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Abstract
Trees, including minimum spanning trees (MSTs), are commonly used in phylogenetic stud-

ies. But, for the research community, it may be unclear that the presented tree is just a hy-

pothesis, chosen from among many possible alternatives. In this scenario, it is important to

quantify our confidence in both the trees and the branches/edges included in such trees. In

this paper, we address this problem for MSTs by introducing a new edge betweenness met-

ric for undirected and weighted graphs. This spanning edge betweenness metric is defined

as the fraction of equivalent MSTs where a given edge is present. The metric provides a per

edge statistic that is similar to that of the bootstrap approach frequently used in phyloge-

netics to support the grouping of taxa. We provide methods for the exact computation of this

metric based on the well known Kirchhoff’s matrix tree theorem. Moreover, we implement

and make available a module for the PHYLOViZ software and evaluate the proposed metric

concerning both effectiveness and computational performance. Analysis of trees generated

using multilocus sequence typing data (MLST) and the goeBURST algorithm revealed that

the space of possible MSTs in real data sets is extremely large. Selection of the edge to be

represented using bootstrap could lead to unreliable results since alternative edges are

present in the same fraction of equivalent MSTs. The choice of the MST to be presented, re-

sults from criteria implemented in the algorithm that must be based in biologically

plausible models.

Introduction
The use of trees for phylogenetic representations started in the middle of the 19th century. One
of their most popular uses is Charles Darwin’s sole illustration in “The Origin of Species” [1].
The simplicity of the tree representation makes it still the method of choice today to easily
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convey the diversification and relationships between species. Many different methods have
been proposed to reconstruct phylogenies, mostly concerned with recovering evolutionary rela-
tionships over long periods of time [2]. Each algorithm or method used to infer and draw a
tree, makes a series of implicit or explicit assumptions that limit the types of trees generated.
This variability in the trees generated by different algorithms using the same data, has impor-
tant repercussions that frequently go unappreciated by those who use them. At shorter time-
scales and with limited diversity, conditions that are encountered in population genetics and
microevolutionary studies of a single species, the assumptions made by these methods may not
be equally valid [3] and a number of other methods have been used when analyzing this data.

Minimum Spanning Trees (MSTs) are becoming increasingly used for representing rela-
tionships between strains in epidemiological and population studies of bacterial pathogens. Al-
though MST computation is a classical mathematical problem and its application to
evolutionary studies was suggested more than a decade ago [3], it was not until recently, with
the advent of multilocus sequence typing (MLST) [4] and particularly whole genome sequenc-
ing [5, 6], that they gained popularity as an alternative to eBURST [7]. One appeal of MSTs is
the simplicity of their assumptions that reflect the concept of minimal evolution. MSTs simply
link together the more closely related individuals in the population, generating a single tree
representing all individuals. The Steiner trees [8], generated by the more classical methods for
phylogenetic inference, place individuals exclusively in branch tips. By allowing individuals to
be placed in interior nodes, spanning trees and MSTs in particular, may better convey the pecu-
liarities of short-term intraspecific evolution [3].

It was also recently pointed out that the optimal implementation of the BURST rules in goe-
BURST, results in a set of disjoint MSTs [9]. These trees group sequence types (STs) that differ
by a maximum threshold number of alleles from at least one other ST in the group. These
groups or connected components are frequently referred to as clonal complexes (CCs). In fact,
goeBURST is a maximum weight problem that together with MSTs are particular cases of
graphic matroids [9]. But, as it is well known, MSTs are in general not unique for a given net-
work and this was also recognized in the context of phylogenetic trees [3, 10]. The fact that a
single tree is reported from a multitude of possible and equally optimal solutions and that no
statistical metrics exist to evaluate them, justified a recent heuristic approach to address these
issues [10]. The authors suggested a method based on a mark-recapture approach to estimate
the number of possible trees and a bootstrap procedure to evaluate tree credibility.

The problem of counting MSTs has been a challenge for the last decades, namely the devel-
opment of efficient approaches for counting MSTs in weighted graphs, and different ap-
proaches have been described. In 1987, Gavril [11] addressed the problem of counting the
number of MSTs by constructing a tree-like recursive structure, the root of which is the sub-
graph G0 formed by removing all non-maximum-weight edges from G, and each sub-tree of
which is constructed recursively from the components of G\G0. The minimum spanning trees
of G can then be counted by multiplying together the numbers of spanning trees at each node
of this structure. This method runs in O(nM(n)) time, whereM(n) is the time required to mul-
tiply two n × nmatrices. Later, in 1997, Broder and Mayr [12] improved this bound by propos-
ing a method based on a generating function that can be expressed as a simple determinant,
where the weights of the edges appear as exponents of polynomials. This method proceeds by
factoring the determinant and it works for nonnegative integral edge weights. It runs in
O(M(n)) time.

Eppstein [13] took still a different approach and created the concept of equivalent graph.
Specifically, one constructs from any given edge-weighted graph G an equivalent graph EG
without weights, with a sliding transformation, such that the minimum spanning trees of G cor-
respond one-for-one with the spanning trees of EG. Having translated the weighted graph to
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an equivalent unweighted graph, one can compute the number of MSTs by just applying the
Kirchhoff’s matrix tree theorem to the new graph.

Note that most of these approaches aim at generating and sampling MSTs, a harder problem
than just counting the number of MSTs. Moreover, our approach may be applied to the general
case of graphic matroids. As discussed above, the problem of finding an MST is a particular
case of graphic matroids [14] and, thus, finding a solution for a given graph consists of solving
an instance of graphic matroids [14–16], which can be optimally solved with a greedy approach
[17]. One of those greedy approaches is precisely Kruskal’s algorithm [18]. In the general case
of graphic matroids, edges may be unweighted, which is usually the case. We just need to define
a total order for the edges based on specific criteria, which is precisely what we have in phyloge-
netic approaches using MSTs [9].

Here, we present an improvement to the mark-recapture/bootstrap approach by introduc-
ing a new edge centrality metric taking advantage of determining exactly the number of possi-
ble trees and the proportion of the tree space that includes each of the possible edges through
an expansion of the Kirchhoff’s matrix tree theorem [19, 20]. Contrary to other methods that
depend on edges being weighted, our method just depends on sorting edges in increasing order
and, thus, we just require a total order to be defined. This simple approach allowed better per-
formance and can be applied to the general case of graphic matroids.

Methods
In this section, we describe an exact method to compute the significance of a branch/edge in a
given MST representation, and we present a module for the PHYLOViZ software [21] imple-
menting the proposed metric. We start with the formalization of the problem under study and
the proposed metric. Then, we show how the metric can be effectively computed.

Spanning edge betweenness
Let G = (V, E) be a connected, undirected and weighted graph, with weight function w: E! IR,
where V is the set of vertices and E� V × V is the set of edges. A Minimum Spanning Tree
(MST) T = (V, E0) is a subgraph of G that is a tree and contains all the vertices of G, i.e., that
spans over all vertices in V, with jE0j = jVj − 1, and such that ∑e2E0 w(e) is minimum among all
possible spanning trees. It is clear that we can have more than one MST for a given graph G
and we would like to count how many MSTs exist in G. The solution to this problem is provid-
ed by the Kirchhoff’s matrix tree theorem [20] for unweighted graphs and by Eppstein [13] for
weighted graphs, where the Kirchhoff’s matrix tree theorem is still used but only after some
graph transformations.

However, in this paper we are interested in a slightly different question. Given an edge
e 2 E, we want to know the fraction δG(e) of MSTs where e occurs. The value δG(e) is what we
call the spanning edge betweenness for e and it is formally defined as

dGðeÞ ¼
tGðeÞ
tG

; ð1Þ

where τG is the number of different MSTs for G and τG(e) is the number of different MSTs for
G where e occurs. Note that δG(e) may be zero whenever an edge e is not present in any MST,
causing τG(e) to be zero. In what follows we write δ(e), τ(e) and τ whenever G is clear from
the context.

It remains to see how to compute, as efficiently as possible, the spanning edge betweenness
τG(e) for a given e 2 E. In next sections, we show how to compute τG(e) and δG(e) when
G = (V, E) is a connected, undirected and unweighted graph, with n = jVj vertices andm = jEj
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edges. Note that in this case the number τ of MSTs in G is equal to the number of spanning
trees in G and it can be computed directly from the Kirchhoff’s matrix tree theorem [19]. Then
we extend our result to weighted graphs and we discuss implementation details.

Unweighted graphs
Let F 2 {−1, 0, 1}n × m be the incidence matrix for G such that Fi, e = 1 and Fj, e = −1, for e = (i, j)
2 E where i< j without loss of generality. Let us also consider the reduced incidence matrix F(i)

obtained from F by deleting row i. Note that rank(F) = n − 1, rank(F(i)) = n − 1, and the deter-
minant for any square submatrix of F(i), for any i, is either 0, −1, or 1. A more interesting obser-
vation due to Kirchhoff is that a submatrix (n − 1) × (n − 1) of F(i), for any i, is non-singular if
and only if its columns correspond to the edges of a spanning tree.

Theorem 1 (Kirchhoff [19]). The spanning trees of a connected and undirected graph G
with n vertices are the non-singular (n − 1) × (n − 1) submatrices of the reduced incidence matrix
F(i), for any i, and the determinants of the submatrices are all ±1.

Hence, by using Cauchy-Binet theorem on determinants, the number of spanning trees τ is
given by the Kirchhoff’s well known formula

t ¼ detðLðiÞÞ ð2Þ

¼
X
S

detðFðiÞ
S ÞdetðFðiÞ

S

>Þ ð3Þ

¼
X
S

detðFðiÞ
S Þ2; ð4Þ

where S ranges over the subsets of E with size n − 1, L = FF> is the Laplacian matrix for G, and
L(i) denotes the matrix obtained from L by deleting row and column i.

We extend this result to compute τ(e), for e 2 E, as follows.
Theorem 2. Given G = (V, E) an undirected and connected graph, let e = (i, j) 2 E and L(ij)

denote the matrix obtained from L by deleting rows i and j and columns i and j. Then, det(L(ij))
is the number of spanning trees τ(e) that contain e.

Proof. As discussed above, the total number of spanning trees is given by det(L(i)), for any i.
Let G0 be the graph where we remove the edge (i, j) and L0 be the Laplacian for G0. Hence, the
total number of spanning trees for G0 is given by det(L

0(i)), for any i, and the number of MSTs
that contain (i, j) is simply given by det(L(i)) − det(L

0(i)). Let us show that det(L(ij)) = det(L(i)) −
det(L

0(i)) or, equivalently, that det(L(i)) = det(L
0(i)) + det(L(ij)). We have that L(i) = F(i) F(i)> and

L(ij) = F(i, j) F(i, j)>, where F(i, j) is obtained from F by removing rows i and j, and, using Cauchy-
Binet’s formula, we can show instead that

X
S

det FðiÞ
S

� �2

¼
X
S0

det F 0ðiÞ
S0

� �2

þ
X
S�

det Fði;jÞ
S�

� �2

ð5Þ

where F0 is the incidence matrix for G0, S ranges over the subsets of E with size n − 1, S0 ranges
over the subsets of E\{(i, j)} with size n − 1, and S� ranges over the subsets of E with size n − 2.

Since S0 ranges over the subsets of E\{(i, j)}, we can replace F0 by F in previous equation. Note
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also that

X
S�

det Fði;jÞ
S�

� �2

¼
X

S�[fði;jÞg
det Fði;jÞ

S� � �1
� �2

ð6Þ

¼
X

S�[fði;jÞg
det FðiÞ

ðS�[fði;jÞgÞ

� �2

ð7Þ

because adding edge (i, j) to S� and considering F(i) instead of F(i, j) just adds a term ±1 to each
matrix determinant. Therefore,

X
S

det FðiÞ
S

� �2

¼
X
S0

det FðiÞ
S0

� �2

þ
X

S�[fði;jÞg
det FðiÞ

ðS�[fði;jÞgÞ

� �2

ð8Þ

which is an equality as the first term on the right side ranges over all subsets of E with size n − 1
that do not contain (i, j) and the second term ranges over all subsets of E with size n − 1 that do
contain (i, j).

Hence, using both results, we can easily compute δ(e) for any e 2 E. Note also that the same
is true for multigraphs, graphs that allow multiple edges between the same pair of vertices, as
both results above hold with the following changes in the Laplacian matrix L [22]: if vertex i is
adjacent to vertex j in G, then Lij is equal to the number of edges between i and j; when count-
ing the degree of a vertex, all loops are excluded.

Weighted graphs
Let G = (V, E) be a connected, undirected and weighted graph, with weight function w: E! IR.
We can compute a MST for G by using the Kruskal’s algorithm [18]:

1. sort E with respect to w in increasing order;

2. create a forestM where each u 2 V is a tree;

3. iterate over E in increasing order and, for each (u, v) 2 E, if u and v are in different trees,
add (u, v) toM combining both trees as single tree;

4. returnM.

Note that we may get different MSTs by changing the order obtained in step 1, where we
can exchange positions of edges with the same weight. In particular, since it is well known that
the sorted list of edge weights is the same for any MST, changing the order allow us to obtain
all different MSTs.

We can take this a step further. Consider the algorithm SEB for computing the number of
MSTs and the spanning edge betweenness for each edge:

1. sort E with respect to w in increasing order;

2. let H = (V, ;) and τG = 1;

3. iterate over E in increasing order and, while edges have the same weights, add them toH;

4. for each connected component C inH, compute τC using Theorem 1, update τG = τG × τC,
and, for each edge e 2 C, compute τC(e) using Theorem 2 and δC(e) using Equation 1;

5. contract all edges inH such that each connected component becomes a single vertex;

6. ifH has more than one vertex, repeat from step 3, otherwise return τG.
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The algorithm SEB works similarly to the Kruskal’s algorithm by iterating over edges in in-
creasing order with respect to w and, at each main iteration (steps 3 to 6), it considers sets of
edges with the same weight. Let e 2 E and letM0 be the forest obtained in Kruskal’s algorithm
after processing all edges e0 2 E such that w(e0)< w(e). Let also H be a graph where each tree in
M0 is a vertex, i.e., where each tree was contracted, and where we add all edges in E with weight
equal to w(e). Since for some main iteration of SEB algorithm we stop after adding edges e0 2 E
such that w(e0)� w(e),H does not contain edges e@ 2 E such that w(e@)> w(e). Moreover,
since we contracted all edges e0 2 E such that w(e 0)< w(e), all edges in H have the same weight
w(e), and we can treat it as an unweighted graph (or, since Hmay be a multigraph, as an un-
weighted multigraph). Hence, if we consider the connected component C of H that contains
edge e, and by using results in previous section, we are able compute the number τC of span-
ning trees for that component and also the number τC(e) of spanning trees for that component
where e occurs. The key observations clarified in the following lemmas are that we can use this
approach to compute the number of spanning trees in G and that δG(e) = δC(e).

Lemma 1. Given G = (V, E) a connected, undirected and weighted graph, with weight func-
tion w: E! IR, the algorithm SEB computes the number of spanning trees in G.

Proof. It is clear that an edge e 2 E can only permute with another edge e0 2 E to form a dif-
ferent MST iff w(e) = w(e0) and, if a MSTM contains e, adding e0 toM leads to a cycle. More-
over, that cycle can only contain edges with weight equal to or lower than w(e), otherwiseM
would not be an MST. If we add all edges with weight w(e) toM and contract all edges with
weight lower than w(e), we obtain the graph H and the product of the number of trees in each
connected component of H is the number of ways we can select edges with weight w(e) for
each MST of G. By doing this for each different weight in G and then multiplying all values, we
obtain the number of MSTs τ for G.

Lemma 2. Given G = (V, E) a connected, undirected and weighted graph, with weight func-
tion w: E! IR, an edge e 2 E, H the graph obtained in algorithm SEB while processing edges
with weight equal to w(e), and C the connected component of H that contains e, we have that
δG(e) = δC(e).

Proof. Since a given edge e only has influence on the number of trees for the component C
ofH where it occurs, the number of trees for all other components C0 in H, and in any other
graph H in remaining algorithm iterations, remains the same. In particular, by inspecting algo-
rithm SEB,

tG ¼ tC
Y
C0

tC0 ð9Þ

and, by a similar construction,

tGðeÞ ¼ tCðeÞ
Y
C0

tC0 ðeÞ ¼ tCðeÞ
Y
C0

tC0 ð10Þ

where the last equality holds because edge e 2 E does not occur in any C0. Therefore, by Equa-
tion 1, it follows that δG(e) = δC(e).

Implementation in PHYLOViZ
We have implemented our metric as a module for PHYLOViZ [21], available at http://www.
phyloviz.net/. Our implementation uses the Colt library (http://acs.lbl.gov/software/colt/) for
linear algebra operations, including in particular the computation of matrix determinants. Since
we are dealing with relatively large sparse graphs, we use the class SparseDoubleMatrix2D in
Colt. We also use a disjoint-set data structure to track connected components similarly to what is
common in Kruskal’s algorithm implementations [23].
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The time complexity of the proposed approach is dominated by the time required to com-
pute the determinants, since the Kruskal’s algorithm runs in O(m log n) time, for a graph with
n vertices andm edges. Computing the determinant for a n × nmatrix can be done in O(n1.5)
time [24]. Hence, for sparse graphs withm = O(n), this method runs in O(n2.5) time since we
have to compute a determinant for each edge. In practice, it runs faster as connected compo-
nents are usually much smaller than the original graph.

Amore efficient implementation
Beside the motivation of an implementation of a module to PHYLOViZ application, we also
implemented an offline version of the module where we used some extra settings to accelerate
its execution and allow to obtain results that are not meant to be shown in PHYLOViZ. In this
offline implementation, we used the MTJ library (Matrix Toolkit Java, available at https://
github.com/fommil/matrix-toolkits-java/) that is is a high-performance library for developing
linear algebra applications. MTJ is based on BLAS (http://www.netlib.org/blas/) and LAPACK
(http://www.netlib.org/lapack/) for its dense and structured sparse computations.

With this library, we use the LU decomposition to calculate the determinant. We create an
upper triangle dense matrix and then we go through all the elements of the diagonal. Instead of
multiplying all the determinants as in the module developed for PHYLOViZ we sum the loga-
rithm of each absolute diagonal value, obtaining instead the logarithm of the determinant.

To improve our running time, we used the Java concurrent library for computing edges sta-
tistics in parallel. Since the statistics for each edge can be computed independently, we could
parallelize statistics computation in a straightforward manner. Note that for computing statis-
tics for each edge we must compute the determinant for a given matrix and, since these
computations are independent, we can compute edge statistics in parallel. Package available at
https://bitbucket.org/phyloviz/popsim-analysis.

Results and discussion
The spanning edge betweenness was applied to nine publicly available MLST databases of im-
portant human pathogens: Burkholderia pseudomallei, Campylobacter jejuni, Enterococcus fae-
cium, Haemophilus influenzae, Neisseria spp., Pseudomonas aeruginosa, Streptococcus
agalactiae, Staphylococcus aureus, and Streptococcus pneumoniae. These databases were re-
trieved on June 24th, 2014, from public repositories available in different websites (see Ac-
knowledgments for more details). From all publicly available databases, we considered only
those that generated graphs with more than 500 unique STs linked to at least one other ST at
the single-locus variant (SLV) level. Analyses were performed both with PHYLOViZ, using a
new module publicly available, and with a command line implementation developed to take
advantage of high performance numerical libraries and of parallelization in multi-core plat-
forms (see Methods for more details). We determined the goeBURST forest of each species by
linking STs at SLV level, double-locus variant (DLV) level and triple-locus variant (TLV) level.
Unless otherwise stated, the analyses were performed on the forest generated by creating trees
linking STs at the SLV level. Details on how to reproduce this study, including copies of used
databases, are also available at https://bitbucket.org/phyloviz/popsim-analysis.

We calculated the number of possible MSTs in the largest CC of each of these species
(Table 1). As expected, even only for the largest CC, the number of possible MSTs is quite
large, in fact it exceeds a googol [25] for most of the species considered. When MST results are
presented, a single tree is usually shown. This tree is chosen from among the space of possible
trees, following a set of rules or simply as a consequence of the algorithm used and the input
order of the nodes [10]. The goeBURST algorithm implemented in PHYLOViZ, selects the
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final tree according to a set of well defined rules that guarantee the uniqueness and consistency
of the selected tree, independently of the input order of the nodes [9, 21]. The impact of the ap-
plication of each of the rules on the space of possible trees for the largest CC of each species is
presented in Table 2. For most species, a single tree is obtained when applying up to the second
tiebreak rule (higher number of DLVs), but in the case of B. pseudomallei, C. jejuni and Neis-
seria spp. a single tree is only obtained when invoking rules up to the third tiebreak rule (higher
number of TLVs). In the case of S. pneumoniae only the last tiebreak rule (higher number of
STID) results in a single tree. Large reductions in the available tree space can be seen with the
application of each goeBURST rule and this can be used to evaluate the impact of each rule on
the final phylogenetic hypothesis proposed by the algorithm.

The magnitude of the reduction of tree space varies between the species considered
(Table 2). It is clear that the number of STs influences the number of possible trees, with the

Table 1. Statistics relative to the largest CC linking STs at the SLV level. Columns represent the number of STs, the number of edges, the total
number of possible MSTs and the compactness and clustering indexes. The compactness index quantifies how directly connected individuals in the
network are. The clustering index quantifies how close the neighbors of a given individual are from a complete graph (clique). Each index is an average
after computing the index individually for each ST.

Data sets Statistics for the largest CC

Species # STs # Edgesa # MSTs Compactness Clustering

B. pseudomallei 624 1476 10276.74 0.008 0.283

C. jejuni 2318 9288 101440.45 0.003 0.600

E. faecium 610 1906 10338.32 0.010 0.464

H. influenzae 150 668 1094.31 0.059 0.678

Neisseria spp. 2011 12701 101521.63 0.006 0.627

P. aeruginosa 101 159 1022.81 0.031 0.442

S. agalactiae 519 2520 10365.79 0.019 0.690

S. aureus 1089 8317 10970.83 0.014 0.796

S. pneumoniae 1275 5203 10788.28 0.006 0.641

aThe number of edges, refers to the total number of edges linking all STs that are SLVs of each other

doi:10.1371/journal.pone.0119315.t001

Table 2. The effect of goeBURST tiebreaking rules in reducing MST space. Each column represents the number of possible MSTs after each
break rule.

Data sets # Trees in the largest CCa

Species All edgesb SLV DLV TLV Frequency STID

B. pseudomallei 10276.74 10209.93 105.33 1 1 1

C. jejuni 101440.45 10632.52 102.16 1 1 1

E. faecium 10338.32 10208.72 1 1 1 1

H. influenzae 1094.31 100.95 1 1 1 1

Neisseria spp. 101521.63 10390.84 103.06 1 1 1

P. aeruginosa 1022.81 1011.56 100.6 1 1 1

S. agalactiae 10365.79 1042.02 1 1 1 1

S. aureus 10970.83 1048.71 1 1 1 1

S. pneumoniae 10788.28 10209.02 102.64 100.60 100.60 1

a The CC was determined by linking groups of STs that were SLV of at least another ST in the group.
b The number of edges linking all STs that are SLV of each other in the CC

doi:10.1371/journal.pone.0119315.t002
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number of possible trees increasing with the number of STs (Table 1). But this relationship is
complex, with the number of possible edges linking STs at the SLV level having a similar and
equally significant influence on tree space. For instance, when comparing the largest CCs of B.
pseudomallei and E. faecium, although both have a similar number of STs, the latter has a
higher number of possible edges and trees (Table 1). An even more striking example is the
comparison between the largest CCs of S. aureus and S. pneumoniae, with the former having a
smaller number of STs, but a higher number of possible edges and trees (Table 1). The mea-
surements of compactness and clustering of the tree of the largest CC capture properties that
may be related to intrinsic characteristics of each species. These measures have several formula-
tions in the literature [26], but for the results presented here, these were defined as follows.
Given a graph G = (V, E), compactness describes how well a vertex u is connected in the graph,
being defined as the quotient between the vertex degree du and the maximum number of possi-
ble neighbors jVj − 1, i.e., du/(jVj − 1). The clustering coefficient describes how well connected
is the neighborhood of a vertex v, being defined as the quotient between the number of edges
among neighbors Nv of v and the maximum number of possible edges among them, i.e., 2j{(v,
w) 2 E j v, w 2 Nu}/du(du − 1). The compactness and clustering coefficient of the graph are de-
fined as the average of the vertex compactness and clustering coefficient over vertices in G, re-
spectively. These definitions allow us to also compute these values for each connected
component, which is of particular interest for the data under analysis. We note also that, al-
though these two measures are related, they allow us to discriminate some interesting graph
characteristics, which for the data under analysis may be related to mutation and recombina-
tion events. For instance, values of compactness< 0.010 are associated with B. pseudomallei, C.
jejuni, Neisseria spp. and S. pneumoniae; species that also reach higher tiebreak rules to identify
a single tree (Table 2). These species are known to have high rates of recombination [27–30].
The existence of recombination can generate STs with multiple possible pathways of descent,
which in turn would be expected to affect a graph’s compactness. The goeBURST algorithm in
PHYLOViZ can be run by creating sets of disjoint trees linking STs at DLV or TLV level and
the result of this analysis for the largest CC of each of the species considered is presented in
Table 3. As expected, as we go from SLV to TLV, the higher number of STs and possible edges
in the largest CC results in higher numbers of possible trees. The tree space at any given level,
when considering the entire forest, is the product of the number of trees for each CC and is
greatly influenced by the largest CC, hence our decision to present the analysis of the largest
CC only for simplicity.

We have previously proposed that the tiebreak rule reached before deciding if an edge
should be drawn, could be used to evaluate the reliability of the represented hypothetical pat-
tern of descent [9]. The spanning edge betweenness can be used for the same purpose, with re-
sults that are similar to those of the bootstrap procedure used frequently to support the
grouping of taxa on trees [2]. In Fig. 1A we represent all possible edges that could be drawn be-
tween STs differing at a single locus (SLVs) in CC1439 of S. pneumoniae. While several STs are
only linked by one possible edge to another ST, others are linked by several edges to a number
of different STs of which they are SLVs. The goeBURST algorithm will then choose which
edges should be represented in the final tree from among the edges found in the 88,833,024
possible MSTs of CC1439. In Fig. 1B is represented the MST identified using the goeBURST
rules. On each edge is also indicated the percentage of the equivalent MSTs where that edge is
found (the spanning edge betweenness). As expected, all the edges that were unique in Fig. 1A
were found in all equivalent MSTs, such as the edge between ST6544 and ST4560. On the other
hand, the represented edges of STs that could be linked by multiple possible edges, such as
ST369, are present in a lower number of possible trees (in this case 33.3% or 29,611,008 trees).
With a given set of STs, a higher proportion of equivalent MSTs including the represented
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edge, means that fewer alternatives are possible and this can be interpreted as a higher confi-
dence in the represented edge.

Another important conclusion that can be drawn from calculating spanning edge between-
ness is that all alternative edges linking a given ST to other STs are present in the same propor-
tion of equivalent MSTs. For instance, ST1931 is linked by two possible edges, either to ST4519
or to ST547 (Fig. 1A), and both edges are represented in 66.7% of all equivalent MSTs (see the
chosen edge by goeBURST in Fig. 1B). This means that the mark-recapture/bootstrap approach
suggested previously to choose between alternative edges [10], cannot provide an adequate so-
lution to the problem of selecting the most adequate edge. In the space of MSTs, alternative
edges are equally represented and so any dominance of a given edge in the mark-recapture pro-
cedure will be a consequence of the limitations of the procedure and should not be used as se-
lection criterion. The choice between alternative edges must be based on well defined criteria
that should reflect an underlying model of microbial evolution. The goeBURST rules have such
an underlying model [7, 9, 31] and offer a robust method to select a tree from a forest of MSTs.

Table 3. Statistics relative to the largest CC linking STs at the SLV, DLV and TLV levels of construction. SLV means that the graph contains only
edges linking STs that are SLVs, DLV means that edges were drawn between STs that are SLVs or DLVs of each other, and TLV that edges were drawn
between STs that are SLVs, DLVs or TLVs of each other, according to the rules implemented in goeBURST.

Data sets Statistics for the largest CC

Species SLV DLV TLV

#STs # Edges #MSTs #STs # Edges #MSTs #STs # Edges #MSTs

B. pseudomallei 624 1476 10264.87 979 12490 10476.77 1055 59337 10534.44

C. jejuni 2318 9288 101361.82 3693 109700 102278.37 6668 589783 103773.19

E. faecium 610 1906 10338.32 734 15199 10406.23 889 56221 10470.40

H. influenzae 150 668 1094.31 175 1086 1056.66 576 7323 10199.37

Neisseria spp. 2011 12701 101521.63 8085 375483 105612.23 9919 1174806 106512.54

P. aeruginosa 101 159 109.50 927 3644 10249.99 1544 18588 10517.10

S. agalactiae 519 2520 10336.78 680 19699 10486.93 681 40310 10488.63

S. aureus 1089 8317 10970.83 2079 100394 101747.89 2463 193822 101955.66

S. pneumoniae 1275 5203 10788.28 8048 161986 104190.83 9536 453859 104904.35

doi:10.1371/journal.pone.0119315.t003

Fig 1. Representation of S. pneumoniaeCC1439 using PHYLOViZ. A) Representation of all edges linking STs at SLV level. B) Representation of edges
from the MST selected after application of the goeBURST rules, with the spanning edge betweenness for each edge.

doi:10.1371/journal.pone.0119315.g001
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Fig. 2 and Supplementary Figures show the cumulative distribution of the spanning edge be-
tweenness of all edges, in the forest of all CCs, calculated at the SLV level by the goeBURST al-
gorithm in PHYLOViZ. The distribution of spanning edge betweenness of the edges of the
MSTs selected by goeBURST is variable between species. In contrast to the number of MSTs
discussed above, there is not a dominant role of recombination in determining the shape of the
distribution, since the species identified previously as being recombinogenic are not homoge-
neous in their distributions. These differences possibly reflect differences in size of the data set
considered, as well as a more complex interplay of the intrinsic properties of each species, such
as mutation and recombination rates and possibly their ratio.

Centrality measures are important in a large number of graph applications, from search and
ranking to social and biological network analysis [26]. Most of these measures are calculated
upon the nodes/vertices. With node centrality we can measure the relative importance of nodes
within a graph [32] but our interest can be to study the importance of links/edges on a network.
A first approach was done by Girvan and Newman [33] where they defined edge betweenness,
generalizing Freeman’s betweenness centrality [34] to edges, as the number of shortest paths
between pairs of vertices that run along an edge, with a direct application on the identification
of community structures in networks. There are, however, other problems where alternative
definitions of edge centrality are required, as is the case with the statistical evaluation of
phylogenetic trees.

Here, we present a new edge centrality metric, the spanning edge betweenness, defined as
the fraction of MSTs containing a given edge. We provide the required results and methods to
exactly compute this metric. Since we rely on the Kirchhoff’s matrix tree theorem, thus needing
to compute several determinants for slightly different matrices, we plan to investigate how to

Fig 2. Cumulative spanning edge betweenness of the forest of MSTs at the SLV level selected by goeBURST for the different bacterial species. The
fraction of MSTs where a given edge is present is computed for each edge, considering all CCs for each bacterial species. The plot is performed cumulatively
and the number of edges normalized (for values between 0 and 1). The diagonal represents a putative case where each value of spanning edge
betweenness is represented by the same number of edges.

doi:10.1371/journal.pone.0119315.g002
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accelerate these computations by reusing previous computations and by using more efficient
methods for sparse positive semi-definite matrices decomposition, such as those based on Cho-
lesky’s decomposition [35]. Currently, our solution allows the algorithm to run on a common
laptop in reasonable time (Table 4). For data sets with few STs, such as H. influenzae and P.
aeruginosa (Table 1), it takes less than 2 seconds. However, for data sets with a larger number
of STs, such as C. jejuni, it can take almost one hour. The running time will depend, mostly, on
the number of STs of each data set, that is clearly related to the dimensions of the matrix repre-
senting the relationships between STs. Hence, the number of STs is directly related to the num-
ber of operations required to calculate determinants.

The comparison between this metric and other well known centrality metrics should also be
investigated in the context of complex network analysis, as it provides a rather different ap-
proach for evaluating edge relevance or significance. The analyses of MLST data sets available
in public databases show the usefulness of spanning edge betweenness in evaluating MSTs as
proposals for phylogenetic relationships, and in providing confidence levels for each selected
edge in the final tree. These analyses also highlight the impossibility of selecting an MST based
on the statistical support of the edges, and reinforce the importance of the biological plausibili-
ty of the model underlying the criteria for edge selection in presenting the best possible MST-
based-proposal for the phylogenetic relationship of the entities under analysis. The use of boot-
strap values became a key method to assess nodal support in phylogenetic trees [2]. The span-
ning edge betweenness proposed here offers a similar tool for the evaluation of MSTs in
phylogenetic studies.

Supporting Information
S1 Fig. Cumulative spanning edge betweenness of the forest of MSTs at the SLV level select-
ed by goeBURST for Burkholderia pseudomallei. The fraction of MSTs where a given edge is
present is computed for each edge, considering all CCs. The plot is performed cumulatively
and the number of edges normalized (for values between 0 and 1). The diagonal represents a
putative case where each value of spanning edge betweenness is represented by the same num-
ber of edges.
(TIF)

S2 Fig. Cumulative spanning edge betweenness of the forest of MSTs at the SLV level select-
ed by goeBURST for Campylobacter jejuni. The fraction of MSTs where a given edge is pres-
ent is computed for each edge, considering all CCs. The plot is performed cumulatively and the
number of edges normalized (for values between 0 and 1). The diagonal represents a putative

Table 4. Time to compute the number of MSTs in all CCs with STs linked at SLV level. Time
presented in seconds, using an Intel i7 a 2.3GHz, with 6GB of RAM.

Data sets Runtime (s)

B. pseudomallei 16.8

C. jejuni 2759.3

E. faecium 23.2

H. influenzae 1.6

Neisseria spp. 1489.9

P. aeruginosa 2.0

S. agalactiae 13.1

S. aureus 277.2

S. pneumoniae 362.5

doi:10.1371/journal.pone.0119315.t004
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case where each value of spanning edge betweenness is represented by the same number
of edges.
(TIF)

S3 Fig. Cumulative spanning edge betweenness of the forest of MSTs at the SLV level select-
ed by goeBURST for Enterococcus faecium. The fraction of MSTs where a given edge is pres-
ent is computed for each edge, considering all CCs. The plot is performed cumulatively and the
number of edges normalized (for values between 0 and 1). The diagonal represents a putative
case where each value of spanning edge betweenness is represented by the same number
of edges.
(TIF)

S4 Fig. Cumulative spanning edge betweenness of the forest of MSTs at the SLV level select-
ed by goeBURST forHaemophilus influenzae. The fraction of MSTs where a given edge is
present is computed for each edge, considering all CCs. The plot is performed cumulatively
and the number of edges normalized (for values between 0 and 1). The diagonal represents a
putative case where each value of spanning edge betweenness is represented by the same num-
ber of edges.
(TIF)

S5 Fig. Cumulative spanning edge betweenness of the forest of MSTs at the SLV level select-
ed by goeBURST for Neisseria spp.. The fraction of MSTs where a given edge is present is
computed for each edge, considering all CCs. The plot is performed cumulatively and the num-
ber of edges normalized (for values between 0 and 1). The diagonal represents a putative case
where each value of spanning edge betweenness is represented by the same number of edges.
(TIF)

S6 Fig. Cumulative spanning edge betweenness of the forest of MSTs at the SLV level select-
ed by goeBURST for Pseudomonas aeruginosa. The fraction of MSTs where a given edge is
present is computed for each edge, considering all CCs. The plot is performed cumulatively
and the number of edges normalized (for values between 0 and 1). The diagonal represents a
putative case where each value of spanning edge betweenness is represented by the same num-
ber of edges.
(TIF)

S7 Fig. Cumulative spanning edge betweenness of the forest of MSTs at the SLV level select-
ed by goeBURST for Streptococcus agalactiae. The fraction of MSTs where a given edge is
present is computed for each edge, considering all CCs. The plot is performed cumulatively
and the number of edges normalized (for values between 0 and 1). The diagonal represents a
putative case where each value of spanning edge betweenness is represented by the same num-
ber of edges.
(TIF)

S8 Fig. Cumulative spanning edge betweenness of the forest of MSTs at the SLV level select-
ed by goeBURST for Staphylococcus aureus. The fraction of MSTs where a given edge is pres-
ent is computed for each edge, considering all CCs. The plot is performed cumulatively and the
number of edges normalized (for values between 0 and 1). The diagonal represents a putative
case where each value of spanning edge betweenness is represented by the same number
of edges.
(TIF)
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S9 Fig. Cumulative spanning edge betweenness of the forest of MSTs at the SLV level select-
ed by goeBURST for Streptococcus pneumoniae. The fraction of MSTs where a given edge is
present is computed for each edge, considering all CCs. The plot is performed cumulatively
and the number of edges normalized (for values between 0 and 1). The diagonal represents a
putative case where each value of spanning edge betweenness is represented by the same num-
ber of edges.
(TIF)
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