
HardwareX 16 (2023) e00488

2
(

Contents lists available at ScienceDirect

HardwareX

journal homepage: www.elsevier.com/locate/ohx

Hardware article

Development of an Arduino-based, open-control interface for
hardware in the loop applications
Anniken Semb Kvalsund, Dietmar Winkler ∗

University of South-Eastern Norway, Porsgrunn, Norway

A R T I C L E I N F O

Keywords:
Arduino
Python
Electric drive
Voltage converter interface
IO-module
Electronics
Low-cost

A B S T R A C T

This article presents a flexible control interface based on low-cost hardware solutions for
electric drives which classically come either with a proprietary hardware solution or a high-cost
interface solution. The interface presented can be used to connect a standard PC with an electric
drive to enable testing simulation and control applications.

The control interface is developed based on the open-source Python scripting language and
Arduino’s open-source and accessible hardware. The new interface communicates with the test
stand through its I/O terminals via developed electronic amplifiers and creates a solid base for
further development towards more extensive hardware in the loop simulations.

Specifications table
Hardware name Python/Arduino based DAQ I/O module
Subject area ∙ Engineering and material science

∙ Educational tools and open source alternatives to existing infrastructure
∙ General

Hardware type ∙ Field measurements and sensors
∙ Electrical engineering and computer science
∙ Other (Field device control)

Closest commercial analogue USB I/O DAQ, e.g., National Instruments cDAQ 9174
Open source license Creative Commons Attribution, Share-Alike (BY-SA)
Cost of hardware ca. $70
Source file repository Zenodo[1]/GitHub[2]

1. Hardware in context

As the sensor and automation technology rapidly evolves to embrace applications ranging from automatic door openers and
vehicle controls to weather reports and medical supervision, the need for low-cost, reliable controllers also increases. Unfortunately,
the modern market for reliable digitally configured analogue controllers primarily consists of advanced, expensive tools such as PLCs
or RTUs. The other alternatives are small, often USB-based DAQ or microcontroller units, usually with limited and fixed in-/output
ranges. An issue arises whenever there is a need for a controller that exceeds the capabilities or range of essential USB-DAQ devices,
but there is no room or budget for an advanced PLC.

This article presents a solid base for a flexible control interface based on low-cost hardware solutions, initially targeted towards
hardware in the loop simulations. The interface was tailored to fit the analogue control requirements of two electric drives that

∗ Corresponding author.
@dietmarw (D. Winkler).

E-mail addresses: askvalsund@gmail.com (A.S. Kvalsund), dietmar.winkler@usn.no (D. Winkler).
468-0672/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.ohx.2023.e00488
Received 27 June 2022; Received in revised form 11 October 2023; Accepted 9 November 2023

https://www.elsevier.com/locate/ohx
http://www.elsevier.com/locate/ohx
https://twitter.com/nockigatto
mailto:askvalsund@gmail.com
mailto:dietmar.winkler@usn.no
https://doi.org/10.1016/j.ohx.2023.e00488
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ohx.2023.e00488&domain=pdf
https://doi.org/10.1016/j.ohx.2023.e00488
http://creativecommons.org/licenses/by-nc-nd/4.0/

HardwareX 16 (2023) e00488A.S. Kvalsund and D. Winkler
Fig. 1. Converter box layout.

classically come either with a proprietary hardware solution or a high-cost interface solution. The interface can, however, with
minimal effort, also be adapted to a range of other applications. The control interface is developed based on the open-source Python
scripting language and Arduino’s open-source and accessible programming language and hardware.

2. Hardware description

The Arduino will not be used to store any data in this build but will act as an I/O-module, translating and transporting values
back and forth between the test stand setup and a Python script running on a computer. A challenge is the Arduino’s output and
input voltage range 0–5V, which is way too narrow compared to the 4–20mA, 0–10V, 10 V and 24 V popularised by many industrial
devices. To communicate with instruments outside the 0–5V range, the Arduino is equipped with external amplifiers, reducers, and
relays based on low-cost electronic components.

Some of the advantages of this controller build are:

• Low-cost, highly customisable DAQ and controller solution.
• Open-source Arduino and Python-based interface controlled by any standard PC through a USB-interface.
• Built for hardware in the loop experiments, including analogue signal ranges of 0–5V, 0–10V, ±10V and 4–20mA.
• Ideal for educational settings due to its low cost and high accessibility.

The IO module consists of the Arduino Uno as the main DAC/ADC, connected via various converters to banana plug inputs and
outputs. Fig. 1 shows the full IO module’s internal layout and converter placement. The amount and type of converters can be
adapted according to needs, and the one described here is customised to fit the need for a low-cost IO controller for a frequency
drive setup.

The Arduino board is based on the typical 5 V USB power and will need external amplifiers, reducers, and relays to correctly
communicate with the hardware demanding other voltage- or current ranges. This section presents the converters made to equip the
Arduino with the required voltage and current ranges. All the converter circuits were first designed as standard schematics and tested
using an electronics simulation tool CircuitLab [3]. After confirming the circuit works, the stripboard layout is designed manually
and illustrated using a CAD (Computer-Aided Design), where the circuit design and the components’ physical size determine their
spacing and board placement. Detailed construction descriptions are provided in a later section.

A generic 17W AC-DC converter [4] producing a DC output voltage of ±15V powers the circuits’ ICs and various reference
voltages. In addition, all strip-board layouts for circuits containing op-amps are based around the IC op-amps LM1458 with two
channels, or LN324-N containing four independent channels with a pinout configuration as displayed in Fig. 2.

2.1. Output voltage and filtering

As the equipment uses 0–10V and ±10V as analogue input values, the Arduino’s 0–5V output voltage needs to be amplified
before being sent to the devices. This section describes the process from the Arduino PWM output pins to the Variable Frequency
Drive and servo drive’s analogue input terminals.

To begin with, the PWM output voltage should go through a low-pass filter to reduce the voltage ripples. The low-pass filter is a
low-cost and straightforward way to create a more stable voltage, allowing for more accurate control. It cannot produce a perfectly
flat voltage output but is sufficient for this control circuit. The filter consists of a 47 kΩ resistor in series and a 1 μF capacitor
2

HardwareX 16 (2023) e00488A.S. Kvalsund and D. Winkler
Fig. 2. Operational Amplifier IC Lm324-N pinout diagram [5].

Fig. 3. Voltage follower.

Fig. 4. Op-Amp differential amplifier.

connected in parallel to ground. These values are chosen based on Eq. (1), creating a low ripple, albeit reasonably slow response
time due to its high resistance.

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛

⎛

⎜

⎜

⎜

⎝

𝑋𝑐
√

𝑅2 +𝑋2
𝐶

⎞

⎟

⎟

⎟

⎠

(1)

The slow response should however not cause any significant disadvantage compared to the current equipment’s inertia.
After the low-pass filter, the filtered signal is sent through an operational amplifier (op-amp) configured as a voltage follower.

The voltage follower is added because the low pass filter used is passive, causing any component added to the circuit to affect
the filter’s characteristics without a buffer. For example, the configuration shown in Fig. 3 offers an op-amp where the output is
connected to the input, which forces the op-amp to adjust its output voltage to equal the input voltage. Hence, the output voltage
‘‘follows’’ the input voltage and avoids any retroactive influence on the filter connected to its input [6].

From the voltage follower, the signal is sent through another op-amp, configured as a differential amplifier. In short, the op-amp
multiplies the difference with a factor determined by the resistors. If 𝑅1 = 𝑅2 and 𝑅3 = 𝑅4, the output voltage in Fig. 4 can be
calculated as shown in Eq. (2).

𝑉out =
𝑅3
𝑅1

⋅ (𝑉2 − 𝑉1) (2)

2.2. 0–5 V to 0–10 V converter

The 0–5V to 0–10V converters allow the Arduino’s 0–5V outputs to communicate with the Variable Frequency Drive’s 0–10V
analogue inputs. The circuit illustrated in Fig. 5 is created by combining the low pass filter, voltage follower, and differential
amplifier. Here, the resistors R1 and R2 from Eq. (2) consist of a connected resistor and potentiometer (R3+R6 and R1+R7,
3

HardwareX 16 (2023) e00488A.S. Kvalsund and D. Winkler
Fig. 5. 0-5 v to 0–10 V converter circuit.

Fig. 6. Two-channel 0-5 v to 0–10 V converter.

respectively). The potentiometers allow resistance adjustments for calibration even after the circuit is soldered, and their ideal
value is calculated as the mid position.

This differential amplifier uses ground as its reference voltage and a resistance ratio that based on Eq. (2) results in the voltage
amplification:

𝑉out =
𝑅4

𝑅3 +
𝑅6
2

⋅ (𝑉input − 0) = 100 kΩ
45 kΩ + 10 kΩ

2

⋅ 𝑉input = 2 ⋅ 𝑉input (3)

Thus resulting in a linear amplification circuit with a low pass filtered input, where 𝑉output = 2𝑉input, i.e., a voltage doubler. The
commercial hardware connected to these module outputs will receive double the PWM voltage the Arduino pins outputs.

As the setup needs two voltage doublers, and each voltage doubler circuit needs two op-amps, one four-channel lm324-N IC
should ideally cover the needs for both voltage doubler circuits. However, due to a weakness discovered during testing, where top
and bottom half of the IC’s amplifiers seem to affect each other, this setup only utilises two of the four available in each lm324-N.
The components are all pin-mounted and 1/4w rated, and the 15 V power supply is connected directly to the IC’s positive power
input.

All wires connecting to the power supply, the microcontroller and the output sockets are placed the left hand side to improve
wire management.

2.3. 0–5 V to ±10 V converter

The 0–5V to ±10V converters allow the Arduino’s 0–5V outputs to communicate with commercial hardware using ±10V analogue
inputs. This converter is based on the same principles as the 0–5V to 0–10V converter, the most noticeable difference being its other
negative voltage range. The circuit shown in Fig. 7 contains the same low pass filter and differential amplifier as the voltage doubler,
albeit with different resistor values and the reference voltage. For its reference voltage, the circuit uses a potentiometer as a voltage
divider powered with 5 V from a voltage regulator to create an input of 2.5 V, which is further sent through a voltage follower.
With a reference voltage of 2.5 V and an input voltage ranging from 0–5V, the differential amplifier senses a difference between
−2.5V and 2.5 V.
4

HardwareX 16 (2023) e00488A.S. Kvalsund and D. Winkler
Fig. 7. 0–5V to ±10V converter circuit.

Fig. 8. 0–5V to ±10V converter stripboard.

By choosing resistive values to create an amplification of 4 ⋅ 𝑉input, the circuit’s output voltage will reach a range from −10V to
+10V. The circuits amplification is calculated using Eq. (2) accordingly:

𝑉out =
𝑅5

𝑅4 +
𝑅6
2

⋅ (𝑉input − 𝑉ref) =
100 kΩ

20 kΩ + 10 kΩ
2

⋅ (𝑉input − 2.5V) = 4 ⋅ (𝑉input − 2.5V) (4)

The stripboard displayed in Fig. 8 shows two voltage quadruplers based on their IC op-amp lm324-N as shown in Fig. 2, built
using the same techniques as the voltage doubler board in Fig. 6. The most noticeable features separating them are the need for
an additional IC and the two voltage regulators. The voltage regulators reduce the 15 V input voltage down to 5 V before using a
potentiometer as a voltage divider to create the 2.5 V reference voltage.

2.4. ±10 V to 0–5 V converter

The ±10V to 0–5V converters allow feedback from the servo drive’s analogue outputs to be read by the Arduino’s analogue input
pins. The converter bases its voltage transformation on the same principles as the amplifiers but with the resistor values reversed
to reduce the voltage instead of amplifying it (see Fig. 9).

In this case, −10V, the reference voltage is achieved by a potentiometer voltage divider receiving the −15V from the generic
power supply. In addition, the input low pass filter used in the two previously described amplifiers is omitted, as the servo drive
outputs levelled DC voltage. The circuit’s voltage reduction can be calculated using the same Eq. (2) as the amplifiers:

𝑉out =
𝑅5 +

𝑅6
2

𝑅4
⋅ (𝑉input − 𝑉ref) =

20 kΩ + 10 kΩ
2

100 kΩ
⋅ (𝑉input − (−10V)) = 1

4
⋅ (𝑉input + 10V)

which results in the voltage read by the Arduino essentially being a quarter of the output voltage, if the reference voltage −10V is
perceived as 0 V.

As illustrated in Fig. 10, the voltage reducers’ stripboard layout resembles the voltage quadrupler (Fig. 8) in many ways. The
stripboard contains two circuits, each based around three out of the four op-amps in each IC. The layout neither contains any low
pass filter nor voltage regulator in contrast to the quadrupler, and their reference voltage is adjusted using R7 to −10V.
5

HardwareX 16 (2023) e00488A.S. Kvalsund and D. Winkler
Fig. 9. ±10V to 0–5V converter circuit.

Fig. 10. ±10V to 0–5V converter stripboard.

2.5. 4–20 mA to 1–5 V converter

The 4–20mA to 1–5V voltage converter allows feedback from the drive’s analogue output to be read by the Arduino’s analogue
input pins. This converter is the simplest of the ones created for this setup and consists in all its simplicity of one resistor and an
IC used as a voltage follower, as shown in Fig. 11.

Using ohm’s law results in a voltage between 1.0 V and 5.0 V converted linearly from the 4–20mA signal, measured between
the ICs output and ground: [7]

𝑉max = 0.02𝐴 ⋅ 250𝛺 = 5V (5)

Using the same procedure for the lowest 4 mA Variable Frequency Drive output gives a voltage of approximately 1 V, which
results in a voltage input range of 1–5V. This method consists of few elements and is simple to implement, albeit not the most
accurate. It is, however, considered satisfactory for the current application.

The converter is built on a small stripboard as shown in Fig. 12.

2.6. Digital terminals

The digital terminals allow for two channels, each containing one voltage input and two relay controlled outputs on each channel.
The maximum voltage run through the channels depends on the relays, the hardware this system is intended for uses 24 V, which
means 24 V power supplies has to be connected to the voltage inputs. The control relays are Fujitsu Takamisawa A5W-K miniature
relays with nominal voltage of 5 V and nominal current draw of 28m𝐴, ideal for the Arduino outputs. As seen in Fig. 13, the
6

HardwareX 16 (2023) e00488A.S. Kvalsund and D. Winkler
Fig. 11. 4–20mA to 1–5V converter circuit.

Fig. 12. 4–20mA to 1–5V converter stripboard.

Fig. 13. A5W-K relay [8] (edited).

Fig. 14. Relay stripboard.

relays are to be controlled by digital Arduino output pins, 𝑉contr with 𝐺𝑁𝐷contr as ground, while the 24 V input is supplied by the
24 V outputs on the Variable Frequency Drive and servo drive. The relays are double, but only one side is used to feed the digital
terminals.

As seen in Fig. 14, the relays are wired onto stripboards to save space and keep the wiring organised. In addition, the four relays
are divided into two groups, keeping the 24 V two drive voltage sources separated.
7

HardwareX 16 (2023) e00488A.S. Kvalsund and D. Winkler
Fig. 15. All Converters, Power supply and Arduino combined.

2.7. Internal wiring

All the converters are wired together with the Arduino and powersupply and put in a box with banana sockets as access points,
for convenience. The sockets have no fixed location, but the Arduino should be connected to the suitable converters, based on the
capabilities of each pin. Fig. 15 shows the combined result.

3. Design files summary

Design filename File type Open source license Location of the file
05t010vero.dwg CAD CC BY-SA Zenodo[1]/GitHub[2]
05tpm10vero.dwg CAD CC BY-SA Zenodo[1]/GitHub[2]
420t15vero.dwg CAD CC BY-SA Zenodo[1]/GitHub[2]
pm10t05vero.dwg CAD CC BY-SA Zenodo[1]/GitHub[2]
relaysvero.dwg CAD CC BY-SA Zenodo[1]/GitHub[2]
fullWir.dwg CAD CC BY-SA Zenodo[1]/GitHub[2]
cBoxLayout.dwg CAD CC BY-SA Zenodo[1]/GitHub[2]
05t010sch.pdf pdf CC BY-SA Zenodo[1]/GitHub[2]
05tpm10sch.pdf pdf CC BY-SA Zenodo[1]/GitHub[2]
420t15sch.pdf pdf CC BY-SA Zenodo[1]/GitHub[2]
pm10t05sch.pdf pdf CC BY-SA Zenodo[1]/GitHub[2]
relaysvero.pdf pdf CC BY-SA Zenodo[1]/GitHub[2]
arduinoMain.ino ino CC BY-SA Zenodo[1]/GitHub[2]
pythonMain.ipynd ipynb CC BY-SA Zenodo[1]/GitHub[2]
pythonMain.py py CC BY-SA Zenodo[1]/GitHub[2]

05t010vero.dwg — Stripboard layout for 0–5V to 0–10V converter circuit(editable file)

05tpm10vero.dwg — Stripboard layout for 0–5V to ±10V converter circuit (editable file).

420t05vero.dwg — Stripboard layout for 4–20mA to 1–5V converter circuit (editable file).

pm10t05vero.dwg — Stripboard layout for ±0–10V to 0–5V converter circuit (editable file).

relaysvero.dwg — Stripboard layout for 4-channel relay board (editable file).

fullWir.dwg – Full internal wiring diagram (editable file).

cBoxLayout.dwg — Converter box component layout/placement (editable file).
8

HardwareX 16 (2023) e00488A.S. Kvalsund and D. Winkler
05t010sch.pdf — Stripboard layout for 0–5V to 0–10V converter circuit (PDF file).

05tpm10sch.pdf — Stripboard layout for 0–5V to ±10V converter circuit (PDF file).

420t15sch.pdf — Stripboard layout for 4–20mA to 1–5V converter circuit (PDF file).

pm10t05sch.pdf — Stripboard layout for ±0–10V to 0–5V converter circuit (PDF file).

relaysvero.pdf — Stripboard layout for 4-channel relay board (PDF file).

fullWir.pdf — Full internal wiring diagram (PDF file).

cBoxLayout.pdf — Converter box component layout/placement (PDF file).

arduinoMain.ino — Main sketch for running the Arduino.

pythonMain.ipynb — Main Python script, presented in Jupyter Notebook format.

pythonMain.py — Main Python script, presented in the ordinary Python file format.

4. Bill of materials summary

The module is highly customisable, and costs will vary accordingly. The base components needed for every module are the
Arduino and the power supply, costing $37.72. The material cost of the converters between the inputs and outputs ranges from
$0.45 to $4.30, while the relays cost about $3.80 a piece, excluding the mounting boards.

• Two-channel 0–5V to 0–10V converter: $2.12
• Two-channel 0–5V to ±10V converter: $4.28
• Two-channel ±10V to 0–5V converter: $2.79
• Single-channel 4–20mA to 0–5V converter: $0.45
• Four-channel, dual supply relay board: $15.34

The module created for this specific project includes one of every converter described above. It adds up to a total of about $77,
including $13.85 in miscellaneous materials such as wiring, switches and sockets.

Designator Component Number Cost per
unit-
currency

Total cost-
currency

Source of
materials

Material type

Microcon-
troller

Arduino Uno 1 $29.95 $29.95 Amazon Semi-
conductor

Power supply ±15V Voltage
Supply

1 $7.75 $7.75 ebay Other

Circuit board Stripboard 102 cm2 $0.013∕cm2 $1.33 Amazon Metal/Polymer
Sockets Banana

sockets
24 $0.39 $9.35 Amazon Metal/Polymer

Power input C14 socket 1 $0.59 $0.59 Amazon Metal/Polymer
Wire 24awg solid 1.05m $0.25 $1,05 Amazon Metal/Polymer
Wire 24awg

stranded
7.60m $0.26 $2,01 Amazon Metal/Polymer

Switch SPST, mini 2 $0.89 $1.84 Amazon Metal/Polymer
IC LM324N 6 $0.60 $3.60 Amazon Semiconductor
IC LM1458 2 $1.6 $3.20 Amazon Semiconductor
Electronic
component

5V Voltage
Regulator
LM78L05

2 $0.08 $1.60 Amazon Semiconductor

Relays AS5W-K 4 $3.80 $15.20 ebay Metal/Polymer
Resistor 250Ω 1 $0.06 $0.06 Amazon Metal/Polymer
Resistor 10 kΩ 6 $0.06 $3.39 Amazon Metal/Polymer
Resistor 20 kΩ 4 $0.05 $0.20 Amazon Metal/Polymer
Resistor 45 kΩ 4 $0.014 $0.06 ebay Metal/Polymer
Resistor 47 kΩ 4 $0.03 $1.20 Amazon Metal/Polymer
9

https://www.amazon.com/Arduino-A000066-ARDUINO-UNO-R3/dp/B008GRTSV6/ref=sr_1_4
https://www.ebay.com/itm/383719611754
https://www.amazon.com/YUNGUI-Prototype-perfboard-Sording-Electronic/dp/B088GSJM7G/ref=sr_1_1_sspa
https://www.amazon.com/HiLetgo-JS-910B-Terminal-Connectors-Connector/dp/B00MEKVDEG/ref=sr_1_14
https://www.amazon.com/Panel-Adapter-Connector-Socket-MXR/dp/B07DCXKNXQ/ref=sr_1_10
https://www.amazon.com/Electrical-7colors-spools-UL1007-breadboard/dp/B083DN2MW1/ref=sr_1_1_sspa
https://www.amazon.com/Fermerry-Stranded-Electrical-Silicone-Cables/dp/B089CRSLG8/ref=sr_1_7
https://www.amazon.com/MTS-101-Position-Miniature-Toggle-Switch/dp/B0799LBFNY/ref=sr_1_1_sspa
https://www.amazon.com/Tegg-LM324N-Quadruple-Operational-Amplifier/dp/B07Z8X4C5N/ref=sr_1_4
https://www.amazon.com/10pcs-HA17458-DIP-8-17458-LM1458/dp/B09TS2CYYL/ref=sr_1_8
https://www.amazon.com/BOJACK-Quadruple-Operational-Adjustable-Transistor/dp/B08CXBS69J/ref=sr_1_1_sspa
https://www.ebay.com/itm/124648041125
https://www.amazon.com/Metal-Resistor-Plug-axial-0-25W/dp/B09BKST884/ref=sr_1_10
https://www.amazon.com/Uxcell-a11102000ux0161-Axial-Carbon-Resistors/dp/B0087ZDQQ0/ref=sr_1_6
https://www.amazon.com/EDGELEC-Resistor-Tolerance-Resistance-Optional/dp/B07HDGCGB3/ref=sr_1_4
https://www.ebay.com/itm/360955007761
https://www.amazon.com/BOJACK-Single-Resistor-Resistors-200pcs/dp/B07PGJT71Q/ref=sr_1_17_sspa

HardwareX 16 (2023) e00488A.S. Kvalsund and D. Winkler
Designator Component Number Cost per
unit-
currency

Total cost-
currency

Source of
materials

Material type

Resistor 100 kΩ 6 $0.05 $0.30 Amazon Metal/Polymer
Potentiome-
ter

10 kΩ 16 $0.17 $2.72 ebay Metal/Polymer

Capacitor 1 μF 4 $0.08 $0.32 Amazon Metal/Polymer

All electronic components are 1
4 W. Components with a higher power rating can be used, but are not required.

5. Build instructions

This design offers an adaptable result determined by the available hardware and desired applications, first step is therefore
deciding which output and input ranges the I/O module should have. The module used in here was tailored to control a servo
machine test stand consisting of two asynchronous motors controlled by a Variable frequency drive and a servo drive. One motor is
used for driving, and the other simulates an adjustable load. This setup required control voltage ranges of 1MΩ 0–10V, ±10V and
provided feedback through ±10V and 4–20mA signals.

As the Arduino is able to read voltages between 0–5V, this module will contain:

• 1 × Output Two-channel 0–5V to 0–10V converter.
• 1 × Output Two-channel 0–5V to ±10V converter.
• 2 × Output Two-channel relay boards.
• 1 × Input Two-channel ±10V to 0–5V converter.
• 1 × Input Single-channel 4–20mA to 1–5V converter.

The converters and relay modules are built using stripboards due to their accessibility, low price, and lack of special tools required
to build circuit boards. As displayed in Fig. 16, the plastic boards consist of pre-holed rows with a thin copper layer on one side
used for soldering the components’ legs onto.

Cut appropriate stripboard units using a stripboard cutter, fine saw, or knife. The boards needed for this module are shown in
Fig. 17, picturing:

• 1 × 25 × 14 for the two-channel 0–5V to 0–10V converter.
• 1 × 39 × 11 for both of the two-channel relay outputs.
• 1 × 6 × 7 for the single-channel 4–20mA to 0–5V converter.
• 1 × 39 × 15 for the two-channel 0–5V to ±10V converter.
• 1 × 38 × 17 for the two-channel ±10V to 0–5V converter.

The following text describes how to cut and assemble the various stripboard converters. Table 1 contains the description of all
components’ symbols.

The stripboards’ copper lanes must be divided into sections by adding carefully placed breakage points shown in Fig. 18. Notice
the boards in Fig. 18 are mirrored, displaying the copper side correctly when looking directly at it.

Break the thin copper lanes in their appropriate places as demonstrated in Fig. 19 by twisting a 3 mm HSS drill bit by hand while
applying light pressure.

After preparing the stripboards with breakage points according to Fig. 18, prepare wires for the stripboards’ jumpers as displayed
in Fig. 20. Red and black illustrate power jumpers, while green carries signals. Stranded wires can be used, but single-core wires
are easier to thread through and solder to the stripboards.

Place the wires according to the drawings in Fig. 20 and solder them in place. Fig. 21 shows an example of a short wire soldered
onto a stripboard.

Once the wiring and breakage points are done, solder the rest of the resistors, potentiometers and ICs to the stripboards following
Fig. 22 to Fig. 23 one by one.

Fig. 22 illustrates the 0–5V to 0–10V converter stripboard layout, with one amplifier mirrored on each side of the IC. The full
source files for this layout are found in 05t010vero.dwg and 05t010vero.pdf which are available at Zenodo[1]/GitHub[2].
The end result is shown in Fig. 6.

Fig. 23 shows that the four relays are divided into two groups, keeping the 24 V two voltage inputs separated. Full drawings are
found as relaysvero.dwg and relaysvero.pdf at Zenodo[1]/GitHub[2]. The end result is shown in Fig. 14.

The 4–20mA to 0–5V converter is built on a small stripboard as shown in Fig. 24, also found as 420t15vero.dwg and
420t15vero.pdf at Zenodo[1]/GitHub[2]. The end result is shown in Fig. 12.

Fig. 25 illustrates the layout of the 0–5V to ±10V converter. Full drawings are found in 05tpm10vero.dwg and 05tpm10vero.
pdf which are available at Zenodo[1]/GitHub[2]. The end result is shown in Fig. 8.

Fig. 26 contains the layout of the ±10V to 0–5V converter. Full drawings are found in pm10t05vero.dwg and pm10t05vero.
10

pdf which are available at Zenodo[1]/GitHub[2]. The end result is shown in Fig. 10.

https://www.amazon.com/Resistor-Tolerance-Resistors-Limiting-Certificated/dp/B08QRSQB18/ref=sr_1_1_sspa
https://www.ebay.com/itm/233946834294
https://www.amazon.com/Tnisesm-Electrolytic-Capacitor-Aluminum-1UF-50V-5X11/dp/B089R5MH1J/ref=sr_1_5

HardwareX 16 (2023) e00488A.S. Kvalsund and D. Winkler
Fig. 16. Common copper stripboard.

Fig. 17. Stripboard cutout dimensions.

Fig. 18. Stripboard copper breakage points.
11

HardwareX 16 (2023) e00488A.S. Kvalsund and D. Winkler
Fig. 19. Illustration of cutting the stripboard copper lanes.

Fig. 20. Stripboard wire placements.

Fig. 21. Illustration of soldered wire on stripboard.
12

HardwareX 16 (2023) e00488A.S. Kvalsund and D. Winkler
Table 1
Strip-board circuits symbol description.

Symbol Description Symbol Description

Control signal wire Resistor

Power supply wire Potentiometer

Ground wire Voltage Regulator

Wire break IC (size varies)

Capacitor

Fig. 22. 0–5V to 0–10V converter stripboard layout.

Fig. 23. Relay stripboard layout.

Fig. 24. 4–20mA to 1–5V converter stripboard layout.
13

HardwareX 16 (2023) e00488A.S. Kvalsund and D. Winkler
Fig. 25. 0–5V to ±10V converter stripboard layout.

Fig. 26. ±10V to 1–5V converter stripboard layout.

Fig. 27. Full I/O module wiring layout.

After constructing all the converters, connect them to the standard ±15V power supply, the Arduino and the box using the wiring
diagram in Fig. 27, preferably using a wire gauge of 0, 5+,mm2. For the final result, see Fig. 15. The wiring diagram is available as
14

fullWir.dwg and fulWir.pdf from Zenodo[1]/GitHub[2].

HardwareX 16 (2023) e00488A.S. Kvalsund and D. Winkler
Fig. 28. Simplified Python script flowchart.

Fig. 29. Text-based user interface.

Fig. 30. Communication between hardware and software.

When the I/O module is finished, power it up, connect it to a computer and upload the Arduino sketch arduinoMain.ionto
the Arduino controller. As soon as the sketch is uploaded, initiate the pythonMain.py or pythonMain.ino.

6. Operation instructions

The module was designed with the control of a servo drive setup in mind but can be altered to fit other application areas. The
programming employed is twofold and consists of an Arduino microcontroller sketch and a Python control script containing all the
logic and commands used to control the devices. In all its simplicity, the Python script forms a text-based user interface asking for
input to decide what action to take: Write read from inputs, write to outputs, or perform other miscellaneous functions, as described
in Fig. 28. After a received command, the script sends a command to the Arduino and processes any resulting feedback.

The script will ask for user input to decide upcoming actions, and display the alternative options, as illustrated in Fig. 29.
The Arduino sketch can be viewed as the created I/O module’s firmware and is not to be altered once completed and uploaded,

as it merely acts as an intermediary device and a translator between the Python script and the analogue values. Fig. 30 illustrates
a simplified version of the control signal path and its communication media.

Before going into details, the key to understanding the process shown in Fig. 30 is to know how the USB transmits data between
the Arduino and the Python script. The USB is a serial communication protocol, meaning it can only send one message at a
time, albeit with a speed that enables the illusion of it transmitting multiple messages simultaneously. The same goes for the USB
communication between the computer and the Arduino. The transferring process is described in the later sections and utilises the
essential serial port read and write functions found in Pythons serial-library and Arduino’s integrated Serial()-functions.

6.1. USb transmission structure

This section merely describes how the communication between the Python scripts found as pythonMain.ipynb or
pythonMain.py communicates with the Arduino running the sketch arduinoMain.ino (available at Zenodo[1]/GitHub[2]).
All communication between the Python script and the Arduino happens through the USB, using functions created for serial
communication. However, one weakness in Arduino’s serial read functions is the excessive use of timeout-based solutions to
15

HardwareX 16 (2023) e00488A.S. Kvalsund and D. Winkler
Fig. 31. Python to Arduino message example.

Fig. 32. Example of a 50% speed set-point value conversion from Python to Arduino.

Fig. 33. Servo drive test stand.

determine the end of a serial message consisting of multiple elements, for example, a string. This weakness can lead to issues
when attempting to read, e.g., something as simple as a number with multiple digits, as Arduino perceives it as not one multi-digit
number but multiple one-digit numbers. When reading from the serial buffer into a String, the Arduino waits until the read function
times out to determine if the string has ended. The timeout is often set to 1000 ms, which is too slow for most control-related purposes
and leaves the Arduino occupied even after receiving the entire message. One can reduce the timeout duration to minimise the dead
time, but that leaves the risk of ending the read function too early and hence end up with only partial messages received. Therefore,
to avoid the timeout issue, the serial communication from the Python script to the Arduino in this setup is configured to send and
accept only one character at a time, whereas Arduino manually stores them in an array until a terminating character is received.

Most messages sent from the Python script to Arduino are based around three individual characters sent one by one, separated
by the character ‘x’ and ended with a termination character, chosen to be ‘∼’. A typical example of a message structure from Python
to Arduino is therefore:

In these messages, the first character, in Fig. 31 ‘a’, tells Arduino the primary intent behind the command, whether to write
values to the output pins, calibrate its maximum values or any of the other implemented functionalities.

The second character, ‘b’ in Fig. 31, decides which channel number the message applies. For example, ‘ax2’ as the initial
characters tell the Arduino to write something to analogue channel number two. That something is decided by the final character ‘c’,
and requires a more thorough explanation to comprehend fully.

As the Arduino cannot read strings without a function including timeout, as stated previously, multi-digit numbers can be
challenging when wanting to write to analogue outputs. As a solution, numbers can be converted into single characters using their
corresponding ASCII characters and sent as a single byte. ASCII code is the numerical representation is a character and was originally
created to represent characters as numbers due to computers only understanding numbers [9]. However, one big drawback is the
limited number of available ASCII characters, causing the numerical range and resolution to be limited. All numbers to be sent
as an ASCII character are therefore scaled to integer percentage values as a workaround, meaning all values sent from Python to
Arduino is within the range 0–100. When Arduino receives the percentage value encoded as an ASCII character, it decodes it back
to its integer value and scales it to fit the analogue output values, which in the 8 bit PWM outputs are in the range between 0 and
255. Fig. 32 shows an example of the conversion process where the set-point of a nominal 910 rpm motor is set to 405 rpm.

7. Validation and characterisation

The interface was built to control a servo machine test stand consisting of two asynchronous motors controlled by a Variable
frequency drive and a servo drive. The test motor runs at a fixed speed controlled by the variable frequency drive, while the
asynchronous servo-brake applies a programmable, variable torque using regenerative braking. With caution not to overload the
test motor, the brake can also run to create the effect of a generator. A simplified illustration of the system setup is shown in Fig. 33.

The servo drive and the Variable Frequency Drive both include analogue I/O modules, which are non-vendor-specific and rely
purely on analogue voltage- and current levels. As the drives are equipped with different, proprietary control interfaces, the analogue
16

HardwareX 16 (2023) e00488A.S. Kvalsund and D. Winkler
Fig. 34. Arduino voltage output and input response.

Fig. 35. Voltage and current converter values.

I/O terminals remain the only ideal communication path to merge the two cross-brand devices into one system. The servo drive
allows for speed- and torque control and feedback using a ±10V range, while the VFD uses 0–10V for speed- and torque set-points
and a 4–20mA signal for speed feedback. Both drives use 24 V digital inputs to control start/stop, direction and operating modes.
Using the developed Arduino and converter interface allows for a complete system integration of both drives. The end goal is to
implement the stand into various simulation tools using Python as the gateway between the Arduino and the simulation software.

To determine the accuracy of the I/O module, the output voltages were measured and compared with their input values, both
before and after the converters. Fig. 34(a) shows the Arduino PWM output voltage compared with the 8-bit value determining the
output value. The linear graph proves the Arduino is able to provide a linear voltage increase all the way up until almost 5 V.
17

HardwareX 16 (2023) e00488A.S. Kvalsund and D. Winkler

F

F
c

R

C

L

C

R

D

t

A

R

The 10-bit Arduino analogue inputs, which are capable of reading voltages between 0–5V provided similar linear results as seen in
ig. 34(b)

The converters were tested for their accuracy, and as can be seen in the results are very linear. Combining the numbers from
ig. 35 with the graphs in Fig. 34 proves a very linear decent I/O module, especially taking the very low cost of material into
onsideration.

elevant applications:

• Hardware in the loop simulations.
• Sensor and monitoring systems.
• Educational settings, due to low cost and easy accessibility.

apabilities:

• Affordable DAC/ADC and Data Acquisition.
• Adaptable and expandable layout up to ±15V signals, depending on the chosen power supply unit and converter circuits.
• Up to 13 digital in/outputs(if no analogue PWM outputs), 6 analogue inputs and 6 analogue outputs, depending on the Arduino

of choice.

imitations:

• Resolution on analogue output is limited to Arduino’s 8 bit PWM resolution, and even further limited by the 0-100 ASCII
conversion from Python.

• Analogue input resolution limited to 10 bit for Arduino Uno.
• (For now) only controlled by the text-based user interface.

RediT authorship contribution statement

Anniken Semb Kvalsund: Conceptualization, Methodology, Software, Writing – original draft. Dietmar Winkler: Supervision,
eview & editing.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

eferences

[1] Anniken Semb Kvalsund, Dietmar Winkler, Electric drive arduino interface (Zenodo repository), 2022, http://dx.doi.org/10.5281/zenodo.6762572.
[2] Anniken Semb Kvalsund, Dietmar Winkler, Electric drive arduino interface (GitHub repository), 2022, [Online]. Available: https://github.com/OpenSimHub/

ElectricDriveArduinoInterface.
[3] CircuitLab Inc., Online circuit simulator & schematic editor - CircuitLab, 2020-03, [Online]. Available: https://www.circuitlab.com/. (visited on 05/11/2022).
[4] eBay Inc., ACDC switching transformer board, 2014-03, [Online]. Available: https://www.ebay.com/itm/322743968466. (visited on 05/13/2022).
[5] STMicroelectronics, LM324N datasheet, 1999, [Online]. Available: https://pdf1.alldatasheet.com/datasheet-pdf/view/22756/STMICROELECTRONICS/

LM324N.html. (visited on 05/13/2022).
[6] Monolithic Power Systems, Operational amplifier basics, types and uses | article | MPS, 2019-09, [Online]. Available: https://www.monolithicpower.com/

en/operational-amplifiers. (visited on 05/13/2022).
[7] B. Carter, Chapter 2 - Review of op amp basics, in: B. Carter (Ed.), Op Amps for Everyone, fourth ed., Newnes, ISBN: 978-0-12-391495-8, 2013, pp. 7–17,

http://dx.doi.org/10.1016/B978-0-12-391495-8.00002-7.
[8] Fujitsu, Fujitsu A Series Miniature Relay, Fujitsu, 2008, [Online]. Available: https://datasheet-pdf.com/PDF/A5W-K-Datasheet-FujitsuMicroelectronics-

625329. (visited on 05/09/2022).
[9] ASCII table, ASCII table - ASCII character codes, HTML, Octal, Hex, Decimal, 2022, [Online]. Available: https://www.asciitable.com/. (visited on

05/14/2022).
18

http://dx.doi.org/10.5281/zenodo.6762572
https://github.com/OpenSimHub/ElectricDriveArduinoInterface
https://github.com/OpenSimHub/ElectricDriveArduinoInterface
https://github.com/OpenSimHub/ElectricDriveArduinoInterface
https://www.circuitlab.com/
https://www.ebay.com/itm/322743968466
https://pdf1.alldatasheet.com/datasheet-pdf/view/22756/STMICROELECTRONICS/LM324N.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/22756/STMICROELECTRONICS/LM324N.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/22756/STMICROELECTRONICS/LM324N.html
https://www.monolithicpower.com/en/operational-amplifiers
https://www.monolithicpower.com/en/operational-amplifiers
https://www.monolithicpower.com/en/operational-amplifiers
http://dx.doi.org/10.1016/B978-0-12-391495-8.00002-7
https://datasheet-pdf.com/PDF/A5W-K-Datasheet-FujitsuMicroelectronics-625329
https://datasheet-pdf.com/PDF/A5W-K-Datasheet-FujitsuMicroelectronics-625329
https://datasheet-pdf.com/PDF/A5W-K-Datasheet-FujitsuMicroelectronics-625329
https://www.asciitable.com/

HardwareX 16 (2023) e00488A.S. Kvalsund and D. Winkler
Anniken Semb Kvalsund graduated in the spring of 2022 at the University of South-Eastern Norway with an MSc. degree in Electrical
Power Engineering. Her background includes a BSc. in Automation, and she has, for as long as she can recall, been fascinated by
the idea of tinkering with electronics and bringing components to life.

Dietmar Winkler works as Assistant Professor II at the University of South-Eastern Norway where he is teaching Electrical Engineering
students (under- and postgraduates) in Electrical Power Engineering. His field of research is in modelling of cyper–physical systems
and the connection with real systems via hardware in the loop simulations.
19

	Development of an Arduino-based, open-control interface for hardware in the loop applications
	Hardware in context
	Hardware description
	Output voltage and filtering
	0–5 V to 0–10 V converter
	0–5 V to "2D10 V converter
	"2D10 V to 0–5 V converter
	4–20 mA to 1–5 V converter
	Digital terminals
	Internal Wiring

	Design files summary
	Bill of materials summary
	Build instructions
	Operation instructions
	USB transmission structure

	Validation and characterisation
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

