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Dampness, indoor mould, fungal DNA and respiratory
health – molecular methods in indoor epidemiology
This editorial discusses the findings of the paper in this issue by McSharry et al. [39], pp. 902–907
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Building dampness and indoor mould growth are recog-
nized risk factors for respiratory health, including
asthma, rhinitis and asthmatic symptoms [1]. One meta-
analysis on the prevalence of dampness and mould in
the European housing stock, including published data
from 31 European countries, concluded that 12.1% of
the homes in Europe had dampness, 10.3% indoor
mould and 10.0% water damage [2]. Even higher preva-
lence of dampness and mould in European homes were
found in the European Community Respiratory Health
Survey (ECRHS), where 24.8% of the participants
reported that they had ever seen mould in their current
home and 27.9% reported water damage. Researchers
who visited a subset of the homes observed mould in
13.6% and damp spots in 18.2% of the homes [3]. A
number of review articles and meta-analysis have been
published suggesting associations between dampness
and indoor mould and rhinitis [4], bronchitis and air-
way infections [5] and onset of asthma [6]. These stud-
ies are mostly based on population samples and have
not specifically studied exacerbation of asthma. One
recent review on indoor environmental exposure has
focused on exacerbation of asthma [7]. They concluded
that there is sufficient evidence of a causal association
between outdoor culturable fungal exposure and exac-
erbation in asthmatics sensitized to fungi. They also
concluded that there is limited or suggestive evidence
of an association between indoor culturable Penicillium
exposure and exacerbation in asthmatic children with

specific sensitization, any fungal sensitization, or
unspecific sensitization. Moreover, they concluded that
there is limited or suggestive evidence of an association
between indoor total culturable fungal exposure and
exacerbation of asthma in children with any fungal
sensitization. The study has no conclusions concerning
exacerbation of asthma in adults in relation to indoor
exposure to dampness or mould [7].

Most epidemiological studies on associations between
building dampness and indoor mould have investigated
respiratory symptoms [1], few have investigated associ-
ations for lung function. Two prevalence studies in
adults found lower forced expiratory volume in 1 s
(FEV1) in damp homes [8] and in a rehabilitation centre
with dampness in the floor construction [9]. Another
prevalence study found associations between airway
obstruction and higher concentration of 1,3-beta-glu-
can in homes, a marker of fungal exposure [10]. One
longitudinal European population study observed
increased lung function decline (FEV1) in adults living
in homes with dampness and mould, equivalent to
smoking 5–10 cigarettes per day [11]. Finally, one study
found that asthmatic patients living in homes with con-
firmed dampness had lower FEV1 than those living in
dry homes [12].

Dampness in buildings has been defined broadly and
most existing data on building dampness and mould
but it is unclear which is exposure that is the causative
agent in damp buildings [1]. One consequence of build-
ing dampness is an increased growth of bacteria and
mould on indoor surfaces and inside the building
construction. Lipopolysaccharide (LPS, endotoxin) and
peptidoglycan are the two most studied bacterial cell-
wall compounds. LPS is a chemical marker for Gram-
negative bacteria [13]. Endotoxin is mostly measured
by the biological limulus test [13] but 3-hydroxy fatty
acids from endotoxin can also be measured by chemical
analysis [14]. Peptidoglycan is found in all bacteria but
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in the largest amounts in Gram-positive bacteria [15].
Muramic acid (MuA) is an amino sugar, is found
exclusively in peptidoglycan and can be measured by
similar chemical analysis [14, 15]. Associations between
endotoxin concentration in indoor dust and respiratory
health, including asthma and allergies, have been stud-
ied in a large number of studies. The effect can depend
on exposure timing, dosage, environmental cofactors
and genetics [16]. Radon has summarized the effects of
endotoxin with respect to different phenotypes of
asthma. The risk of atopic asthma, dominated by eosin-
ophilic response, is decreased in those exposed to endo-
toxin. In contrast, the risk of non-atopic asthma,
characterized by a neutrophilic response, is enhanced in
subjects with higher endotoxin exposure [13].

Indoor mould is present everywhere and the issue of
indoor exposure to mould is complex and most likely
the adverse health effects depends on the amount of
moulds as well as the species composition. Moreover,
there is some evidence of protective effects from fungal
exposure on allergies from studies on children in farm-
ing environments [17]. Chemical analysis of ergosterol
[14] and analysis of beta-1-3 glucan in dust by the lim-
ulus method [10] has been used as markers of total fun-
gal load. Detection and quantification of indoor mould
is now possible using mould-specific quantitative poly-
merase chain reaction (real time PCR) [18, 19]. This
molecular method can give quantitative data on the
occurrence of the most common indoor moulds,
irrespectively of viability. EPA scientists have designed
and tested primers and probes for over 100 types
of mould (http://www.epa.gov/microbes/moldtech.htm).
The method is called mould-specific quantitative PCR
(MSQPCR) [19, 20].

Mould-specific quantitative PCR has been used to
assess mould levels in indoor air and settled dust (surface
contamination). The method can detect groups of mould
(e.g. Aspergillus/Penicillium) [18] as well as specific
sequences (e.g. Stachybotrys chartarum) [21]. In a UK
survey of moulds in homes, MSQPCR analysis demon-
strated that similar mould species were found in homes
in the United States and Great Britain [22]. Researchers
as well as commercial laboratories in the United States,
Canada and Europe are currently using MSQPCR.

In epidemiological studies, data on fungal DNA in
indoor samples can be analysed in different ways. One
way is to analyse health association between the concen-
trations of each fungal DNA sequence in dust or air and
the health parameter, mostly asthma or asthmatic symp-
toms. Two prevalence studies in schools found associa-
tions between the concentration of certain fungal DNA
sequences in school dust (e.g. from Aspergillus versicolor
and Streptomyces) and respiratory symptoms [23, 24] as
well as lower FEV1 [24] in the pupils. One case–control
study reported that levels of Aspergillus versicolor DNA

were higher in asthmatics homes as compared to controls
[25]. Another study reported a positive association
between levels of Streptomyces DNA in home dust and
exhaled nitrogen oxide (NO) in asthmatic children [26].

Vesper et al. [27] have developed a concept called
Environmental Relative Moldiness Index (ERMI) to
quantify the mould burden in homes. The ERMI value
is computed by quantifying the concentration of spe-
cies-specific DNA sequences from 36 indicator mould
species in home dust samples. The mould species are
divided in two groups. The first group (group 1 mould)
consists of 26 mould species that indicate water dam-
age. The second group (group 2 mould) consists of
sequences from 10 Group 2 species that can be from
outdoor sources and these moulds are commonly found
even without water damage [27]. For each home, the
mould burden is computed by taking the sum of
log-transformed group 1 mould species concentrations
minus the sum of log-transformed group 2 mould spe-
cies concentrations. The ERMI value does not measure
the total fungal concentration in the dust or the total
fungal exposure. It is used as a way to rank homes with
respect to the relative mould burden in homes [28–30].

Environmental Relative Moldiness Index has been
used in epidemiological studies, and higher ERMI levels
have been found in home dust among children with
asthma as compared to controls without asthma
[31–33]. One study found no significant association
between ERMI in home dust and infant wheeze [34].
One longitudinal study found that early exposure to
moulds as measured by ERMI at 1 year of age, but not
7 years of age, increased the risk for asthma at 7 years
of age [35]. In addition, one recent study found higher
ERMI values in school dust from schools with high
prevalence of asthma as compared to schools with low
asthma prevalence [36]. Finally, one study found lower
lung function (FEV1) among children who lived in
homes with higher ERMI values [37].

Few studies have used mould-specific quantitative
PCR or the ERMI-index in epidemiological studies on
adult respiratory illness. One recent study found an
association between ERMI values in home dust and
asthma and rhinitis in adults [38]. Moreover, few stud-
ies have investigated exacerbation of asthma from
mould, assessed by the ERMI-index. Recently, in Clini-
cal and Experimental Allergy, McSharry et al. [39] have
extended the use of the ERMI-index and other micro-
bial markers in the home environment to study exacer-
bation of asthma, measured as decreased FEV1%
among non-smoking adult asthmatics in Scotland. They
also studied associations between FEV1% and cortico-
steroid use, asthma control Questionnaire score (ACQ)
and St. George’s Respiratory questionnaire score.
FEV1% were negatively correlated with ACQ and SGRQ
scores and weakly with corticosteroid use. Higher ERMI

© 2015 John Wiley & Sons Ltd, Clinical & Experimental Allergy, 45 : 840–843

Molecular methods in indoor epidemiology 841

http://www.epa.gov/microbes/moldtech.htm


values in home dust were associated with decreased
FEV1% but there was no correlation between FEV1 and
other biological contaminants such as concentrations of
endotoxin, 1,3-beta-glucan or cat allergen (Fel d 1),
dog allergen (Can f 1) or house dust mite allergens (Der
p 1 or Der p 2) in home dust [39]. The study adds
evidence on the possible role of mould as a cause of
exacerbation of asthma in adults and also links the
ERMI-index to airway obstruction measured as FEV1.
The study supports the view that measurement of
fungal DNA in dust in epidemiological studies can be a
useful indicator of fungal exposure in indoor environ-
ments. Moreover, the study supports the view that the
ERMI-index has relevance for respiratory health and
can be a useful indicator of relative fungal burden in
indoor environments. The ERMI-index may also be
useful in patient investigations to identify patients that
need to improve their home environment.

However, more prospective studies are needed where
ERMI and other types of indoor biological contaminants

are measured in parallel in dust samples collected prior
to disease development. Moreover, epidemiological
studies on respiratory effects of indoor exposure should
focus on disease development (e.g. asthma, rhinitis and
lung function decline) as well as exacerbation of
asthma. Moreover, respiratory effects of different types
of indoor biological contaminants, including fungal
DNA measured by mould-specific quantitative PCR and
calculation of the ERMI-index, should be extended from
the home environment to other indoor environments
such as day care centres, schools, hospitals and offices.
Moreover, as most epidemiological studies on respira-
tory effects, especially with ERMI-index, are from
United States or Europe, similar studies need to be
funded and performed in other parts of the world,
including Asia, where the current increase of asthma
and allergy is high [40].
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