice
compared with rested control, indicating an evident translocation of activated NF-κB into nuclei. Such
translocation was suppressed by quercetin pretreatment to exercise-challenged mice. To analyze the
nuclear translocation of NF-κB more clearly, we used Volocity software 5.3 (Quorum Technologies, Ltd.,
Lewes, UK) software to create a dynamic video rendering of the three-dimensional spatial structure of
a single mouse hepatocyte and attached it to the Supplementary Materials.
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Figure 6. Effect of quercetin on the nuclear expression level and activity of NF-κB in mice liver following
intensive running. (A) Liver sections were probed with NF-κB (green) and Iκbα (red) antibodies,
while DAPI was used to stain the nuclei (blue); (B) activity of NF-κB-DNA binding was quantified
by densitometry. Specific binding was verified by the addition of unlabeled (cold) oligonucleotide
(competitor, Ct-) or labeled oligonucleotide mutate (noncompetitor, Ct+). Representative EMSA (upper
panel) and densitometric analysis (lower panel). Data presented as fold-change in contrast to the
control group. Values presented as mean ± SD (n = 8). Ct—rested control; Ex—intensive exercise; Ex +

Qu—Ex + quercetin; Qu—rested + quercetin. ** p < 0.01 vs. Ct; ## p < 0.01 vs. Ex.

As shown in Figure 6B, by EMSA assay, the DNA-binding activity of NF-κB was almost
entirely abolished by unlabeled oligonucleotide competitor (Ct-) and partially lowered by nonspecific
oligonucleotide mutate (Ct+), indicating a specific binding between designed probe and NF-κB.
The capacity of DNA-binding of NF-κB induced by repeated exhausted-exercise increased 1.15-fold
relative to rested control (p < 0.01). Quercetin alone did not affect the basic DNA-binding capacity of
NF-κB of rested control, but nearly wholly neutralized exercise-induced DNA-binding to the normal
level when pretreated to exercised mice by quercetin. The NF-κB binding activity was investigated by
EMSA performed with an NF-κB consensus nucleotide sequence.

4. Discussion

The liver plays a central role in metabolism and has a series of essential functions crucial for sports
performance and recovery after over-training. In this study, continuous intensive running resulted in a
substantial release of hepatic aminotransferases, inflammatory cell infiltration, tissue destruction and
congestion. Morphological changes shown by TEM indicated subcellular damage with extensively
swollen, cristae-disrupted, membrane-fragmented mitochondria, degenerated RER and decreased
glycogenosomes. Correspondingly, we found that over-exercise dramatically increased expression of
hepatic mRNA and serum proinflammatory cytokines such as TNF-α, IL-1β and IL-6 and initiated
hepatic inflammatory cascades involving iNOS, COX-2 and ICAM-1. These findings collectively
showed that intensive exercise resulted in sustained inflammatory damage in mice livers, which is
partially in line with other observations [23]. Cheney [24] et al. found that strenuous exercise can
lead to liver injury and that Clostridiales in mice and extravascular hemolysis by free iron may involve
in liver damage. In this paper, quercetin effectively ameliorated this exercise-derived inflammatory
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damage. Our previous study has shown that quercetin protects the mouse liver from inflammatory
stress caused by toxic insults [25].

Inflammatory reactions, their initiation and aggravation of each other may be thought of as one of
the most crucial mechanisms to trigger tissue damage following overtraining or overstrain. Our data
showed that continuous exhausted exercise caused significant inflammatory stress and pathological
malformation in the mouse liver. As a pleiotropic transcription factor, NF-κB has been increasingly
regarded as a key player in exercise-caused inflammation [26]. There are five structurally related
subunits in the Rel/NF-κB family of eukaryotic transcription factors. RelA (p65), cREL and RelB contain
transactivation domains with the capacity of initiating gene transcription, while p50/p105 and p52/p100
generally function in the inactivation of the gene for the lack of a transactivation domain. The p65/p50
heterodimer is considered as a decisive classical member of the NF-κB family with two subunits, its
p65 subunit executing transcription-initiating function and another inducing DNA-binding only [27].
Inhibited by binding to IκBs, NF-κB remains inactivated and stay within the cytoplasm under normal
physiological status. Upon stimulation—such as in intensive exercise—IκBs is phosphorylated by
activated IKK, followed by the 26 S proteasome complex-mediated polyubiquitination and degradation.
Freed from its sequestrator, NF-κB enters the nucleus and transactivates NF-κB-responsive genes [28,29].
Ji [22] et al. provided evidence that exhaustive exercise upregulates NF-κB expression in muscles and
cytosolic IKK and IκBα content was concomitantly decreased. Vella [30] et al. reported that resistance
exercise resulted in decreased IκBα protein expression in the cytoplasm, which was coincident with the
increase and nuclear translocation of phospho-NF-κB in human skeletal muscle. Our data extended
the findings from skeletal muscle and demonstrated the activation of NF-κB as a result of intensive
running supported by increased nuclear translocation and DNA-binding activity in the liver.

Activation of NF-κB involves a series of genes dysregulation in the expression of the inflammatory
factors, some of which have become potential targets for prophylaxis and treatment. Previous studies
have shown the crucial roles of NF-κB activation plays in iNOS expression in gastrocnemius muscle [29]
and skeletal muscle cells [31] in rats. It is still undetermined whether the expression of COX-2 and
ICAM-1 has a relation with NF-κB activation caused by exercise in the liver. However, it has been
evidenced that NF-κB regulates the expression of adhesion molecules during leukocyte migration [32]
and that the ICAM-1 promoter could be bind to the NF-κB binding site [33]. As expected, our research
revealed that quercetin attenuated inflammatory stress and pathological malformation in mouse liver
caused by continuous exhausting exercise, possibly by mainly suppressing nuclear translocation of
NF-κB and the release of proinflammatory mediators. The regulation of cellular signaling molecules,
such as NF-κB, AP-1 and COX-2 and transcription factors involved in inflammation inhibiting
mechanism of quercetin. The direct inhibitory effect of quercetin on oxidative stress and NF-κB
activation has been observed in gastric mucosa of portal hypertensive rats [34]. Moreover, quercetin
inhibits NF-κB translocation by directly inhibiting IKK-mediated phosphorylation and degradation of
IκB, which in turn results in a decreased transcription of various inflammatory cytokines, participating
in its underlying anti-inflammatory effects [35–37]. Inhibition of AP-1 activation by quercetin is
thought to be achieved by competitively binding to its DNA motif or inhibiting the components
(c-FOS and C-Jun) in the AP-1 pathway [16]. In addition, ROS-scavenging capacity of quercetin may as
well contribute to its inactivation of NF-κB and AP-1 [9,10]. Garcia-Mediavilla [35] et al. illustrated
downregulated expression of COX-2/iNOS and NF-κB pathway after quercetin treatments in Chang
liver cells. Although the mechanism by which quercetin induces COX-2 reduction has not been
elucidated, NF-κB and AP-1 are considered to exact essential functions [16]. Unlike NSAID drugs,
which specifically inhibit COX-2, it seems quercetin’s effects are more targeted explicitly at NF-κB
with less potential side effects [38,39]. Nevertheless, although the data provide evidence indicating
that quercetin may serve anti-inflammation functions through inhibition of NF-κB, it also seems
that the direct scavenging and inactivation of superoxide, hydroxyl radical or peroxynitrite or poly
(ADP-ribose) activation ability of quercetin may also have beneficial effects on blocking inflammatory
process. It has been shown that ROS is not only involved in oxidative stress, but also has a role
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in inflammation process by activating transcription factors such as NF-κB and AP-1 to induce the
production of cytokines of TNF-α and IL-6 [40].

5. Conclusions

Whether physical exercise is harmful—or can even lead to long-term damage to liver function—needs
to be taken seriously. Therefore, more studies on the causes and effects of exercise-induced liver stress
and the biologic effects of inflammatory mediators are urgently needed. Our research provides
novel evidence that quercetin has an ambiguous anti-inflammatory protective effect on liver injury
and dysfunction following repeated acute exercise by inhibiting NF-κB activation and subsequently
proinflammatory mediator release. The protective effect of quercetin pretreatment provides a promising
strategy of functional food development, especially naturally occurring phytochemicals for high-intensity
exercise-induced liver injury, while the exact pharmacological mechanism remained to be fully clarified.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/12/9/2770/s1,
Figure S1: Flow chart of the experiment design, Video S1: Ct—rested control: three-dimensional spatial structure
of NF-κB nuclear translocation in a single mouse hepatocyte, Video S2: Ex—intensive exercise: three-dimensional
spatial structure of NF-κB nuclear translocation in a single mouse hepatocyte, Video S3: Ex + Qu—Ex + quercetin:
three-dimensional spatial structure of NF-κB nuclear translocation in a single mouse hepatocyte.
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