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Abstract

Artificial intelligence (AI) using a convolutional neural network (CNN) has demonstrated

promising performance in radiological analysis. We aimed to develop and validate a CNN

for the detection and diagnosis of focal liver lesions (FLLs) from ultrasonography (USG) still

images. The CNN was developed with a supervised training method using 40,397 retro-

spectively collected images from 3,487 patients, including 20,432 FLLs (hepatocellular car-

cinomas (HCCs), cysts, hemangiomas, focal fatty sparing, and focal fatty infiltration). AI

performance was evaluated using an internal test set of 6,191 images with 845 FLLs, then

externally validated using 18,922 images with 1,195 FLLs from two additional hospitals. The

internal evaluation yielded an overall detection rate, diagnostic sensitivity and specificity of

87.0% (95%CI: 84.3–89.6), 83.9% (95%CI: 80.3–87.4), and 97.1% (95%CI: 96.5–97.7),

respectively. The CNN also performed consistently well on external validation cohorts, with

a detection rate, diagnostic sensitivity and specificity of 75.0% (95%CI: 71.7–78.3), 84.9%

(95%CI: 81.6–88.2), and 97.1% (95%CI: 96.5–97.6), respectively. For diagnosis of HCC,

the CNN yielded sensitivity, specificity, and negative predictive value (NPV) of 73.6% (95%

CI: 64.3–82.8), 97.8% (95%CI: 96.7–98.9), and 96.5% (95%CI: 95.0–97.9) on the internal

test set; and 81.5% (95%CI: 74.2–88.8), 94.4% (95%CI: 92.8–96.0), and 97.4% (95%CI:

96.2–98.5) on the external validation set, respectively. CNN detected and diagnosed com-

mon FLLs in USG images with excellent specificity and NPV for HCC. Further development

of an AI system for real-time detection and characterization of FLLs in USG is warranted.
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Introduction

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer death worldwide [1].

Screening abdominal ultrasonography (USG) has been shown to be cost-effective in reducing

mortality from hepatocellular carcinoma (HCC) by 37% [2–5]. However, worldwide surveil-

lance rates remain low, ranging from 6.7–28.0% [5–9]. One significant barrier to timely HCC

screening is inaccessibility to high-quality ultrasound with interpreting radiologists, particu-

larly in rural areas [10]. Developing an artificial intelligence (AI)-assisted USG image analysis

system may potentially facilitate USG screening programs, increase the surveillance rate and

improve the survival of HCC patients.

AI systems have shown potential in facilitating radiologic image interpretation [11].

Abdominal USG is one of the most challenging imaging modalities in the field of AI-based

medical image analysis for several reasons. First, the quality of USG images varies among dif-

ferent devices and operators [12]. Second, USG images have a low signal-to-noise ratio making

the identification of small lesions from the background difficult. Additionally, a single abdomi-

nal USG image often contains several organ structures, often including the liver, gallbladder,

kidney, bile duct and blood vessels. The position and orientation of these structures in USG

images are not consistent and standardized as with CT or MRI images, therefore, differentiat-

ing true lesions from normal structures and pseudo-lesions can be challenging. Although pre-

vious studies on AI neural networks demonstrated 88–96% accuracy in the diagnosis of focal

liver lesions (FLLs) in still USG images, the size of the training datasets were small with only

internal tests being performed [13–15]. Whether these AI systems can be applied in other clini-

cal settings has yet to be investigated.

In the current study, we used a large number of off-line USG images to develop an AI-assis-

ted USG image analysis system for detection and diagnosis of various FLLs including HCC,

cyst, hemangioma, focal fatty sparing (FFS), and focal fatty infiltration (FFI). To strengthen

generalizability of our AI system, we evaluated its performance on images from both an inter-

nal test set and external validation datasets (i.e. images from different hospitals using different

machines and different sonographers).

Materials and methods

Dataset

This retrospective study was approved by the Institutional Review Board of the Faculty of

Medicine, Chulalongkorn University (IRB No. 423/61 and 646/62). Data was collected upon

approval from the director and/or ethics committee of King Chulalongkorn Memorial Hospi-

tal, Bangkok, Thailand; Mahachai Hospital, Samut Sakhon, Thailand; and Queen Savang Vad-

hana Memorial Hospital, Chonburi, Thailand. Requirement for informed consent was waived

due to the retrospective nature of this study. All ultrasound examinations were de-identified

and analyzed anonymously. Images from upper abdominal USG performed between 2010 and

2019 were retrospectively retrieved from the Picture Archiving and Communication System

(PACS) of three different hospitals. All data were still images taken as snapshots during ultra-

sound. They had been stored in Digital Imaging and Communications in Medicine (DICOM)

format. All images were acquired using curvilinear transducers and allocated into 3 datasets:

training set, internal test set and external validation set. The training set and the internal test

set were retrieved from the same patient batch at the main study site, King Chulalongkorn

Memorial Hospital, Bangkok, Thailand. All images from this batch were randomly allocated in

a 9:1 ratio of the training set to the internal test set. Allocation design ensured that all images

from the same patient were assigned to the same set making the image sets independent of
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each other without any duplicated patients. The external validation set was acquired from

Mahachai Hospital, Samut Sakhon, Thailand and Queen Savang Vadhana Memorial Hospital,

Chonburi, Thailand to further validate the performance of the AI system. The external valida-

tion images were completed by different sonographers using a variety of USG machine models.

We included USG studies with all ranges of image qualities from new and older machines to

ensure that the AI system can be generalized to other datasets. A total of 17 different ultra-

sound machine models were included in this study (S1 Table in S1 File).

Five of the most commonly encountered liver lesions, including HCCs, cysts, hemangio-

mas, FFSs and FFIs were selected for this study (Fig 1) [16, 17]. The definitive diagnoses of

FLLs were verified using pathology and/or MRI/CT reports. Pathology reports were reviewed

first. If not available, MRI and CT reports were then considered. Exclusion criteria were USG

studies without further investigation for definitive diagnoses of FLLs and USG studies in

which the lesion characteristics were altered by prior treatments. It is noted that in each USG

study, there were images with and without FLLs. The normal images without FLLs, which

were randomly selected in a 1:1 ratio, were used as negative controls for training the AI system

to learn to distinguish FLLs from normal organ structures. An equal number of both types of

images facilitated the training process for AI to correctly detect FLLs while minimizing false

positivity. In contrast, for the internal test set and external validation set, all negative control

images were included in order to replicate the real-world situation in which rare instances of

FLLs emerge among a vast number of images showing normal liver and other normal organs.

Since some patients had more than 1 USG study and some studies had more than one

image containing FLLs, the following protocol was used to select and include images in the

dataset. For the training set, we included all FLL images of all USG studies of each patient in

order to diversify images for the AI training. By contrast, in the internal test set and external

validation set, we included up to 2 images with FLLs per study and up to 2 studies per patient.

For the USG study having >1 image with FLLs, 2 images containing different FLLs were ran-

domly selected. If there were>1 image containing the same FLL, 2 images taken at different

probe positions were randomly selected. If there were>1 image with the same FLL taken at

identical probe position, only 1 image was randomly selected.

AI system architecture

The AI framework used in this study was a convolutional neural network (CNN) [18]. CNNs

are currently the preferred technique for several types of image analyses due to its structured

layering characteristic that can detect complex features of the input images, where the shallow

layers detect simple features such as dots and lines and the deeper layers detect more complex

features, such as curves and loops [18]. In the present study, we adopted a CNN architecture

called RetinaNet [19] which takes an image as input and creates a set of bounding boxes sur-

rounding the FLL along with its class (predicted diagnosis) and its confidence in predicting

that particular diagnosis. Confidence value range from 0 to 1, with a value of 1 being the most

confident. The confidence threshold can be adjusted according to clinical relevance; for exam-

ple, the confidence threshold may be lowered to increase the detection rate for HCC if needed

in a certain patient population. The overall performance of the CNN, therefore, varies by dif-

ferent confidence thresholds. In this study, the confidence threshold was selected such that the

F2 score was optimized on a tuning set, which was a subset of the training set (Details in S3

Appendix and S8 Fig in S1 File). The selected confidence threshold was then used in both the

internal test set and external validation cohorts. Since each diagnosis was independent, it was

possible for RetinaNet to output multiple diagnoses for a single lesion. This approach resem-

bled the usual practice of reporting differential diagnoses of FLLs by radiologists.
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Ultrasound image preprocessing

During image preprocessing, all patient identification information and the peripheral areas in

the USG images were cropped out. We identified the coordinates of fan-shaped USG region

by ‘Sequence of Ultrasound Regions’ DICOM header, in order to ensure that the cropped

image contained only the fan-shaped USG region where annotations and dimension measure-

ments had been cropped out. We also removed markers which were made by sonographers in

some images (S1 Appendix in S1 File). The images were then resized to 1333 pixels wide and

800 pixels tall before inputted into the CNN.

AI system development process

Training phase. A supervised training method was implemented to train the AI system.

In order to generate an image training dataset, pathology and/or MRI/CT reports were

reviewed by experienced sonographers to identify labels, which were the locations and defini-

tive diagnoses of FLLs in each USG image [20]. A hepatologist (R.C.) subsequently verified the

labels to ensure their accuracy. Images in the training set were fed into the AI system to train it

to predict the location and diagnosis of the FLLs (Fig 2).

Fig 1. Example images of HCC (1a), cyst (1b), hemangioma (1c), FFS (1d), and FFI (1e) included in the study. Left

panels show original images inputted into the AI system. Right panels show AI-outputted bounding boxes around each

lesion along with the predicted diagnoses and its confidence value for prediction.

https://doi.org/10.1371/journal.pone.0252882.g001

Fig 2. Process of AI system training and evaluation.

https://doi.org/10.1371/journal.pone.0252882.g002
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RetinaNet codes were adopted from an open-source repository [21, 22]. The codes were

then modified and optimized for analyzing USG images. In this work, RetinaNet was com-

posed of backbone ResNet50 and the detection and diagnosis heads. The backbone ResNet50

extracted the hierarchy of features, and the detection and diagnosis heads subsequently pro-

cessed these features and outputted locations and diagnoses of FLLs [23].

The training was done in two main steps. First, the backbone ResNet50 was trained on a

publicly-available image dataset called Microsoft Common Objects in Context (MS-COCO),

which comprises 330,000 images of 1.5 million object instances [24]. Subsequently, the whole

CNN, both backbone and heads, was fine-tuned on our USG images in the training set. The

CNN was trained for 500,000 iterations (25 epochs × 20,000 steps per epoch) on USG images.

The initial learning rate was 0.0001. To enable the CNN to recognize diverse configurations of

images and to maximize the number of training images, image augmentation was performed

by horizontal translation, vertical translation, rotation, scaling, horizontal flipping, motion

blur, contrast, brightness, hue and saturation adjustment at each iteration [25]. The training

hyperparameters are shown in the S8 Table in S1 File. During training, a tuning set was used

to monitor performance of the CNN. We selected an epoch that optimized mean average pre-

cision [26] on the tuning set for final evaluation on the internal test set and the external valida-

tion set.

Evaluation phase. The performance of the developed AI system was evaluated first on the

internal test set, then on the external validation set.

Performance evaluation metrics

We separately evaluated detection and diagnosis, the two primary tasks of the CNN. Evalua-

tion of detection rates and diagnosis performance were performed on a per-lesion basis. The

definitions of the evaluation metrics are described below.

Detection task. An FLL was counted as correctly detected if the CNN generated a bound-

ing box around it and the box overlapped with the true location of FLL, which was assessed

using Intersection-over-Union (IoU). In this study, an IoU of greater than 0.2 was a cut-off for

a correct detection by the CNN (S2 Appendix and S1 Fig in S1 File). We opted to use this cut-

off because FLLs in USG images often have indistinct boundaries, especially for FFSs and FFIs

(S2 Fig in S1 File). The detection rate was calculated by dividing the number of FLLs correctly

detected by the number of total FLLs. Detection rates stratified by ground truth diagnoses

were also evaluated. In contrast, a false positive detection was counted when the AI system out-

putted a bounding box on an area that did not contain FLLs (e.g. liver parenchyma, normal

organ structures, etc.). Evaluation of false positive detections was performed on a per-image

basis.

Diagnosis task. We used the following metrics to evaluate AI diagnostic performance:

sensitivity ¼
TP

TP þ FN

specificity ¼
TN

TN þ FP

accuracy ¼
TPþ TN

TP þ TN þ FP þ FN

positive predictive value ¼
TP

TPþ FP
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negative predictive value ¼
TN

TN þ FN

where TP, TN, FP and FN are the number of true positive, true negative, false positive and

false negative diagnoses, respectively.

We used a “one-versus-all” method to evaluate diagnostic performance for each FLL diag-

nosis [27]. For example, when evaluating diagnostic performance for HCC, other diagnoses

were counted as a single non-HCC class:

sensitivityHCC ¼
TPHCC

TPHCC þ FNHCC

where sensitivityHCC is the diagnostic sensitivity for HCC.

TPHCC is the number of true positive diagnoses for HCC, where the definitive diagnosis is

HCC and the AI system correctly diagnosed the lesion as HCC.

FNHCC is the number of false negative diagnoses for HCC, where the definitive diagnosis is

HCC, but the AI system falsely diagnosed the lesion as either cyst, hemangioma, FFS or FFI.

In cases where multiple diagnoses reached the confidence threshold and hence were pre-

dicted by the AI system, only the diagnosis with the highest confidence value was selected as

the AI prediction.

Calculation of overall detection rate and overall diagnostic performance. After calcu-

lating detection and diagnostic performance metrics for each definitive diagnosis of FLLs, we

pooled the performance results from the 5 FLL diagnoses into an overall performance result.

Because the numbers of each FLL diagnosis in our dataset were imbalanced, overall perfor-

mance, including overall detection rate, overall diagnostic sensitivity and specificity, were

pooled by an unweighted average, to minimize the effect of imbalanced number of FLL diag-

noses. For example,

DRoverall ¼
DRHCC þ DRcyst þ DRhemangioma þ DRFFS þ DRFFI

5

where DRoverall is the overall detection rate.

DRHCC, DRcyst, DRhemangioma, DRFFS and DRFFI are the detection rates for HCC, cyst, hem-

angioma, FFS and FFI, respectively.

sensoverall ¼
sensHCC þ senscyst þ senshemangioma þ sensFFS þ sensFFI

5

where sensoverall is the overall diagnostic sensitivity.

sensHCC, senscyst, senshemangioma, sensFFS and sensFFI are the diagnostic sensitivities for HCC,

cyst, hemangioma, FFS and FFI, respectively.

Statistical analysis

Performance of the CNN was reported by detection rates, false positive detection rates, diag-

nostic sensitivities, specificities, accuracies, positive predictive values (PPVs), and negative pre-

dictive values (NPVs) with 95% confidence intervals (95% CI). Detection and diagnostic

performance of each type of FLL as well as overall performance for all FLL diagnoses were cal-

culated. Performance on the internal test set and external validation set were compared using

two-tailed z-test for difference of proportion. Python version 3.7 (Python Software Founda-

tion, Delaware, USA) and IBM SPSS Statistics for Windows, version 22 (SPSS Inc., Chicago,
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Ill., USA) were used for data analyses. A p-value of<0.05 was considered statistically

significant.

Results

Baseline characteristics

A total of 40,397 images with 20,432 FLLs were included in the training set, while 6,191 images

with 845 FLLs and 18,922 images with 1,195 FLLs were included in the internal test set and

external validation set, respectively. Baseline characteristics of each dataset is described in

Table 1.

Performance of the CNN

Performance of CNN in detection and diagnosis on the internal test set and external validation

set are summarized in Table 2.

Lesion detection performance. On the internal test set, the CNN had an overall lesion

detection rate of 87.0% (95%CI: 84.3–89.6). The median IoU was 0.788 (range: 0.202–0.978)

(S3 Fig in S1 File), suggesting an exceptional agreement between the predicted and true loca-

tion of the FLL. Compared to the internal test set, the overall detection rate in the pooled exter-

nal validation set was significantly lower (75.0% (95%CI: 71.7–78.3), p< 0.001), with the

median IoU of 0.781 (range: 0.201–0.970) (S3 Fig in S1 File).

The false positive detection rate was 3.7% (226/6191) and 5.1% (970/18922) in the internal

test set and external validation set, respectively. The images with false positive detections were

reviewed. Blood vessel in the liver was the most common falsely identified structure as FLLs

Table 1. Number of USG images from 3 participating hospitals, along with allocation of images for AI training and performance evaluation.

Training seta Internal test seta External validation cohorts

Cohort 1b Cohort 2c Pooled

Number of patients 3487 385 311 625 936

Total images 40397 6191 5624 13298 18922

Total images with FLLs 18239 801 344 734 1078

Number of lesions (%)

Total 20432 (100) 845 (100) 360 (100) 835 (100) 1195 (100)

HCC 2414 (11.8) 102 (12.1) 34 (9.4) 104 (12.5) 138 (11.5)

Cyst 6600 (32.3) 215 (25.4) 130 (36.1) 87 (10.4) 217 (18.2)

Hemangioma 5374 (26.3) 217 (25.7) 60 (16.7) 202 (24.2) 262 (21.9)

FFS 5110 (25.0) 264 (31.2) 120 (33.3) 404 (48.4) 524 (43.8)

FFI 934 (4.6) 47 (5.6) 16 (4.4) 38 (4.6) 54 (4.5)

Median sizes in cm (IQR)

Total 1.6 (1.7) 1.6 (1.6) 1.5 (1.3) 1.8 (1.7) 1.7 (1.6)

HCC 3.7 (5.5) 3.3 (5.8) 2.3 (6.6) 3.9 (4.4) 3.9 (5.5)

Cyst 1.4 (1.5) 1.0 (0.8) 1.0 (0.7) 1.2 (0.9) 1.1 (0.9)

Hemangioma 1.2 (1.2) 1.4 (1.1) 1.9 (1.1) 1.5 (1.5) 1.6 (1.4)

FFS 1.7 (1.1) 1.8 (1.4) 1.9 (1.4) 1.7 (1.3) 1.8 (1.3)

FFI 2.5 (2.5) 2.4 (3.5) 1.7 (1.0) 2.4 (2.7) 2.1 (2.7)

Total images without FLLs 22158 5390 5280 12564 17844

aKing Chulalongkorn Memorial Hospital, Bangkok, Thailand
bMahachai Hospital, Samut Sakhon, Thailand
cQueen Savang Vadhana Memorial Hospital, Chonburi, Thailand

https://doi.org/10.1371/journal.pone.0252882.t001
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(12.3%, 147/1196), followed by heterogeneous background liver parenchyma (7.4%, 88/1196),

renal cysts (6.8%, 81/1196), inferior vena cava (3.4%, 41/1196) and splenic lesions (2.8%,

33/1196) (S2 Table and S4 Fig in S1 File). Likewise, 114 and 273 images with false negative

detection in the internal test set and the external validation set were reviewed. Characteristics

for incorrect detection included being a small lesion <1 cm (27.4%), having an uncommon

location of that particular diagnosis (8.0%), lesion with atypical characteristics (7.8%), ill-

defined lesion (7.5%), and lesion obscured by shadow artifacts or not completely visible (6.2%)

(S3 Table and S5 Fig in S1 File).

Diagnostic performance. After detection of a lesion, the AI algorithm identified and

diagnosed the lesion as one of five diagnoses (HCC, cyst, hemangioma, FFS, FFI) of FLLs. On

the internal test set, the CNN had overall sensitivity, specificity, accuracy, PPV and NPV of

83.9% (95%CI: 80.3–87.4), 97.1% (95%CI: 96.5–97.7), 95.4% (95%CI: 94.8–96.1), 83.6% (95%

CI: 80.1–87.1), and 97.2% (95%CI: 96.6–97.8), respectively, for classifying any FLLs. For the

Table 2. Performance of the AI system on the internal test set and external validation cohorts.

Internal test seta External validation cohorts P�

Cohort 1b Cohort 2c Pooled

Overall

Detection rate 87.0 (84.3–89.6) 80.3 (74.8–85.8) 73.9 (69.9–78.0) 75.0 (71.7–78.3) <0.001

Diagnostic sensitivity 83.9 (80.3–87.4) 84.6 (79.0–90.2) 85.7 (81.7–89.6) 84.9 (81.6–88.2) 0.69

Diagnostic specificity 97.1 (96.5–97.7) 97.2 (96.3–98.2) 97.0 (96.3–97.7) 97.1 (96.5–97.6) 0.98

HCC

Detection rate 85.3 (78.4–92.2) 91.2 (81.6–101) 74.0 (65.6–82.5) 78.3 (71.4–85.2) 0.16

Diagnostic sensitivity 73.6 (64.3–82.8) 74.2 (58.8–89.6) 84.4 (76.3–92.5) 81.5 (74.2–88.8) 0.19

Diagnostic specificity 97.8 (96.7–98.9) 96.1 (93.7–98.5) 93.6 (91.5–95.7) 94.4 (92.8–96.0) 0.55

Cyst

Detection rate 89.3 (85.2–93.4) 76.9 (69.7–84.2) 85.1 (77.6–92.5) 80.2 (74.9–85.5) 0.008

Diagnostic sensitivity 97.9 (95.9–99.9) 91.0 (85.4–96.6) 98.6 (96.0–100) 94.3 (90.8–97.7) 0.07

Diagnostic specificity 98.3 (97.2–99.4) 97.8 (95.8–99.9) 98.7 (97.7–99.7) 98.5 (97.6–99.4) 0.99

Hemangioma

Detection rate 93.5 (90.3–96.8) 78.3 (67.9–88.8) 79.7 (74.2–85.2) 79.4 (74.5–84.3) <0.001

Diagnostic sensitivity 80.8 (75.4–86.2) 74.5 (62.0–86.9) 67.7 (60.5–74.9) 69.2 (63.0–75.5) 0.006

Diagnostic specificity 95.0 (93.2–96.9) 97.9 (96.1–99.7) 96.2 (94.4–98.0) 96.8 (95.5–98.1) 0.12

FFS

Detection rate 77.3 (72.2–82.3) 80.0 (72.8–87.2) 67.6 (63.0–72.1) 70.4 (66.5–74.3) 0.03

Diagnostic sensitivity 98.0 (96.1–99.9) 100 (96.2–100)† 98.5 (97.1–100) 98.9 (97.9–100) 0.41

Diagnostic specificity 96.9 (95.5–98.4) 95.8 (92.9–98.6) 98.5 (97.2–99.8) 97.5 (96.2–98.9) 0.53

FFI

Detection rate 89.4 (80.5–98.2) 75.0 (53.8–96.2) 63.2 (47.8–78.5) 66.7 (54.1–79.3) 0.004

Diagnostic sensitivity 69.0 (55.1–83.0) 83.3 (62.2–100) 79.2 (62.9–95.4) 80.6 (67.6–93.5) 0.60

Diagnostic specificity 97.4 (96.2–98.6) 98.5 (97.1–100) 98.1 (97.0–99.2) 98.3 (97.4–99.1) 0.97

aKCMH, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
bMahachai Hospital, Samut Sakhon, Thailand
cQueen Savang Vadhana Memorial Hospital, Chonburi, Thailand

�P-value for two-tailed z-test for difference of proportion, comparing performance results in the internal test set and pooled external validation set. P-value of <0.05 was

considered statistically significant.
†Clopper-Pearson confidence interval was calculated for performance value at boundaries (i.e. 0% and 100%)

Detection rates, diagnostic sensitivities and specificities are shown in percentages. 95% confidence intervals are shown in parenthesis.

https://doi.org/10.1371/journal.pone.0252882.t002
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diagnosis of HCC, CNN had a sensitivity of 73.6% (95%CI: 64.3–82.8), specificity of 97.8%

(95%CI: 96.7–98.9), accuracy of 94.9% (95%CI: 93.3–96.5), PPV of 82.1% (95%CI: 73.5–90.6),

and NPV of 96.5% (95%CI: 95.0–97.9). The sensitivity and specificity for diagnosing other

FLLs ranged from 69.0% to 98.0% and 95.0% to 98.3%, respectively (Table 2).

The overall performance of the CNN in diagnosing any FLLs in the external validation set

was similar to that of the internal test set, with the sensitivity, specificity, accuracy, PPV and

NPV of 84.9% (95%CI: 81.6–88.2), 97.1% (95%CI: 96.5–97.6), 95.3% (95%CI: 94.7–95.9),

81.9% (95%CI: 78.4–85.4), and 97.1% (95%CI: 96.6–97.7), respectively. In subgroup analyses

of each type of FLL, the diagnostic performance in the external validation set was also compa-

rable to the performance of the internal test set as displayed in Table 2.

Confusion matrix for classification results in the internal test set and external validation set

is shown in Table 3. After reviewing misclassified images, we found that the most common

cause was atypical characteristics of FLLs (30.1%, 56/186) (S4 Table and S6 Fig in S1 File).

Subgroup analyses. The AI system detection and diagnostic performance was further

stratified by FLL sizes (S5 Table in S1 File) and background liver parenchyma (cirrhosis vs.

non-cirrhosis) (S6 Table in S1 File). As expected, diagnostic sensitivities for HCC increased

by size. Sensitivities of HCC sizes of< 2 cm, 2–3 cm, and > 3 cm were 23.5% (95%CI: 3.4–

43.7), 77.3% (95%CI: 59.8–94.8) and 89.6% (95%CI: 80.9–98.2) in the internal test set and

50.0% (95%CI: 30.0–70.0), 84.2% (95%CI: 67.8–100) and 92.3% (95%CI: 85.8–98.8) in the

external validation set, respectively. Additionally, detection rates of HCC in cirrhosis subgroup

were lower than in non-cirrhosis subgroup, i.e. 79.5% (95%CI: 67.6–91.5) vs 89.7% (95%CI:

81.8–97.5) in the internal test set and 72.0% (95%CI: 63.2–80.8) vs 94.7% (95%CI: 87.6–100) in

the external validation set, respectively.

Discussion

The CNN developed in our study using an advanced structured AI learning system demon-

strated a consistently high diagnostic performance on USG images from both an internal test

Table 3. Confusion matrix for classification results on internal test set and external validation set.

Internal test set

Definitive diagnosis

HCC Cyst Hemangioma FFS FFI Total

Predicted diagnosis by AI HCC 64 2 9 1 2 78

Cyst 3 188 4 2 0 197

Hemangioma 13 2 164 1 10 190

FFS 5 0 10 200 1 216

FFI 2 0 16 0 29 47

Total 87 192 203 204 42 728

Pooled external validation set

Definitive diagnosis

HCC Cyst Hemangioma FFS FFI Total

Predicted diagnosis by AI HCC 88 3 38 2 1 132

Cyst 4 164 7 0 0 175

Hemangioma 12 2 144 2 6 166

FFS 3 5 5 365 0 378

FFI 1 0 14 0 29 44

Total 108 174 208 369 36 895

https://doi.org/10.1371/journal.pone.0252882.t003
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set and an external validation set. It achieved overall diagnostic sensitivity and specificity of

83.9% and 97.1% on the internal test set and 84.9% and 97.1% on the external validation set.

Regarding detection task, our AI system was able to detect 85.3% of HCCs in the internal

test set and 78.3% in the external validation set (p = 0.16). However, averaging all included

FLL diagnoses, the detection rate of the external validation set was significantly lower than the

internal test set (75.0% vs 87.0%; p<0.001). Factors that may be at play include the increased

heterogeneity of image characteristics from different ultrasound machine models in the exter-

nal validation set, compared to the training set (S1 Table in S1 File). This finding underscores

the importance of image diversity in the training dataset. To enhance practicality, we propose

to train the AI system with additional USG videos which contain numerous image frames to

better detect FLLs.

For the diagnosis task, the performance results were consistent between the internal test set

and the external validation set. The AI system achieved overall sensitivities of 83.9% and

84.9%, and specificities of 97.1% and 97.1% on the internal test set and external validation set,

respectively. Our AI system had lower sensitivity for FLL diagnosis than the sensitivities of

93.8%-98.8% shown in previous studies, with comparable specificities of 94.3–98.9% in the

previous reports [13–15]. The lower sensitivity may have been due to the wider spectrum of

FLL diagnoses and characteristics. In the two previous studies, only HCCs, cysts and hemangi-

omas were selected for testing [14, 15]. In the current study, FFSs and FFIs were additionally

included as both diagnoses are encountered frequently in liver cancer surveillance settings

with prevalence rates of FFS and FFI previously reported as 6.3% and 9.2%, respectively [17,

28].

Misclassifications of FLLs by the AI system may be explained by the fact that different types

of FLLs can appear very similar on USG images. Moreover, some lesions may have atypical

characteristics. We found that HCCs and hemangiomas were sometimes interchangeably mis-

diagnosed (Table 3). This may be because our sample contained a considerable number of

hemangiomas with atypical characteristics (18.8% of all hemangiomas) with 11.8% of heman-

giomas appearing as hypoechoic lesions in fatty liver background and 7% of hemangiomas as

giant hemangioma with heterogeneous echogenicity in contrast to typical well-defined round

hyperechoic lesion (S6 Fig in S1 File). This is supported by our findings that diagnostic sensi-

tivity of HCC increased when the size of lesion increased, while diagnostic sensitivities of hem-

angioma decreased when the size of lesion increased. We specifically had designed our AI

system to output diagnoses of detected FLLs as differential diagnoses. This should be clinically

useful as physicians will be able to decide what is the most likely diagnosis of FLL by incorpo-

rating the AI diagnosis together with their clinical information. We further analyzed whether

HCC appeared in the top-k predicted differential diagnoses. Top-1 (equal to diagnostic sensi-

tivity reported in the main results section), top-2 and top-3 sensitivities for diagnosing HCC

were 73.6%, 90.8% and 96.6%, respectively in the internal test set and 81.5%, 89.0% and 93.6%,

respectively in the external validation set (S7 Table in S1 File). This provides evidence that the

AI system can characterize HCC with low miss rate.

The unique approach of our study is the development and testing of an AI system that can

both detect and diagnose FLLs from USG still images. This novel AI system could automati-

cally detect and classify FLLs without the need for human help for guiding the location of

FLLs. Images with all ranges of qualities were included that help strengthen our findings on

the practicality of using this AI method. We found that the CNN was able to handle such varia-

tion reasonably well. We believe that with more data, the performance of the AI system could

be further improved.

The AI development flow can be divided into the following stages: 1) pre-clinical stage

using single-site retrospective dataset, 2) validation on external cohorts, and 3) evaluating
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usefulness of AI systems in real clinical settings by prospective or randomized-controlled trial

study designs [29]. In this study, we validated the performance on external validation cohorts

(i.e. 2nd stage of AI development flow) with satisfactory results. Currently, our AI system

works off-line on still USG images. Since the ultimate goal is to implement an AI system in

clinical practice, we are now incorporating USG videos as training materials to leverage our AI

system to perform real-time analysis while a USG procedure is being performed.

Conclusion

Given the structured training framework, the CNN has shown good performance for the

detection and diagnosis of FLLs in USG images. HCCs can be detected and diagnosed with sat-

isfactory performance. To fulfill our goal of assisting in the detection and diagnosis of FLLs

during USG performed by non-radiologists, an AI system for real-time detection and analysis

is warranted.
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