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1 	 | 	 BACKGROUND

Exercise	is	an	important	intervention	for	postoperative	re-
habilitation	of	oncology	patients,	and	aerobic	exercise	is	the	
main	type	of	exercise	intervention.	The	American	College	
of	Sports	Medicine	(ACSM)	recommends	that	cancer	sur-
vivors	 engage	 in	 at	 least	 150–	300  min/week	 of	 moderate	
intensity	aerobic	training.1	According	to	the	cancer-	specific	
exercise	 guideline,	 an	 effective	 exercise	 prescription	 that	
most	 consistently	 addresses	 health-	related	 outcomes	 ex-
perienced	due	to	a	cancer	diagnosis	and	cancer	treatment	
includes	moderate-	intensity	aerobic	training	at	least	three	
times	per	week,	for	at	least	30 min,	for	at	least	8–	12 weeks.2	
As	an	adjunctive	therapy	for	postoperative	rehabilitation	of	

cancer	patients,	aerobic	exercise	has	the	effect	of	enhancing	
conventional	cancer	treatments.3,4	Available	evidence	sug-
gests	that	aerobic	exercise	is	associated	with	a	reduction	in	
tumor	incidence,	and	has	effects	on	affecting	tumor	physi-
ology	and	controlling	disease	progression,	which	is	associ-
ated	with	inhibition	of	tumor	metastasis	and	recurrence.5,6	
Aerobic	exercise	interventions	during	the	treatment	of	pa-
tients	with	cancer	have	a	significant	 impact	on	 their	 sur-
vival,	 and	 patients’	 higher	 aerobic	 fitness	 leads	 to	 longer	
estimated	tumor	doubling	times.7	A	2018 study	found	that	
6  months	 of	 moderate	 intensity	 aerobic	 exercise	 signifi-
cantly	improves	the	quality	of	 life	of	oncology	survivors.8	
Another	study	found	that	the	degree	of	participation	in	ex-
ercise	was	inversely	associated	with	postmenopausal	breast	
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Abstract
Aerobic	exercise	is	an	important	non-	pharmacological	means	of	antitumor	inter-
vention,	but	related	mechanisms	are	poorly	understood.	In	this	review,	previous	
studies	are	summarized	from	the	aspects	of	tumor	oxygenation,	autophagy	versus	
apoptosis,	and	organismal	immunity.	Current	findings	on	the	antitumor	effects	of	
aerobic	exercise	involve	AMPK	signaling,	PI3K/Akt	signaling,	Th1/Th2	cytokine	
balance	related	to	immunity,	PD-	1/PD-	L1	immunosuppressive	signaling,	and	re-
lated	cytokine	pathways.	Several	directions	for	further	research	are	proposed,	in-
cluding	whether	newly	discovered	subgroups	of	cytokines	influence	the	effects	of	
aerobic	exercise	on	tumors,	tailoring	corresponding	exercise	prescriptions	based	
on	the	bidirectional	effects	of	certain	cytokines	at	different	stages,	identifying	the	
potential	effects	of	exercise	time	and	intensity,	and	elucidating	details	of	the	un-
clear	mechanisms.	Through	the	discussion	of	the	existing	data,	we	hope	to	pro-
vide	new	ideas	for	the	future	research	of	exercise	therapy.
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cancer	 incidence.9	 Aerobic	 exercise	 produces	 changes	 in	
physiological	 characteristics	 and	 induces	 systemic	 alter-
ations	under	adaptations	to	long-	term	training.10	Systemic	
effects	 of	 increased	 arterial	 pressure	 and	 cardiac	 output	
resulting	from	the	rise	in	body	temperature,	as	well	as	in-
creased	stroke	volume	and	heart	rate	in	response	to	acute	
exercise	 favor	 oxygen	 delivery,	 this	 effect	 can	 be	 further	
strengthened	by	the	vascular	remodeling	induced	by	long-	
term	aerobic	training.11	Preclinical	studies	have	shown	that	
aerobic	 exercise	 has	 been	 shown	 to	 induce	 vascular	 nor-
malization	in	mouse	models,12	which	indicates	that	aerobic	
exercise	may	affect	local	physiological	responses	and	vascu-
lar	adaptations	in	the	tumor	microenvironment.

However,	despite	the	existence	of	corresponding	clin-
ical	evidence	for	the	beneficial	effects	of	aerobic	exercise	
on	tumors,	the	mechanisms	by	which	aerobic	exercise	in-
hibits	or	retards	tumorigenesis	currently	remain	elusive.	
On	the	basis	of	previous	studies,	we	speculate	that	aerobic	
exercise	may	inhibit	tumor	development	and	progression	
by	 improving	 vascular	 oxygenation,	 modulating	 autoph-
agy	versus	apoptosis,	and	affecting	immune	function,	and	
then	teased	out	the	regulatory	mechanisms	and	signaling	
pathways	implicated	in	these	processes.	Finally,	providing	
some	ideas	that	are	worth	exploring	for	further	discussion.

2 	 | 	 MECHANISMS OF AEROBIC 
EXERCISE IN TUMOR HYPOXIA

2.1	 |	 Hypoxic tumor microenvironment

Due	to	the	swift	proliferation	of	tumors	during	their	growth,	
the	 diffusion	 of	 oxygen	 into	 the	 surrounding	 capillaries	
is	 unable	 to	 meet	 the	 demands	 posed	 by	 the	 continuous	
propagation	of	tumor	cells,	causing	tissue	hypoxia	as	well	
as	metabolic	imbalance	and	resulting	in	the	formation	of	a	
hypoxic	tumor	environment	(TME).13	Mitochondrial	met-
abolic	reprogramming	is	a	dynamic	process	in	tumorigen-
esis	and	development	and	is	essential	for	tumor	growth.14	
Mitochondrial	 metabolism	 supports	 tumor	 anabolism	 by	
providing	 key	 metabolites	 for	 macromolecule	 synthesis	
and	 generating	 oncometabolites	 to	 maintain	 the	 cancer	
phenotype.15	The	 flexibility	of	mitochondrial	metabolism	
may	meet	different	needs	during	various	stages	of	tumori-
genesis	to	metastasis.14	Mitochondrial	dysfunction	and	aer-
obic	glycolysis	(Warburg	effect)	have	been	widely	accepted	
as	 tumor	 markers.	 In	 TME,	 inhibition	 of	 mitochondrial	
metabolism	 is	 crucial	 to	 switch	 from	 oxidative	 phospho-
rylation	 to	 glycolysis.16	 Hypoxia	 is	 a	 common	 feature	 of	
many	solid	tumors	and	plays	an	important	role	in	tumor	
initiation,	 progression,	 and	 metastasis.17	 HIF	 (hypoxia-	
inducible	 factor)	 is	a	nuclear	 transcription	factor	 that	 in-
cludes	 the	members	HIF-	1,	HIF-	2,	and	HIF-	3.18	HIF-	1	 is	

an	 important	 mediator	 in	 inducing	 aerobic	 glycolysis	 in	
tumor	cells,19	HIF-	1	expression	is	increased	under	hypoxia	
and	 activates	 adaptive	 transcriptional	 responses	 through	
related	signaling	pathways,	which	involves	the	upregula-
tion	of	survival	factors	including	angiogenic	factors,	regu-
lating	energy	metabolism	within	tumor	cells	to	adapt	the	
tumor	to	a	hypoxic	TME	and	promote	tumor	cell	metasta-
sis	and	invasion.20-	22	Angiogenesis	is	a	condition	for	tumor	
cells	 to	 grow	 and	 metastasize,	 and	 vascular	 endothelial	
growth	factor	(VEGF)	can	promote	endothelial	cell	growth	
and	increase	vascular	permeability.23,24	Some	studies	have	
shown	that	under	pathological	conditions,	HIF-	1	induces	
the	activation	of	multiple	drug-	resistance	 transporters	by	
upregulating	 the	 protein	 expression	 of	 VEGF,	 leading	 to	
increased	tumor	malignancy.23	It	has	also	been	found	that	
HIF-	1α	 is	 associated	 with	 angiogenesis	 in	 non-	small-	cell	
lung	cancer	 (NSCLC),	and	 the	expression	of	HIF-	1α	and	
VEGF	are	positively	correlated	and	significantly	higher	in	
lung	cancer	tissues	compared	with	normal	tissues.25

2.2	 |	 Mechanisms of aerobic exercise on 
tumor perfusion and hypoxia

Exercise	 has	 the	 effect	 of	 regulating	 tumor	 vasculature	
and	oxygenation,	and	 it	may	 lead	 to	 the	development	of	
relatively	normal,	more	mature,	and	 less	permeable	ves-
sels	 in	 dysfunctional	 tumor	 vasculature.	 This	 blunted	
vasoreactivity	 may	 allow	 for	 maintenance	 or	 increased	
tumor	 perfusion	 during	 exercise.4	 Aerobic	 exercise	 in-
duces	robust	changes	in	mitochondrial	content	and	qual-
ity	 that	are	 shown	 to	enhance	mitochondrial	biogenesis,	
and	are	shown	to	delay	or	prevent	impairments	in	mito-
chondrial	 functions.26	 Peroxisome	 proliferator-	activated	
receptor	 γ	 coactivator-	1α	 (PGC-	1α)	 has	 been	 considered	
the	master	regulator	of	mitochondrial	biogenesis.27	Acute	
aerobic	exercise	 initiates	a	multitude	of	signals	 that	acti-
vate	PGC-	1α,	with	the	most	widely	accepted	signals	being:	
calcium/calmodulin-	dependent	 protein	 kinase	 (CaMK),	
p38  mitogen-	activated	 protein	 kinase	 (p38  MAPK),	 and	
AMP-	activated	protein	kinase	(AMPK)	phosphorylation.28	
By	activating	PGC-	1α	redox	signaling	pathways,	aerobic	ex-
ercise	stimulates	mitochondrial	biogenesis,	which	in	turn	
reduces	the	risk	of	carcinogenesis.28	Reactive	oxygen	spe-
cies	(ROS)	is	important	components	of	the	tumor	growth	
environment.	ROS	in	tumor	cells	is	mainly	generated	from	
mitochondria,	 and	 mitochondrial	 ROS	 activate	 the	 HIF	
signaling	pathway	to	mediate	tumor	cell	metabolism.29-	31	
The	activity	of	HIF-	1	is	regulated	by	hydroxylation.	In	hy-
poxia,	 the	 blockage	 of	 proline	 hydroxylation	 due	 to	 the	
inactivation	 of	 prolyl	 hydroxylase	 (PHD)	 and	 factor	 in-
hibiting	HIF-	1	(FIH-	1)	prevents	the	hydrolysis	of	HIF-	1α,	
inducing	 activation	 of	 HIF-	1	 to	 affect	 the	 expression	 of	
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VEGF,	which	drives	tumor	cell	proliferation.32-	34	Increased	
shear	stress	on	endothelial	cells	during	aerobic	exercise	is	
associated	 with	 tumor	 vascular	 remodeling,	 prompting	
greater	blood	flow	to	the	tumor.35	Aerobic	exercise	allevi-
ates	hypoxia	by	improving	tumor	perfusion	volume,	serves	
to	reduce	the	accumulation	of	mitochondrial	ROS,	which	
favors	HIF-	1	inactivation.36,37	The	pressure	exerted	on	the	
vessel	wall	under	acute	exercise	conditions	increases	with	
increasing	exercise	intensity,	promoting	the	development	
of	 functionally	 mature	 vessels.	 Acute	 exercise	 increases	
tumor	blood	flow	and	decreases	tumor	vascular	resistance,	
increasing	tumor	perfusion	pressure	in	a	murine	prostate	
cancer	(PCa)	model,11	the	increase	in	oxygen	diffusion	dis-
tance	enables	the	hypoxic	tumor	area	with	restricted	diffu-
sion	to	shrink.	The	adaptation	of	tumor	vascular	structure	
to	long-	term	exercise,	can	improve	the	oxygen	delivery	of	
peripheral	 tissue.4,11,38	 Aerobic	 exercise	 exerts	 modula-
tory	 effects	 on	 tumor	 perfusion	 and	 hypoxia	 by	 enhanc-
ing	acute	and	chronic	oxygenation	mechanisms	in	hypoxic	
tumor	 regions,	which	may	help	 to	delay	 tumor	develop-
ment5	(Figure 1).

2.3	 |	 Regulation of aerobic exercise on 
tumor brain metastasis

2.3.1	 |	 Hypoxia	and	tumor	brain	metastasis

Metastasis	is	driven	by	inflammatory	signals	and	infiltra-
tion	of	inflammatory	cells	into	the	primary	tumor.39	The	

key	steps	in	the	initiation	and	growth	of	tumor	metasta-
sis	depend	on	the	ability	of	tumor	cells	to	transverse	the	
vascular	membrane,	enter	the	bloodstream,	and	penetrate	
endothelial	 cells	 at	 new	 sites.40	 Tumor	 cells	 have	 a	 pro-
pensity	 to	 metastasize	 under	 hypoxic	 conditions,	 and	
hypoxia	 downregulates	 the	 expression	 of	 adhesion	 mol-
ecules	 and	 increases	 tumor	 cell	 motility.41	 In	 addition,	
Rho	is	a	redox	sensitive	small	GTPase	whose	activation	is	
associated	with	destabilization	and	increased	permeabil-
ity	of	the	endothelial	barrier	during	tumorigenesis.	Tight	
junction	 proteins	 are	 major	 structural	 components	 that	
determine	 paracellular	 integrity	 of	 brain	 endothelium,	
which	regulates	endothelial	cell	permeability,	and	creates	
a	barrier,	through	cell	adhesion,	that	limits	access	to	the	
cerebrospinal	 fluid	environment.42-	44	Studies	have	found	
that	an	increase	in	blood–	brain	barrier	permeability	is	ac-
companied	by	a	decrease	in	the	expression	of	tight	junc-
tion	 proteins,44,45	 whereas	 Rho	 kinase	 (ROCK),	 which	
is	 activated	 by	 RhoA	 GTPases,	 can	 induce	 phosphoryla-
tion	of	tight	junction	proteins,	leading	to	their	disruption	
and	 promoting	 the	 migration	 of	 monocytes	 through	 the	
blood–	brain	barrier.46	Tumor	cells	can	interfere	with	the	
expression	of	tight	junction	proteins	and	extravasate	and	
spread	 into	 the	 brain	 between	 disrupted	 tight	 junction	
proteins.47	Hypoxia	causes	the	degradation	of	tight	junc-
tion	proteins,	which	further	increases	blood–	brain	barrier	
permeability.44	 Redox-	sensitive	 small	 GTPases	 are	 in-
volved	in	blood–	brain	barrier	remodeling	and	barrier	dis-
ruption,	disrupts	the	structure	of	tight	junction	proteins,	
leading	to	tumor	cell	extravasation.48

F I G U R E  1  Mechanisms	of	aerobic	
exercise	regulate	tumor	perfusion	and	
hypoxia
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2.3.2	 |	 Mechanisms	of	vascular	permeability	
to	aerobic	exercise

The	redox	stability	of	brain	endothelial	cells	may	protect	the	
brain	against	tumor	metastasis.49	Aerobic	exercise	maintains	
or	increases	the	expression	of	tight	junction	proteins	by	regu-
lating	the	activity	of	redox	sensitive	small	GTPases,	thereby	
affecting	 the	 oxidative	 status	 and	 redox	 sensitive	 signaling	
of	 cerebral	 microvessels	 to	 maintain	 blood–	brain	 barrier	
integrity.50	An	animal	study	found	that	at	the	early	stage	of	
tumor	growth,	the	activation	of	RhoA	in	the	microvessels	of	
exercising	mice	was	relatively	low	and	the	expression	of	tight	
junction	proteins	remained	unchanged.50	In	addition,	aerobic	
exercise	promotes	VEGF	expression	in	hippocampal	tissue	by	
inducing	the	proliferation	of	new	vessels,	and	inducing	pe-
ripheral	tissue	VEGF	to	cross	the	blood–	brain	barrier	to	pro-
mote	angiogenesis,	which	further	increases	vessel	density.51

3 	 | 	 MECHANISMS OF AEROBIC 
EXERCISE ON AUTOPHAGY

AMPK	 maintains	 and	 regulates	 cellular	 energy	 metabo-
lism,	which	is	closely	related	to	the	occurrence	and	devel-
opment	of	cancer	cells.52	AMPK	acts	as	a	tumor	suppressor	
early	in	the	disease	course	by	inhibiting	mammalian	target	
of	rapamycin	(mTOR),	inducing	cell	autophagy	to	regulate	
tumor	growth,53	mTOR	is	a	central	protein	that	inhibits	cell	
autophagy,	and	has	a	negative	regulatory	effect	on	the	au-
tophagy	core	gene	ULK1.54	The	AMPK/mTOR	pathway	is	
associated	with	cell	autophagy,	and	when	AMP/ATP	levels	
increase,	 inhibit	downstream	mTOR	protein	 function	by	
activated	AMPK	induces	autophagy	to	occur.55	AMPK	can	
also	promote	cell	autophagy	by	activating	ULK1	through	
direct	phosphorylation.56	Studies	showed	that	promoting	
cytotoxic	autophagy	is	able	to	inhibit	the	growth	of	breast	
cancer	cells,	by	activating	AMPK/ULK1 signaling	axis.57	
However,	this	characteristic	of	AMPK	in	turn	leads	to	the	
drug	resistance	in	later	stages	of	tumors.

AMPK	 has	 a	 bidirectional	 effect	 on	 tumor	 growth,	
which	 is	 related	 to	 energy	 metabolism	 in	 the	 TME.58	
AMPK	 is	 significantly	 activated	 under	 oncogenic	 stress	
conditions,	promoting	glucose	metabolism	and	angiogen-
esis	 in	 tumor	 cells.59	 Knockout	 of	 AMPK	 in	 animal	 ex-
periments	was	found	to	inhibit	tumor	growth,	especially	
in	 preneoplastic	 lesions.60	 Thus,	 inhibiting	 AMPK	 with	
effective	 interventions	 at	 early	 tumor	 stages	 may	 delay	
tumor	development.	However,	conversely,	AMPK	activity	
is	low	during	energy	sufficiency.	As	a	negative	regulator	of	
the	Warburg	effect,	AMPK	inhibits	tumor	growth	by	reg-
ulating	glycolysis	and	lipogenesis	of	tumor	cells	through	
regulating	HIF-	1α,	while	the	loss	of	AMPK	can	promote	
tumorigenesis	by	regulating	lipid	metabolism.61

Exercise	 is	 one	 of	 the	 factors	 that	 activate	 AMPK,	 and	
low	to	moderate	intensity	aerobic	exercise	can	significantly	
enhance	the	activity	of	AMPK.62	Liver	kinase	B1	(LKB1)	in-
hibits	mTOR	by	activating	AMPK	under	low	ATP	conditions,	
and	the	depletion	of	large	amounts	of	ATP	during	exercise	el-
evates	the	AMP/ATP	ratio	and	activates	AMPK	mediated	by	
LKB1.63,64	VEGF	is	able	to	promote	angiogenesis	by	modulat-
ing	cellular	metabolism	through	the	activation	of	the	AMPK	
signaling	 pathway	 under	 conditions	 of	 Ca2+/calmodulin-	
dependent	 protein	 kinase	 kinase	 (CaMKK-	β)	 phosphor-
ylation	 in	 normal	 conditions.65	 While	 under	 pathological	
conditions,	 stimulation	 of	 hypoxia	 in	 TME	 also	 activates	
AMPK,	which	inhibits	the	expression	of	multiple	angiogenic	
factors.66	Aerobic	exercise	requires	oxygen	and	constant	en-
ergy	 consumption,	 which	 activates	 AMPK	 to	 promote	 an-
giogenesis	in	normal	cells	to	exert	protective	effects	through	
the	AMPK/Akt/mTOR	signaling	pathway67	while	blocking	
tumor	cell	metastasis	under	pathological	conditions.	Similar	
to	its	role	in	tumor	metastasis,	the	antiangiogenic	effects	of	
AMPK	are	mostly	dependent	on	the	activation	of	upstream	
kinase	LKB1	and	CaMKK-	β.68	Considering	the	characteristic	
of	AMPK,	it	is	recommended	that	patients	undergo	aerobic	
exercise	 intervention	 at	 the	 initial	 stage	 of	 tumorigenesis	
such	that	the	cellular	autophagic	activity	of	AMPK	is	exerted	
to	inhibit	tumor	growth	and	metastasis	(Figure 2).

4 	 | 	 MECHANISMS OF AEROBIC 
EXERCISE ON APOPTOSIS

Tumor	cells	are	characterized	by	resistance	to	anoikis,	the	
PI3K/Akt	signaling	pathway	is	associated	with	anoikis	re-
sistance.69	 Insulin	 and	 insulin-	like	 growth	 factors	 (IGFs)	
stimulate	nutrient	uptake	by	tumor	cells	through	the	PI3K/
Akt/mTOR	 signaling	 pathway	 to	 promote	 proliferation.70	
Akt	is	associated	with	the	anoikis	resistance	of	tumor	cells,	
activated	Akt	increases	the	motility	of	tumor	cells.71	AMPK,	
when	activated	by	LKB1,	can	promote	anoikis	and	thereby	
inhibit	tumor	metastasis.72	Aerobic	exercise	decreases	circu-
lating	levels	of	insulin,	IGF1,	and	leptin,	which	is	accompa-
nied	by	altered	metabolic	signaling	in	tumor	cells,	as	shown	
by	increased	AMPK	activation	and	decreased	levels	of	acti-
vated	PI3K,	Akt,	and	mTOR,73,74	inhibits	aerobic	glycolysis	
in	cancer	cells	and	induces	tumor	cell	apoptosis	(Figure 2).

5 	 | 	 MECHANISMS OF AEROBIC 
EXERCISE ON IMMUNE FUNCTION

5.1	 |	 Specific immunity

The	 PD-	1/PD-	L1  signaling	 pathway	 is	 an	 important	
component	 of	 tumor	 immunosuppression.	 T	 cells	 are	
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potent	 immune	 cells	 against	 solid	 tumors,	 while	 PD-	1	
inhibits	 downstream	 PI3K/Akt	 signals	 and	 induces	 T-	
cell	 apoptosis.75	 PD-	L1	 causes	 T-	cell	 exhaustion	 and	
generates	 immune	 tolerance,	 which	 contributes	 to	
tumor	 immune	 escape.76	 Animal	 experiments	 showed	
that	the	inhibition	of	CD8+T	cells	causes	cancer	devel-
opment.77	TME	induces	the	massive	generation	of	regu-
latory	T	cells	(Treg	cells),	which	inhibit	the	function	of	
effector	T	cells.78	FoxP3	is	an	important	marker	for	Treg	
cells,	 and	 the	 expression	 of	 FoxP3+Treg	 is	 associated	
with	 the	 immune	 escape	 of	 tumor	 cells,	 while	 HIF-	1α	
can	 upregulate	 molecules	 that	 attract	 FoxP3+Treg.79,80	
CD4+FoxP3+Treg	 cells	 are	 responsible	 for	 inducing	
dominant	immune	tolerance	to	tumors,81	determined	by	
the	ratio	between	CD8+T	cells	and	FoxP3+Treg	cells.82	
A	 relatively	 high	 number	 of	 FoxP3+Treg	 cells	 results	
in	a	 lower	ratio,	which	 is	 significantly	associated	with	
shorter	overall	survival	in	most	solid	tumors.83	Aerobic	
exercise	 is	 able	 to	 increase	 the	 effective	 perfusion	 of	
tumor	cells,	and	leads	to	a	faster	degradation	of	HIF-	1α	
and	 inhibits	 FoxP3+Treg	 recruitment.84,85	 Studies	 on	

tumor-	infiltrating	B	cells	have	linked	cellular	immunity	
and	humoral	immunity	in	solid	tumors.86	Increased	an-
tigen	presentation	by	B	cells	to	CD4+T	cells	in	the	TME,	
in	 combination	 with	 anti-	PD-	1	 therapy,	 may	 further	
enhance	 immune	 responses.87	 However,	 most	 studies	
on	 immune	 regulation	 mediated	 by	 tumor-	infiltrating	
B	 cells	 have	 been	 performed	 in	 vitro,	 and	 the	 mecha-
nism	is	not	well	defined.	Further	studies	are	therefore	
needed.

5.2	 |	 Nonspecific immunity

Activated	 macrophages	 can	 be	 divided	 into	 two	 types:	
M1	 and	 M2  macrophages,	 involved	 in	 tumor	 immune	
responses.88	 Inflammatory	 cytokines	 released	 by	 mac-
rophages	can	promote	the	proliferation	of	tumor	cells.89	
Recent	 studies	 showed	 that	 tumor	 necrosis	 factor-	α	
(TNF-	α)	secreted	by	macrophages	and	the	inflammatory	
cytokine	interleukin-	1β	(IL-	1β)	induce	the	upregulated	
expression	 of	 PD-	L1	 via	 NF-	kB	 and	 STAT3  signaling	

F I G U R E  2  Schematic	diagram	of	the	antitumor	mechanisms	of	aerobic	exercise.	AMPK:	AMP-	activated	protein	kinase,	mTOR:	
mammalian	target	of	rapamycin,	LKB1:	Liver	kinase	B1,	CaMKK-	β:	Ca2+/Calmodulin-	dependent	protein	kinase	kinase,	TNF-	α:	tumor	
necrosis	factor-	α,	HIF-	1:	hypoxia-	inducible	factor-	1,	VEGF:	vascular	endothelial	growth	factor



6370 |   JIA et al.

pathways	 in	 tumor	 cells.90	 Interleukin-	6	 (IL-	6)	 is	 an	
immune	inflammatory	cytokine,	and	the	effects	on	the	
inflammatory	response	depend	on	the	context.	IL-	6	en-
hances	inflammatory	immune	function	in	normal	con-
ditions,	while	inhibiting	the	expression	of	TNF-	α	under	
hypoxia,	leading	to	anti-	inflammatory	effects.91	In	path-
ological	settings,	IL-	6	induces	macrophage	polarization	
from	M1	to	M2,	causing	tumor	cell	metastasis.	M2	pro-
motes	 proliferation	 by	 regulating	 PD-	L1	 expression.92	
Due	 to	 the	 lactate-	sensitive	 property,	 macrophages	
are	 activated	 into	 M2	 in	 lactate-	rich	 TME.93	 Aerobic	
exercise	 promotes	 activation	 of	 the	 M1,	 improving	
oxygenation	 to	 reduce	 the	 exposure	 to	 lactate,	 thereby	
enhancing	M1	activation	or	decreasing	the	activation	of	
M2.94	Moreover,	epinephrine	surges	during	aerobic	ex-
ercise,	mobilizing	NK	cells	into	the	circulation	to	inhibit	
tumor	growth.95,96	However,	with	new	classification	of	
different	M2 subgroups,97	whether	aerobic	exercise	will	
continue	 this	 shift	 is	 worth	 investigating	 in	 the	 future	
(Figure 2).

6 	 | 	 CONCLUSION

Aerobic	exercise	acts	as	a	tumor	suppressor	with	regard	to	
processes	occurring	in	the	hypoxic	tumor	microenviron-
ment,	cell	autophagy	versus	apoptosis,	and	body	immune	
function	through	regulation	of	the	corresponding	mecha-
nisms	and	triggering	certain	cytokine	signaling	pathways.	
Some	new	ideas	deserve	continued	exploration:	determin-
ing	whether	newly	discovered	subgroups	of	cytokines	in-
fluence	the	positive	effects	of	aerobic	exercise	on	tumors;	
adjusting	 corresponding	 exercise	 prescriptions	 based	 on	
the	 bidirectional	 effects	 of	 certain	 cytokines	 at	 different	
lesion	stages;	 identifying	the	potential	effects	of	exercise	
time	and	intensity	on	tumor	growth.	The	study	of	the	link	
between	 aerobic	 exercise	 and	 tumors	 still	 needs	 further	
exploration	in	the	future,	so	as	to	develop	more	effective	
clinical	treatment	regimens.
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