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A B S T R A C T

Resolution (global and local) is one of the most reported metrics of quality measurement in Single Particle
Analysis (SPA). However, in electron tomography, the situation is different and its computation is not
straightforward. Typically, resolution estimation is global and, therefore, reduces the assessment of a whole
tomogram to a single number. However, it is known that tomogram quality is spatially variant. Still, up to our
knowledge, a method to estimate local quality metrics in tomography is lacking. This work introduces
MonoTomo, a method developed to estimate locally in a tomogram the highest reliable frequency component,
expressed as a form of local resolution. The fundamentals lie in a local analysis of the density map via monogenic
signals, which, in analogy toMonoRes, allows for local estimations. Results with experimental data show that the
local resolution range that MonoTomo casts agrees with reported resolution values for experimental data sets,
with the advantage of providing a local estimation. A range of applications of MonoTomo are suggested for
further exploration.

1. Introduction

Electron microscopy has become in the last decade a strategic tool
in structural biology (Cheng, 2018). Its main branches, single particle
analysis (SPA) and electron tomography, present significant differences
with respect to strategies for data acquisition and processing, as well as
to the type of specimens they usually apply to. On the one hand, the
former has led to the so-called resolution revolution and now enables
near-atomic structure determination of proteins in solution
(Kühlbrandt, 2014). On the other hand, the latter is the leading tech-
nique for 3D visualization of the architecture and molecular organiza-
tion of cells and tissues in their physiological context (Beck and
Baumeister, 2016; Jensen and Oikonomou, 2017). Although there are
prospects to reach near-atomic resolution by means of subtomogram
averaging, this technique still presents some resolution-limiting factors
(Bharat et al., 2015).

Resolution aims at estimating up to which degree features can be
reliably identified in the reconstruction. Unfortunately, there is not an
universal definition of resolution, the most spread one being related to
the size of the smallest detail that the map presents above the noise

level. For a review in depth of resolution estimations see (Sorzano et al.,
2017). In this work we will focus on estimating the highest and reliable
local frequencies that can be distinguished in electron tomograms, this
measure will be named local informational content or simply local re-
solution. Stated in more precise terms: (1) detecting the frequency for
which noise and signal cannot be distinguished any longer and, (2),
performing this task locally, voxel per voxel. We realize that this fre-
quency could have easily been referred to as “local resolution”, and,
indeed, we -and others- do so in the context of a typical SPA workflow
using MonoRes (Vilas et al., 2018) or ResMap (Kucukelbir et al., 2014).
However, the degree of signal and noise levels in a tomogram is much
wider than in SPA.

Moreover, while in SPA the workflow to calculate resolution is well
established, in electron tomography it is less straightforward. The
Fourier Shell Correlation (FSC) (Harauz and van Heel, 2001) is con-
sidered as the standard resolution measure in SPA. This resolution
metric measures the cross-correlation at different frequencies between
two maps being, in this sense, a self-consistency measurement. Re-
solution is determined when the FSC (cross-correlation curve) drops
below a specific threshold (Rosenthal and Henderson, 2003). This
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method was adapted to electron tomography by splitting the tilt series
in two halves (one with the even projections and the other with the odd
projections). The result consists of two tomograms, called odd and
even, respectively. Thus, the FSC can be calculated with these two
halves (Cardone et al., 2005), and it is commonly referred to as FSCe/o.
Alternatively, still another resolution method, called Noise-compen-
sated Leave One Out (NLOO), can be used to measure the resolution of
tomograms (Cardone et al., 2005). This method reconstructs the to-
mogram with all the tilt series images except one, and then re-projects
the reconstructed tomogram in the direction of the excluded image,
determining the FSC between the reprojection and the excluded image.
When the angular sampling of the tomogram is small enough, FSCe/o
and NLOO cast similar results (Cardone et al., 2005). Nevertheless, the
most reliable resolution value is provided by the NLOO method. An-
other interesting approach, although of limited spread, uses the FSC
with a conical constraint (Penczek and Frank, 2006). Following this
directional strategy, a new measurement called conical-FSCe/o was
recently introduced with the aim of analyzing resolution anisotropy
(Diebolder et al., 2015). The idea is to compute the FSCe/o along a
discrete number of directions covering the whole projection sphere,
analyzing then the variability of resolution. For a deep review and in-
formation about the measurement of resolution in tomography see
(Kudryashev, 2018; Fernandez, 2012).

These methods allow the estimation of the resolution of tomograms.
However, they are global measurements that reduce the quality of the
whole tomogram to a single number. Similarly to what has been shown
in SPA, the quality of a reconstruction is also locally dependent
(Cardone et al., 2005; Cardone et al., 2013), though for other reasons
than in SPA where the link to structural flexibility is obvious. In to-
mography the existence of different local resolution values in a tomo-
gram may be linked to: sample informational content, sample quality,
local defocus, ice thickness, or artifacts coming from the missing wedge
among other factors. In this work we have analyzed the issue of de-
tecting local variations in the informational content of a tomogram,
developing a novel approach to it. The new algorithm is called Mono-
Tomo, and it allows us to determine the local resolution in the re-
constructed tomograms. For this purpose, the local resolution method
that we developed for SPA,MonoRes (Vilas et al., 2018) was modified to
deal with large volumes (tomograms) and their properties, as the cor-
responding noise statistics, in relatively short computational times.
With this aim, we propose two approaches to estimate the amount of
local noise: the set of micrographs is split in odd and even images, or
the set of frames of each movie is split in two sets. Both approaches
allow us to reconstruct two tomograms. The difference between them
produces a tomogram composed only by noise. This noise tomogram
then allows us to compare at different frequencies if the local amplitude
of each voxel is significantly higher than the local energy of the noise.
As a consequence resolution is determined as the limit at which the
amplitudes of noise and signal cannot be statistically distinguished.

2. Method

MonoTomo aims to determine the local resolution map for tomo-
grams in the same way as 3D resolution maps do. It is accomplished by
means of the MonoRes algorithm (Vilas et al., 2018), establishing hy-
pothesis tests at different frequencies to determine if the local ampli-
tude of the signal (structure) can be measured above the noise level
(background). However, the measurement of local noise and signal
requires adapting MonoRes for electron tomography. For the sake of self
consistency, the latter algorithm is briefly explained highlighting the
main differences with MonoRes.

2.1. Background on the MonoRes algorithm

MonoTomo, as well as MonoRes, uses the so-called monogenic sig-
nals (Felsberg and Sommer, 2001; Unser and Van De Ville, 2010) to

achieve a local decomposition of the original electron density maps in
terms of monogenic amplitude and phase, see Appendix. The density
map is high pass filtered at several frequencies calculating its mono-
genic amplitude. Loosely speaking, the monogenic amplitude defines
the local energy of each point in the image/map. In the case of SPA, and
for the situation in which only the final map was provided, the use of a
binary mask allows us to establish a frontier between structure (signal)
and background (noise). In this way, for each voxel an hypothesis test is
performed to determine if its local amplitude is significantly higher
than the noise distribution (outside the mask). A local resolution value
is assigned when this test fails consecutively twice to avoid false posi-
tives. The described procedure is carried out in a frequency sweep from
low to high resolution. For a deep explanation see the Appendix or the
original MonoRes publication (Vilas et al., 2018).

2.2. Noise estimation

MonoRes, and therefore MonoTomo, estimates locally the highest
measurable frequency of a signal (structure) above the noise level.
Hence, noise estimation is the critical step for resolution measurement.
In SPA the characterization of noise is simpler because it is based on
two facts: 1) there exists a clear border between noise and signal, so
that a binary mask can discriminate between them, 2) the noise dis-
tribution can be considered spatially invariant.

Unfortunately, in electron tomography these two assumptions do
not usually hold. The first condition is not fulfilled due to the fact that
structure-noise distinction in a tomogram is virtually impossible since
the whole tomogram may present structural details. Additionally, the
second condition is normally broken because of the acquisition geo-
metry, which induces spatial dependence (Turonova et al., 2016).
Furthermore, the structure of the specimen itself modifies the local
noise of the tomogram. To overcome these problems, MonoTomo re-
quires as input two tomograms, which are reconstructed with two in-
dependent set of images of the same specimen, respectively. To do that,
two approaches are considered.

The first approach uses the idea introduced by (Cardone et al.,
2005) of splitting the set of tilt series images in two independent sets,
named odd and even, containing images corresponding to alternative
angles of the tilt series. Two tomograms (called odd and even) re-
constructed with half of the images result from this strategy.

The second approach that we suggest to obtain two tomograms
consists in taking the set of frames belonging to each movie, and split it
in two subsets of frames (even and odd) obtaining, thus, two tilt series
with the same angular sampling. The two tilt series are then built with
the even/odd frames at each tilt angle. This second approach is better
than the first one because both tomograms (odd an even) keep the same
angular sampling of the tilt series, which warranties a better noise es-
timation. Note that this solution can only be used if movies are recorded
at the microscope.

In both approaches, splitting micrographs or frames, a tomogram of
noise is obtained by computing the difference between the re-
constructed tomograms. This strategy of reconstructing two tomograms
is similar to the one used in SPA of producing two half maps from which
the noise is calculated as the difference between both halves
(Kucukelbir et al., 2014; Vilas et al., 2018). The use of two tomograms
solves the noise measurement problem and also avoids the need of
using a mask. It must be noted that, in an strict sense, the odd and even
tomograms obtained by either micrograph or frames splitting are not
completely independent, because tomographic reconstructions make
use of alignment parameters that are determined considering the whole
set of images. Nevertheless, this dependence introduced is weak, spe-
cially considering that this substraction process is only done for a coarse
estimation of the noise distribution.
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2.3. Local resolution estimation

The two tomograms are used to determine a tomogram of noise by
their difference. Moreover, a mean tomogram is calculated by aver-
aging the two reconstructed tomograms, obtaining information from
the whole tilt series. This tomogram is used in the filtering process at
several increasing frequencies. The resolution range is provided by the
user, and the frequency step is by default 5Å. However, smaller steps
can also be considered. In fact, it is an advanced parameter that the user
can modify. To avoid the rippling effect in filtered maps each filter
implements a smoothing by means of a raised cosine whose tail length
is 0.01 rad/px in digital frequency. For each frequency the monogenic
amplitudes of both tomograms (mean and noise) are calculated. An
hypothesis test is performed to elucidate which voxels exhibit higher
local monogenic amplitudes than noise, in an statistical sense (this test
is explained below). If the local monogenic amplitudes of signal is
higher than the local monogenic amplitude of noise, then that voxel has
at least the resolution given by the filter cutoff frequency. In contrast, if
the hypothesis tests fails two consecutive hypothesis test, the cutoff
frequency of the first time that the test failed is assigned.

The noise tomogram obtained by odd and even difference normally
presents a spatially non-uniform noise distribution which ought to be
taken into account to perform the statistical analysis. In other words,
the noise distribution depends on the position. To quantify the noise
variation, the tomogram of noise (monogenic amplitude of noise) was
divided in small cubes with × ×100 100 100 voxels. The monogenic
amplitude of noise distribution was then calculated in each region. A
noise threshold is obtained by computing the 95th percentile of the
monogenic amplitudes of noise distribution in each cube. Thus, if a
voxel of the monogenic amplitude of the mean tomogram has an energy
higher than the respective threshold (hypothesis test), that voxel can be
measured at the filtering resolution. To avoid possible discontinuities
among cubes, the set of thresholds was regressed by B-splines. B-Splines
are very robust under the existence of outliers providing smooth func-
tions that fit the dataset (Jonic and Sorzano, 2011).

3. MonoTomo calibration

To ensure that MonoTomo provides the proper estimation of local
resolution, a test with synthetic data was used. The goal was to compute
the local resolution of a tomogram for which the resolution was known.
A fringe pattern was used with a pixel size of 1Å/pixel, the pattern
consists of a sinusoidal function with a wavelength of 30Å, see Fig. 1.
Note that the resolution of this map should ideally be well known and
close to 30Åin all positions. To achieve a realistic scenario, Gaussian

noise with zero mean and standard deviation of 0.1 a.u. was added. Two
tomograms were generated by performing two noise realizations added
to two identical fringe patterns. Both tomograms will be the odd and
even ones. Finally, MonoTomo was applied to both tomograms with the
aim of estimating the local resolution. As was expected, MonoTomo
provided a local resolution corresponding to the known wavelength of
the fringe pattern immersed in noise. In Fig. 1 the resolution histogram
is shown, with a clear peak at 30Å. This test was also carried out with
different wavelengths, recovering in all cases the corresponding wa-
velength.

4. Experimental results

MonoTomo was tested with experimental data sets from EMPIAR
(10110 (Chang et al., 2017), 10115 (Swulius and Jensen, 2012), 10027
(Jiko et al., 2015) and 10164 (Schur et al., 2016)). For each EMPIAR
entry, a tilt series was selected that was then aligned with IMOD
(Kremer et al., 1996) based on fiducial markers. The tilt series were
split in odd and even images (either on a micrograph or frames sense).
That is, images corresponding to different tilt angles were alternatively
distributed in two groups of images in the case of splitting micrographs,
or the set of frames at each tilt angle was split in two groups in the
approach of splitting frames; the frame splitting was only used with the
first data set (EMPIAR 10164) because it was the only one with de-
posited frames in EMPIAR. Then, two tomograms were reconstructed
using Tomo3D (Agulleiro and Fernandez, 2011; Agulleiro and
Fernandez, 2015). These two tomograms were the input of MonoTomo
for computing a tomogram with local resolution values. To analyze the
range of resolution values that MonoTomo provides, the FSCo/e was
also calculated. However, it is known that the FSC is sensitive to
masking. As a consequence, the FSCe/o values are susceptible to give
low resolution estimation when they are computed with the whole to-
mograms. Although the use of a mask to analyze the resolution in small
regions of the tomogram is also common, and increases the FSCe/o
values, in our test we have not used any mask. This is surely the reason
why the FSCe/o values of the experimental cases are in the lower bound
of the resolution range provided by MonoTomo. In all cases, the com-
putational platform was a laptop with an Intel Core i7-8750H CPU at
2.20 GHz.

4.1. Experimental case 1

The first experimental data set was taken from EMPIAR entry 10164
and contains a sample of HIV-1 virus (Schur et al., 2016). The tilt series
was acquired with an angular sampling of 3 degrees from −60 to +60

Fig. 1. (left) Slice of the sinusoidal-spherical fringe pattern with wavelength of 30Å. (right) Local resolution histogram for the corresponding tomogram.
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degrees of tilt. The original movies had a pixel size of 0.675 Å and they
were aligned with MotionCor2 (Zheng et al., 2017). Note that this
sample had a lower angular sampling, which implied a considerable
loss of information by splitting the images tilt series in two sets (odd
and even) because in that case, the odd/even set presented an angular
sampling of 6 degrees. Thus, as an alternative for experimental acqui-
sition with low angular sampling, the set of frames corresponding to
each movie was split into even/odd sets to produce the even/odd tilt
series at binning 2. The alignment of the original tilt series was done
with IMOD based on fiducials and it was applied to the even/odd tilt
series. Downsampling by a factor 4 was applied. MonoTomo used these
tomograms to compute the local resolution. Results are shown in Fig. 2,
providing values from 15 to 50Åfor regions with noticeable structure.
In Fig. 6 a histogram of local resolution values is shown. Note the FSCe/
o value is 41Å(at a threshold of 0.5).

4.2. Experimental case 2

MonoTomo was also applied to the data set from EMPIAR 10110
(Chang et al., 2017) in which Vibrio cholerae cells were reconstructed.
This data set had an angular sampling of 1 degree with tilt angles from
−60 to +60 degrees and a pixel size of 4.04Å. To reduce the com-
putational burden, the images were binned by a factor 4 getting a final
pixel size of 16.16Å/pixel. Then, the odd and even tomograms were
reconstructed with dimensions of × ×928 960 400 voxel, and the local
resolution was computed. MonoTomo results can be observed in Fig. 3,

where several slices on the local resolution map are shown and com-
pared with the corresponding slices of the density map. The resolution
regions with clear structure is in the range between −40 120 Å. Note
how these latter values present a smooth transition between the very
detailed regions and the background. In Fig. 6 a histogram of local
resolution values is shown. Moreover, the FSCe/o was calculated and
presents a value of 53.3Å(at a threshold of 0.5). These results are
compatible with those provided by MonoTomo.

4.3. Experimental case 3

The third experimental case was from EMPIAR entry 10115
(Swulius and Jensen, 2012) and contained Escherichia coli cells. Images
of this dataset were acquired from −64 to + 64 degrees of tilt angles
with an angular interval of 1 degree and had a pixel size of 9.46Å. As
with the previous example, the micrographs were binned by a factor 2
to speed up the local resolution calculation, resulting in a pixel size of
18.92 Å and tomograms (odd/even) with size × ×1016 1096 200 voxel.
In Fig. 4, MonoTomo results and the corresponding slices of this to-
mogram are shown. Thus, the tomogram presents an associated re-
solution in the range from 40 to 120Å. In Fig. 6 a histogram of local
resolution values is shown. In this case, the FSCe/o was also computed
resulting in 155.2 Å(at a threshold of 0.5).

Fig. 2. Slices along the x,y,z direction for the reconstructed tomogram (a) of the data set entry from EMPIAR 10164 and its corresponding local resolution slices (b).

Fig. 3. Slices along the x,y,z direction for the reconstructed tomogram (a) of the data set entry from EMPIAR 10110 and its corresponding local resolution slices (b).
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4.4. Experimental case 4

This last test made use of the experimental data set from EMPIAR
10027 (Jiko et al., 2015) in which the structure of intact bovine F Fo1
ATP synthase in 2D membrane crystals was reconstructed. The tilt
range was from −60 to +60 at an interval of 1.5 degrees, and the pixel
size was 3.3 Å. Micrographs were downsampled by a factor 4 getting a
pixel size of 13.2 Å and split in odd and even sets to reconstruct the
required tomograms with dimensions of × ×960 928 200 voxels. The
results (Fig. 5) show that the resolution was in the range of 40–110Åin
regions with biological structure. In Fig. 6 a histogram of local re-
solution values is shown. For this experimental case, the FSCe/o was
computed, getting a value of 53.2 Å (at a threshold of 0.5). The result of
MonoTomo seems to be in agreement with the standard global resolu-
tions.

5. Discussion

In this work we analyze the local informational content, i.e. the
local resolution of a tomogram using an adaptation of a method we had
previously proposed for estimating local resolution in SPA. The new
method is called MonoTomo and is based on MonoRes (Vilas et al.,
2018). Note that the informational content within a tomogram may be
very spatially variant, with parts of the tomogram occupied by very

well defined structural features (like organelles or even macro-
molecular complexes) and others that are very flat, with very few fea-
tures. Naturally, the “signal” content in each of these parts is going to
be very different, contrasting with the situation in Single Particle
Analysis (SPA), in which basically we have protein against a relatively
flat background (in other words, the signal is more or less constant and
therefore the local resolution does not present high variation).

Among the very positive characteristics of MonoTomo we have that
is almost fully automatic and only requires the specification of the re-
solution range of interest. In this way, just by using two tomograms,
MonoTomo is able to determine a local resolution tomogram, by means
of a frequency sweep and local hypothesis tests between the local am-
plitude of signal and noise in local regions. Results with experimental
data show local resolution values compatible with the structures that
tomograms present. In this regard, MonoTomo is able to determine
without prior knowledge different regions of interest within the to-
mogram (ribosomes, cytoskeleton, membranes, virus, fiducials, or
carbon borders among many others) which may be used for segmen-
tation. Because of the absence of local resolution methods in the field of
electron tomography, MonoTomo can only be compared to global values
of resolutions. In particular, MonoTomo results for the tested experi-
mental data set were compared to the FSCe/o values. However, it must
be noted that the FSCe/o is mask dependent, and therefore, global
FSCe/o produces lower resolution values than the FSCe/o obtained for

Fig. 4. Slices along the x,y,z direction for the reconstructed tomogram (a) of the data set entry from EMPIAR 10115 and its corresponding local resolution slices (b).

Fig. 5. Slices along the x,y,z direction for the reconstructed tomogram (a) of the data set entry from EMPIAR 10027A and its corresponding local resolution slices (b).
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specific areas of the tomogram (Cardone et al., 2005). The absence of
mask inMonoTomo and its local character skip this pitfall, providing not
only local values, but the full variation or gradient of local resolutions
throughout the volume.

Regarding the limitations of MonoTomo, the main drawback is the
very low SNR that tomograms present. MonoTomo makes use of the so-
called monogenic signals (Vilas et al., 2018; Unser and Van De Ville,
2010; Felsberg and Sommer, 2001), which allow decomposing locally a
function in terms of amplitude and phase. In our case, the function is
the density map. Unfortunately, the reliability of the comparison be-
tween the local amplitudes of signal and noise is compromised when
the angular step is large for two reasons. First, the SNR might be re-
duced as a consequence of the artifacts introduced by the angular gaps
in the splitting micrographs approach. Second, the overlapping areas in
Fourier space between the two tilt series (even/odd) obtained by
splitting the images in the original tilt series is substantially reduced,
which prevents a proper estimation of noise. These two problems
complicate local estimations. In our tests, we have found that an an-
gular sampling coarser than 2 degrees already introduces this sort of
effects. To avoid that problem, we have proposed to split the frames
corresponding to each image tilt in two halves (for those cases in which
movies are recorded, of course). The problem with low angular sam-
pling is thus avoided allowing us to calculate local resolutions as shown
in the Experimental case 1. We also would like to highlight that
MonoTomo is relatively fast in terms of computational times, it took
around 15min per tomogram in a normal laptop. In this regard, we
recommend to bin the tomogram up to achieve sizes around

× ×1000 1000 400.
Finally, we make the point that tomograms do not only have a lo-

cally changing signal component, since so many different structural

features can be observed on them, but they also exhibit a large aniso-
tropy, mostly due to the missing wedge.MonoTomo, followingMonoRes,
is not able to differentiate among the different directions converging
onto a point on the tomogram. Fortunately, an extension of MonoRes
(Vilas et al., 2018), called MonoDir is currently under evaluation (Vilas
et al., under review), which will provide the bases for analyzing not
only spatially local informational content, but also its variations along
the different directions. We are, therefore, optimistic that in the middle
term future local as well as directional estimation of local resolution
will be able to be determined, which will provide still another un-
explored new direction in tomographic quality assessment.

6. Conclusions

A fully automatic free-parameters method for determining local
resolution of electron tomograms has been proposed. This new method
provides an enriched information about resolution as a consequence of
its local nature. It is achieved thanks to the use of MonoTomo algorithm
based on the MonoRes core, which was carefully adapted to deal with
spatially dependent noise. Moreover, MonoTomo was implemented in a
very efficient manner to overcome the computational problems of
dealing with large volumes of tomography. In addition, its funda-
mentals are conceptually simple, and up to our best knowledge,
MonoTomo constitutes the first local resolution method in electron to-
mography. In this regard, it opens new possibilities with special in-
cidence in the guidance of tilt-series alignment, selection of subvolumes
for subtomogram averaging, or the use of local filters based on re-
solution measurements to enhance or sharpen the reconstructed to-
mogram. We also know that this method represents a first early step in
the local resolution measurement in tomography and its applications.
Finally, results with experimental data are in agreement with the ex-
pected values of resolution, and provide information about the local
quality of the elucidated structures at a local level. MonoTomo has been
carefully integrated in Xmipp (de la Rosa-Trevín et al., 2013) and Sci-
pion v2.0 (de la Rosa-Trevín et al., 2016) and is publicly available under
the MonoTomo protocol of Scipion.
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Appendix A. Appendix

To understand MonoTomo algorithm it is necessary to understand the concept of monogenic signal. It provides an extension to multiple di-
mensions of the concept of analytic signal (Gabor, 1946). For the sake of simplicity, an unidimensional example will be considered for explaining
such concept, which can then be extrapolated to multiple dimensions, see (Felsberg and Sommer, 2001; Unser and Van De Ville, 2010).

Let as consider a sinusoidal wave with frequency ω and amplitude A given by =s t A ωt( ) sin( ). It is known that the energy, E, of the wave is
proportional to the square of the amplitude, it means =E kA2, with a proportionality constant, k. The zeroes of s(t) are located at =t nπ ω/ with n
being an arbitrary integer. The instantaneous energy is defined as s t( )2 , however, the existence of zeroes does not mean that the wave lacks of local

Fig. 6. Histograms of the local resolution values provided by MonoTomo for
reconstructed tomograms of the experimental dataset data sets from EMPIAR
(10110 (Chang et al., 2017), 10115 (Swulius and Jensen, 2012), 10027 (Jiko
et al., 2015) and 10164 (Schur et al., 2016)).
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energy. For that reason, we are interested in decomposing the original signal in two terms, and amplitude term (that will determine the local energy)
and a phase term. The analytic signal exactly performs this decomposition.

Given a unidimensional signal s t( ) its analytic signal is defined by the complex function = +s t s t is t( ) ( ) ( )a H , being s t( )H the Hilbert transform of
s t( ) an defined as ∫=

−∞

∞

−
s t π dτ( ) 1/H

s t
t τ

( ) . Note that the Hilbert transform shifts the phase of the original signal in π/2. Thus, it is possible to define an
amplitude terms as

= +A t s t s t( ) ( ) ( ) ,H
2 2 (1)

and a phase term

= −ϕ tan s t
s t

( )
( )

,H1
(2)

which cast the signal decomposition =s t A t e( ) ( )a
iϕ as product of amplitude and phase. The extrapolation of the analytic signal to several dimension

is named monogenic signal, and the amplitude of the analytic signal has its corresponding monogenic amplitude, that is the used in the MonoRes/
MonoTomo algorithms, see (Vilas et al., 2018).

To illustrate the MonoTomo algorithm, a signal was constructed by concatenating signals of different frequencies (1/20, 1/10 and rad px1/5 / ), see
left column red signal in Fig. 7. To be more realistic, Gaussian noise was added with zero mean and standard deviation of 0.08, blue curve. In the
right column, the amplitude of the analytic signal is represented in blue, with a smoothed version in red, finally in green the amplitude of the analytic
signal of noise is represented. Note how the monogenic amplitude is a step function showing that the energy of the wave is constant.

The MonoRes algorithm is divided in four steps: 1) high pass filtering of the signal; 2) determination of the monogenic amplitude (amplitude of
the analytic signal in 1D); 3) smoothing of the monogenic amplitude; and 4) estimating the local resolution. The algorithm starts by high pass
filtering the original signal from low to high frequencies, the resolution range is set by the user. In Fig. 7 second row, a high pass filter at − ∊1/(20 )
rad/px was performed, with ∊ > 0 a small number. The effect of this filter is that frequencies smaller than − ∊1/(20 ) rad/px are removed, and,
indeed, it can be very clearly appreciated how the monogenic amplitude of the original synthetic signal in the part corresponding to a pure signal of
1/20 rad/px is almost absent. This can be better appreciated when a smoothing of the filtered signal is performed (in this case a low-pass filter of

− ∊1/(20 ) rad/px has been used). Finally it remains to know which points of the filtered signal presents a local energy higher than the noise energy.
To do so, the probability distribution of the monogenic amplitude of noise is then determined, followed by an hypothesis test to elucidate if the
monogenic amplitude of the signal can be statistically distinguished of the noise. In the affirmative case, we will consider that point of the signal
presents a resolution equal or higher than the filtering frequency. This process is repeated until a frequency is reached for which the amplitude of the
monogenic signal cannot be distinguished from noise; this process can be followed in Fig. 7. However, a false positive can always happen, and in
order to greatly reduce its occurrence we only consider that we reach the noise level when the statistical tests fails at that frequency and at the next
one as well.

Fig. 7. (left column-top) A signal composed frequencies of 1/20, 1/10 and rad px1/5 / is high pass filtered at frequencies of 1/20, 1/10 and rad px1/5 / (left-column). The
corresponding monogenic amplitude is calculated and represented (right column). Note how the monogenic amplitude of signal and noise cannot be distinguished
when the signal is high pass filtered at 1/20, 1/10 and 1/5 rad/px. As a consequence, the resolutions of 20, 10 and 15 a.u. are assigned to the corresponding interval.
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