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Abstract

Background Post-transcriptional regulation via RNA-binding proteins plays a fundamental role in every organism, but the
regulatory mechanisms lack important understanding. Nevertheless, they can be elucidated by cross-linking
immunoprecipitation in combination with high-throughput sequencing (CLIP-Seq). CLIP-Seq answers questions about the
functional role of an RNA-binding protein and its targets by determining binding sites on a nucleotide level and associated
sequence and structural binding patterns. In recent years the amount of CLIP-Seq data skyrocketed, urging the need for an
automatic data analysis that can deal with different experimental set-ups. However, noncanonical data, new protocols, and
a huge variety of tools, especially for peak calling, made it difficult to define a standard.
Findings CLIP-Explorer is a flexible and reproducible data analysis pipeline for iCLIP data that supports for the first time
eCLIP, FLASH, and uvCLAP data. Individual steps like peak calling can be changed to adapt to different experimental
settings. We validate CLIP-Explorer on eCLIP data, finding similar or nearly identical motifs for various proteins in
comparison with other databases. In addition, we detect new sequence motifs for PTBP1 and U2AF2. Finally, we optimize
the peak calling with 3 different peak callers on RBFOX2 data, discuss the difficulty of the peak-calling step, and give advice
for different experimental set-ups.
Conclusion CLIP-Explorer finally fills the demand for a flexible CLIP-Seq data analysis pipeline that is applicable to the
up-to-date CLIP protocols. The article further shows the limitations of current peak-calling algorithms and the importance
of a robust peak detection.
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Findings
Background

RNA plays a fundamental role in many regulatory processes
like splicing and translation. Yet, processes like translation also
undergo regulatory steps involving proteins such as elongation
factors. These RNA-binding proteins (RBPs) interact with their
target RNA and form ribonucleoprotein complexes [1]. Stud-

ies have revealed the involvement of RBPs in stages such as
splicing, polyadenylation, localization, translation, stability, and
degradation [2–5]. So far >1,000 RBPs have been identified in
human cells [2, 6, 7]. Various RBPs have been linked to neu-
rodegenerative diseases and various types of cancer [2, 4, 8,
9]. These observations emphasize the importance of exploring
the mechanisms behind the regulatory processes mediated by
RBPs.
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Cross-linking and immunoprecipitation (CLIP) facilitates the
analysis of the interdependence between the proteome and
transcriptome in vivo [10] by detecting binding sites for RBPs on a
genome-wide level. Many CLIP protocols such as PAR-CLIP [11],
iCLIP [12], or eCLIP [13] emerged over a short period and new
methods are still in development [14]. All methods consist of 3
fundamental steps: cross-linking the RBP of interest to its tar-
get RNAs, purification and immunoprecipitation of the result-
ing complexes, and high-throughput sequencing of the result-
ing RNAs. Despite these commonalities, protocols like iCLIP or
eCLIP perform additional steps to increase the precision of the
CLIP-Seq experiment [13, 15–17], which have to be covered by
additional analysis tasks. For example, iCLIP introduced ran-
dom barcodes (unique molecular identifiers [UMIs]) to reduce
the number of duplicated reads [12]. Such protocols as eCLIP [13]
and uvCLAP [18] adapted this procedure. A deduplication step is
therefore imperative for iCLIP, eCLIP, FLASH, and uvCLAP [12, 19].

Because of the complexity and variety of CLIP protocols, the
computational analysis is still the critical bottleneck, in both
time and reproducibility. Individual tools that perform quality
control, mapping, peak calling, and motif detection for CLIP-Seq
data exist. However, an automatic and complete data analysis
pipeline has to deal with a big list of obstacles such as biases
that are introduced by the CLIP-Seq protocol and experimental
conditions. On top of this, additional problems arise from chang-
ing hardware and tool versions, practicality of the user inter-
face, different library formats (e.g., biological replicates or multi-
plexed data), and different CLIP-Seq data formats for old, recent,
or upcoming protocols. Furthermore, each tool for each subtask
has different assumptions and parameters that need to be op-
timized for the underlying protocol [19]. The most challenging
task is the binding site identification, where a couple of differ-
ent peak callers, such as Piranha [1], PEAKachu [20], CLIPper [21],
and PureCLIP [22], exist. For example, biological replicates are
not supported by some peak callers including Piranha [1]. These
obstacles lead to a lack of reproducibility for the CLIP-Seq data
analysis.

One possible solution could be 1 big but fixed pipeline that
can cope with every possible type of data. This solution has al-
ready been tried in the case of PIPE-CLIP [23] and CLIPSeqTools
[24]. Nevertheless, it is intractable to cover all possible combi-
nations of different experimental settings, such as the number
of replicates, the existence of a control library, and others. Fo-
cussing instead on 1 specific type of data is easier to handle, such
as analyzing only iCLIP data with iCount [25]. However, neither
PIPE-CLIP nor CLIPSeqTools and iCount can be quickly and sim-
ply expanded or modified. They lack the option for an extension
to cover noncanonical experimental data or new CLIP-Seq data
types such as eCLIP, FLASH, or uvCLAP.

We hereby present CLIP-Explorer (https://clipseq.usegalaxy.
eu/), a CLIP-Seq pipeline implemented in Galaxy [26]. CLIP-
Explorer provides all necessary tools to analyze eCLIP, FLASH,
uvCLAP, and iCLIP data. CLIP-Explorer is well documented
through an online tutorial in the Galaxy training material [27]
and the main domain. Both websites assist the user in under-
standing the main steps and parameters of the pipeline and the
featured tools. The user can then, for example, replace the peak
caller or read mapper. Detailed knowledge about the tools is not
required. CLIP-Explorer works in a server environment; thus the
user does not have to worry about varying hardware or tool ver-
sions. The constant maintenance of CLIP-Explorer makes the
data analysis easy to reproduce.

We have validated CLIP-Explorer on eCLIP data of DROSHA,
HNRNPK, IGF2BP1, KHDRBS1, LIN28B, PTBP1, QKI, SLBP, and

U2AF2. We compared the results with a different analysis
pipeline and databases, finding great diversity in the number of
predicted peaks and motifs found. A more comprehensive anal-
ysis including the peak callers Piranha, PureCLIP, and PEAKachu
was done for RBFOX2 [13] because it has well-documented tar-
gets and motifs. The protein RBFOX2 encoded by the gene RBM9
is a tissue-specific splicing factor involved in developmental pro-
cesses [21, 28]. Studies have shown RBFOX2’s binding preference
for introns close to differentially spliced exons [29, 30]. The con-
served sequence motif TGCATG has been shown to be enriched
in RBPFOX2’s binding sites [21, 29, 30]. Concerning the inconsis-
tent results of the peak calling, we propose standard guidelines
for the peak calling for different experimental set-ups. We con-
firm RBFOX2’s binding characteristics from the literature as an-
other validation for CLIP-Explorer.

CLIP-Explorer: A versatile pipeline for the analysis of
CLIP-Seq data

Different experimental settings require different analysis
pipelines because pre-processing, mapping, peak calling, and
motif detection have to be adapted. For that reason, CLIP-
Explorer integrates several pipelines for analyzing different
protocols, namely, eCLIP, iCLIP, FLASH, and uvCLAP. Common
to all pipelines in CLIP-Explorer is the division into 4 major
steps (Fig. 1). In the pre-processing, the read library is de-
multiplexed and, if necessary, adapter sequences as well as
in-line barcodes and UMIs are removed. In the post-processing,
the reads are aligned and deduplicated. CLIP-Explorer then
identifies differentially enriched regions (peaks) that are further
analyzed according to genomic localization and other criteria
to investigate the precise function of the protein and properties
of its targets. All subtasks are accompanied by quality control
steps. The versatility of CLIP-Explorer allows the user to select
3 different peak-calling pipelines for 3 different data specifica-
tions. The Methods section covers CLIP-Explorer in more detail.
Additional information can be found in the Galaxy training
material.

Recommendations for PEAKachu, Piranha, and
PureCLIP

To this day, a benchmarking dataset for CLIP-Seq data analysis
does not exist because of missing experimental methods to ver-
ify predicted binding sites. It is therefore recommended to test
>1 peak caller and >1 parameter set, which is easily possible
with CLIP-Explorer.

The newest version of PEAKachu [20] is well suited for an ex-
perimental set-up with ≥2 replicates for the CLIP experiment
and ≥2 replicates for the control experiment because it uses
DESeq2 [44]. It is therefore best to turn on the DESeq2 normal-
ization. If the user has fewer replicates, PEAKachu can still be
used, but DESeq2 requires ≥2 replicates for both experiment
and control to calculate P-values. With <2 replicates, PEAKachu
filters the peaks on the basis of the fold change and the me-
dian absolute deviation (MAD) multiplier. It is therefore wise
to check the peaks with another peak caller or peak-calling
pipeline. PEAKachu works best in the adaptive mode with a MAD
multiplier of 0, a log2 fold change threshold of 2.0, and an ad-
justed P-value threshold of 0.05. PEAKachu needs the param-
eter of the maximum insert size, identified beforehand by Pi-
card [45]. The estimation of the insert size is only necessary
if the user provides paired-end read data. The window mode
of PEAKachu is not recommended because it is rather unsta-

https://clipseq.usegalaxy.eu/
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Figure 1: Flow chart of CLIP-Explorer; CLIP-Explorer has 3 major steps. In the pre-processing, the read library is demultiplexed, if necessary, and adapter sequences as

well as in-line barcodes and UMIs are removed. CLIP-Explorer uses Je [31], UMI-Tools [32], bctools [33], and Cutadapt [34] for that purpose. A quality control step using
FastQC [35] follows the pre-processing. In the post-processing, the reads are aligned with STAR [36], Bowtie [37], or segemehl [38], filtered using SAMtools [39], bedtools
[40], and bctools, and deduplicated with UMI-tools. Another quality control, mainly with deeptools [41], checks the batch quality. Finally, CLIP-Explorer identifies

differentially enriched regions using either PEAKachu [20], Piranha [1], or PureCLIP [22]. The binding regions are then analyzed with RCAS [42] and MEME-ChIP [43].
fiveUTRs, 5′ untranslated regions; threeUTRs, 3′ untranslated regions. mapping, quality control, peak calling, sequence motifs, structure motifs.

ble. The MAD multiplier might reduce the number of peaks be-
cause it works as a second cut-off. To get the full peak set,
it is wise to leave it at zero and filter the peaks by the log2

fold change together with the adjusted P-value. One key pa-
rameter is the minimum block overlap, which has to be tested
with the default of 0.5 in the beginning. The user has to in-
crease this parameter if the results show a lot of peaks within
a close vicinity. Another critical parameter is the minimum
cluster expression fraction and the minimum block expres-
sion. These parameters can change the total number of pre-
dicted peaks. Leave them in default with 0.01 and 0.1 and ad-
just the parameters if some interesting binding regions are not
covered by PEAKachu’s prediction. PEAKachu can be applied to
iCLIP, eCLIP, FLASH, uvCLAP, and even older protocols such as
PAR-CLIP.

Piranha [1] can be applied to an experimental set-up with or
without control, but it does not support replicates for the CLIP
experiment. Each replicate has to be treated separately or fur-
ther validated with a robust peak detection. However, if the user
has only 1 replicate and no control, we recommend using Pi-
ranha. If a control is provided, Piranha uses a zero-truncated
negative binomial regression by default. Without a control it is
wise to stick to a negative binomial. The distance to merge sig-
nificant bins is one of the most crucial parameters of Piranha,
similar to the minimum block overlap of PEAKachu. If the user
observes a lot of peaks within a close vicinity, then this param-
eter has to be increased (e.g., to 10). The bin size of the signal
and control is another crucial parameter of Piranha that needs
to be optimized. If the bin size is quite big (e.g., 200), then Piranha
might miss a few good candidates. If the bin size is very small
(e.g., 5), then Piranha makes a lot of false-positive predictions.

Piranha can also be applied to iCLIP, eCLIP, FLASH, uvCLAP, and
even older protocols such as PAR-CLIP.

PureCLIP [22] can be applied to an experimental set-up with
or without control, but it does not support replicates by the time
of our analysis. It is therefore best to apply PureCLIP, as well as
Piranha, to each replicate separately and find robust peaks by in-
tersection, merging, or calculating an irreducible discovery rate
(IDR). Therefore, we recommend using PureCLIP if the user has
only 1 replicate for the CLIP and control experiment. PureCLIP al-
ready incorporates 2 default parameter sets. One set can be used
if the protein is assumed to bind low-complexity motifs, which
results in broader and less specific binding sites. PureCLIP pre-
dicts not only the binding region but also the cross-linking sites.
In our tests, PureCLIP quite often reported very small binding
regions, almost identical to the cross-linking sites. We there-
fore recommend slightly extending the predicted binding sites
(e.g., 5–10 bases to the left and right) to cover the whole bind-
ing region. Furthermore, if the user provides paired-end reads,
the mate containing the cross-linking event has to be provided
explicitly. For iCLIP, FLASH, and uvCLAP this corresponds to the
first mate, while for eCLIP it is the second mate. PureCLIP was
specifically designed for eCLIP and iCLIP [22]. We recommend
using the peak caller only for those protocols or other variants
such as FLASH or uvCLAP.

It is not easy to find a standard peak-calling algorithm with a
standard parameter set. We tried to cover possible cases and rec-
ommendations for Piranha, PEAKachu, and PureCLIP, but these
tools can change over time, or a new peak caller might outrank
them. The user can therefore find permanently updated recom-
mendations and guidelines for CLIP-Seq data analysis on CLIP-
Explorer’s main domain.
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Table 1: Percentage of peaks of the RBFOX2 peak set overlapping with
the stated feature

Feature PEAKachu Piranha PureCLIP CLIPper

3′ UTR 0.42 0.02 0.03 0.09
5′ UTR 0.96 0.05 0.03 0.27
Repeats 2.45 0.01 0.15 0.87
Intron repeats 0.04 0 0 0
ncRNA
pseudogenes

0.09 0.38 0.59 0.01

rRNA
pseudogenes

0 0.07 0.05 0

tRNA
pseudogenes

0 0 0 0

Effects of using different peak callers for RBFOX2

We use eCLIP data from DROSHA, HNRNPK, IGF2BP1, KHDRBS1,
LIN28B, PTBP1, QKI, RBFOX2, SLBP, and U2AF2 from the study by
Van Nostrand et al. [13] to validate CLIP-Explorer (see Methods).
We first use RBFOX2 data to check the robustness and quality
of the predicted binding sites of CLIP-Explorer because the pro-
tein has a well-known binding motif. We intersect the peaks of
Piranha, PEAKachu, and PureCLIP with bedtools [40] (see Meth-
ods). Piranha detects the highest number of potential binding re-
gions for RBFOX2 (Fig. 2A). Yet, more than one-third of Piranha’s
peaks are not included in PEAKachu’s and PureCLIP’s peak set.
PureCLIP has the highest fraction of peaks shared with the other
2 peak callers, but it also has the lowest total number of peaks.
PEAKachu on the other hand also has a high number of indi-
vidual peaks, but substantially less than Piranha. To check for
the origin of the difference in the number of peaks, we compare
all 3 peak callers (PEAKachu, Piranha, PureCLIP), including the
CLIPper peaks of the study by Van Nostrand et al. [13] for RB-
FOX2, regarding potential CLIP-Seq artifacts and biases. Table 1
shows that <1% of the peaks from all peak callers overlap with
3′ or 5′ untranslated regions (UTRs). PEAKachu has 362 peaks
that overlap with repeats (2.45%); however, all peak callers have
a rate below 1% of peaks that overlap with intron repeats or any
RNA pseudogene region. We also check the peak length and the
distance between the peaks of the different peak callers (Sup-
plementary Table S1). PEAKachu has on average larger peaks,
with a mean of 131 nucleotides. On the other hand, PureCLIP has
the smallest peaks, with a mean of 36 nucleotides. The distribu-
tion of Piranha is a constant of 20 nucleotides because the peak
length is a parameter the user defines for the tool. Furthermore,
the distance between the peaks is almost identical between the
peak callers PEAKachu, PureCLIP, and CLIPper (Supplementary
Table S1). Only Piranha has slightly more peaks, which are close
together.

To identify the type of bound genomic regions, we annotate
the peaks discovered by the 3 different peak callers. The dis-
tributions of binding sites generated by these 3 tools show a
similar trend and prevalence for introns as the main target of
RBFOX2 (Fig. 2B). Yet, introns are not the only target. Our find-
ings suggest that some binding regions of RBFOX2 lie in 3′ and 5′

UTRs, but this fraction is not as big as for introns. PEAKachu, Pi-
ranha, and PureCLIP further detect another chunk of target sites
in long noncoding RNAs (lincRNAs), but the portion detected by
PEAKachu is smaller, probably because of a low coverage of lin-
cRNAs in CLIP protocols. In addition, we annotated separately
the peak set of the individual peak callers (7,714, 177, and 10,589,
for PEAKachu, PureCLIP, and Piranha, respectively, in Fig. 2A) and

the peak set of the intersection with all peak callers (2,134, 2,117,
and 2,769, respectively). The target distribution of Piranha and
PureCLIP changes for the individual peak set. The portion of in-
tron coverage shrinks and the portion of exon targets increases,
as well as lincRNA, ribosomal RNA (rRNA), small nucleolar RNA,
and small nuclear RNA. In contrast, the target distributions of
PEAKachu look similar. However, the target distribution of the
intersection of all 3 peak callers looks different in comparison
with the distribution of all peaks. PEAKachu’s distribution has
a smaller intron and a bigger exon and pseudogene portion. On
the other hand, the peaks from the intersection set of Piranha
and PureCLIP overlap more with introns and less with exons
or any small nuclear RNA, small nucleolar RNA, transfer RNA
(tRNA), or rRNA.

To verify that RBFOX2 is a splicing factor, we investigate the
peak profile of the binding sites by looking at the coverage plot of
RBFOX2. PEAKachu depicts a decrease in the binding region cov-
erage around the exon-intron boundaries at the 5′ and 3′ ends
(Fig. 2C). The decrease is more intense for the sites found by
PEAKachu. Checking the mean coverage of the binding regions
(Fig. 2D), the results suggest a binding prevalence of RBFOX2 in
the upstream region of the transcripts. Furthermore, RBFOX2
seems to target the beginning of the 5′ UTR. In contrast, the bind-
ing coverage is homogeneous for the 3′ UTR. The sequence UG-
CAUG seems to play an important part for the binding of RBFOX2
because it is among the top 5 motifs detected by the PEAKachu,
Piranha, and PureCLIP pipeline (see Table 2). The second motif
shows guanine richness, and the third motif, cytosine and uracil
richness for all peak callers.

At the end, we check the function of RBFOX2 to clarify the
role in human liver cancer cells (Hep G2). Looking at the top 100
genomic regions that have RBFOX2 binding sites, we find Shank2
and Shank3 among the top hits as potential targets. Further-
more, a gene ontology (GO) analysis with RCAS for the targets
of RBFOX2 identifies the protein to be relevant for the regulation
of RNA splicing (with a Benjamini-Hochberg [BH]-adjusted P <

10−4), as well as regulation of transcription by RNA polymerase
I (BH-adjusted P < 10−3). In addition, the GO analysis identifies
RBFOX2 as involved in the regulation of histone modifications
(BH-adjusted P < 10−4), nucleosome and nucleosomal binding
(BH-adjusted P < 10−4 and 0.04, respectively), and methyl-CpG
binding (BH-adjusted P < 0.04).

Checking the results for RBFOX2, Piranha found the highest
number of peaks. A lot of these peaks, however, might repre-
sent false-positive results because Piranha was executed with-
out the information from the control experiments (see Meth-
ods). More than one-third of Piranha’s peaks were not included
in PEAKachu’s and PureCLIP’s peak sets, which endorses the sup-
position. The observation is also substantiated by the change of
the target distribution of the Piranha peaks that do not intersect
with the peaks of the other 2 peak callers. These peaks might
cover false-positive results that lie in unspecific regions such as
rRNAs. Furthermore, the distance between the peaks is almost
identical between the peak callers. Only Piranha has slightly
more peaks, which are closer together, indicating a higher num-
ber of false-positive results because it calls many peaks (local
maxima) in close proximity and does not combine them into
a bigger peak (global maximum). In contrast, PureCLIP had the
lowest number of predicted peaks and the highest fractions of
peaks shared with the other peak callers. This indicates that
PureCLIP selects the peaks on the basis of very stringent crite-
ria. However, PureCLIP might therefore also have a high false-
negative rate. PureCLIP calls peaks for each replicate separately,
which is likely the reason that it misses some good candidates
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Figure 2: Comparison and analysis of the binding regions detected by PEAKachu (A), Piranha (B), and PureCLIP (C). The results are from the eCLIP data of RBFOX2
[13]. (A) We intersected the binding regions identified by the peak callers with bedtools [40], paying attention to the strand (intersect “-s”), to assess the robustness of

each method. (B) We then annotated the binding regions of each peak caller and plotted the fraction of each target. We also analyzed separately the peak set of the
individual peak callers (O = peak set 7,714/177/10,589) and the peak set of the intersection with all peak callers (I = peak set 2,134/2,117/2,769). RBFOX2 prevalently
binds introns, but also 3′ and 5′ UTRs as well as lincRNAs. The plot was generated with the hg19 script of targetdist [46]. Investigating the mean coverage of these
binding regions identified by (C) PEAKachu [20] reveals an occupancy drop around the 5′ and 3′ ends of the exons. (D) Looking further at the mean coverage of the

binding regions identified by PEAKachu in the overall transcript as well as for the 5′ and 3′ UTRs. The thickness of the ribbon around the mean coverage indicates the
95% confidence interval (mean ± standard error of the mean × 1.96). Each feature is divided into 100 bins of equal length, whereas features smaller than 100 bp are
excluded [42]. lincRNA: long noncoding RNA; rRNA: ribosomal RNA; snRNA: small nuclear RNA; snoRNA: small nucleolar RNA; tRNA: transfer RNA.

that have been jointly found by PEAKachu. Furthermore, the
change of the target distribution for the PureCLIP peaks that do
not intersect with the peaks of the other 2 peak callers might
show possible false-positive results. As in Piranha’s distribu-
tion, peaks might overlap with unspecific regions such as rRNAs.
PEAKachu, on the other hand, had the largest peaks. We can-

not make a general judgement about a good value for the peak
length because each RBP and each binding region can be spe-
cific and a benchmarking dataset is missing for CLIP-Seq data.
PEAKachu’s target distribution for peaks that do not intersect
with the peaks of the other 2 peak callers might suggest some
false-positive results, because of the bigger portion of peaks in



6 Galaxy CLIP-Explorer: a web server for CLIP-Seq data analysis

Table 2: Top 5 RBFOX2 sequence motifs for each peak caller identified by MEME-ChIP with E-value and the fraction of sequences with that
specific motif, based on the RBFOX2 eCLIP data

pseudogenes in that peak set. We also checked for potential
CLIP-Seq biases (annotation from Ensembl) to answer the ques-
tion of the different number of peaks, but we could not find any
evidence regarding a significant UTR or repeat region bias for any
of the implemented peak callers.

Despite the disparate numbers of peaks between PEAKachu,
Piranha, and PureCLIP, the main motif of RBFOX2 with the se-
quence UGCAUG was identified with CLIP-Explorer for all peak
callers used. The motif seems to be very robust to varying peak-
calling conditions, which is endorsed by the fact that it can be
found even with PureCLIP with a different pre-processing (see
Table 2). We tested the peak callers PEAKachu, Piranha, and
PureCLIP on the alignment files from the study by Van Nos-
trand et al. [13]. With CLIP-Explorer all 3 peak callers found the
main motif with lower background noise in comparison to the
already processed alignment files from ENCODE. Furthermore
the motif set from CLIP-Explorer looks more similar between all
3 peak callers (see Table 2). It is therefore possible to find a better
ground truth, that is to say, a benchmark set with CLIP-Explorer,
because additionally >1 peak caller can be tested with just a few
clicks.

We further tried to verify RBFOX2’s known role as splicing
factor and that it preferably binds to introns [21, 28–30] to sub-
stantiate the credibility and versatility of CLIP-Explorer. The dis-
tributions of binding sites generated by PEAKachu, Piranha, and
PureCLIP showed a prevalence for introns as the main target
of RBFOX2 in accordance with the literature [29, 30], which is
further supported by the target distribution of the intersected
peaks for all 3 peak callers. The decrease of the binding occu-
pancy of RBFOX2 around the exon-intron boundaries can also
be seen in other studies [29, 30]. The binding coverage of RBFOX2

around the exon-intron boundaries suggests an involvement of
RBFOX2 in the regulation of splicing. The GO term analysis cor-
roborates the hypothesis linking RBFOX2 to various splicing and
structure-related processes, such as histone modifications. Be-
sides, the Shank gene family members, as a potential target of
RBFOX2, play an important part in neuronal functions, where al-
terations in the encoded proteins may be connected to autism
[21]. Shank2 and Shank3 might hereby be regulated by alterna-
tive splicing [47, 48]. Another study has found the same interde-
pendence of RBFOX2 and the Shank protein family [21].

Comparison of CLIP-Explorer’s results

We compare the sequence motifs detected by CLIP-Explorer with
2 different databases [49, 50], and then with the peaks identified
in the study by Van Nostrand et al. [13] (Supplementary Table S2).
Here, the CLIPper algorithm [21] was used to identify potential
binding regions of the same proteins. For the CLIPper peaks, we
predict the sequence motifs with MEME-ChIP in the same way
as implemented in CLIP-Explorer.

As a first step, we focus on the sequence motifs that resulted
from CLIP-Explorer using PEAKachu for peak calling. The mo-
tifs are similar and sometimes nearly identical to the motifs
listed in the databases for HNRNPK, KHDRBS1, PTBP1, QKI, RB-
FOX2, and U2AF2 (Supplementary Table S2). For example, the
QKI-motif ACUAA [51] or the known motif UGCAUG of RBFOX2
[21, 29, 30] can be found in the databases and is also detected
by CLIP-Explorer and CLIPper. Some proteins such as DROSHA,
LIN28B, and SLBP are not listed in the databases, and the pro-
teins IGF2BP1 and RBFOX2 have only 1 or 2 motifs. CLIP-Explorer
identifies new motifs for these proteins. Several of the new mo-
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tifs detected by CLIP-Explorer are also detected by CLIPper but
not covered by the databases [49, 50] or any other literature to
the best of our knowledge (Supplementary Table S2). For exam-
ple, we find the new sequence motif CAGGCUGG for PTBP1 and
the motif ACAG for U2AF2.

For some proteins, such as DROSHA and HNRNPK, the motifs
detected by CLIP-Explorer deviate from the corresponding CLIP-
per motifs but still show similar sequence compositions (Sup-
plementary Table S2). In addition, CLIPper slightly misses the
known motif GGAGA of LIN28B [52].

For a more fine-grained comparison between the PEAKachu
pipeline in CLIP-Explorer and the CLIPper pipeline in Van Nos-
trand et al. [13], we intersect the peaks for each protein with
bedtools [40] to check for common binding sites. We require
an overlap for bedtools of ≥1 base (see Methods). This compar-
ison reveals a discrepancy between some proteins. Less than
10% of all PEAKachu peaks overlap with the CLIPper peaks of
the protein KHDRBS1 (Supplementary Table S3). Quite often,
PEAKachu finds more peaks than does CLIPper, except for QKI
and U2AF2. For example, CLIPper finds 161 peaks and CLIP-
Explorer (PEAKachu) 220 for the protein SLBP. Using PEAKachu,
CLIP-Explorer predicts nearly 60 more peaks than the CLIPper
pipeline. We suspect that this difference is due to the compu-
tational model of CLIPper, which calls peaks for every replicate
separately. PEAKachu, on the other hand, calls with all replicates
in mind. Therefore, we investigate the difference in the CLIP-
per peak sets for each replicate. The first replicate encompasses
7,942 CLIPper peaks and the second replicate 1,530 peaks, when
we filter for entries with a P-value of 0.05 and a log2 fold change
of 1, which makes a total difference of 6,412 peaks. Intersect-
ing the peaks without an IDR results in 291 peaks, more than
PEAKachu, and with an IDR CLIPper has the aforementioned 161
peaks, so less than PEAKachu. Thus, roughly 20% of the CLIPper
peaks in replicate 1 are contained in replicate 2. Consequently,
the difference in the peak set of PEAKachu (CLIP-Explorer) might
come from a different noise estimation between replicates, thus
detecting other binding sites. Because of the different number
of peaks, we check for potential CLIP-Seq biases (Supplementary
Table S4). Both PEAKachu and CLIPper have no peaks in repeat
or pseudogene regions, except for 1 PEAKachu peak in an ncRNA
pseudogene. PEAKachu also finds more peaks that overlap with
ncRNA genes (48 peaks) than CLIPper (17 peaks). We also check
the number of peaks overlapping with histone genes because
SLBP targets mainly histone RNAs. PEAKachu finds slightly more
peaks in histone regions (163 peaks) than CLIPper (135 peaks).
Consequently, PEAKachu covers slightly more peaks in histone
regions, but also more peaks in ncRNAs genes, which might
represent false-positive results because SLBP is known to tar-
get histone messenger RNA. The eCLIP pipeline from Van Nos-
trand et al. [13] already removed repeat regions in a double map-
ping approach.

To check the correctness of the identified new motifs such
as CAGGCUGG for PTBP1, we took independent RNA-Seq data
from ENCODE from a knockdown and control experiment for
PTBP1 (see Methods). We intersected the identified binding sites
of PTBP1 from CLIP-Explorer (PEAKachu) and CLIPper with the
genes of hg38 and calculated the log2 fold change of all genes.
Fig. 3 clearly shows a significant shift in the cumulative den-
sity function (CDF) of the fold changes. This observation was
expected because true binding sites should have different RNA
rates in a knockdown experiment. Thus, the identified sites from
PEAKachu and CLIPper might be real binding sites of PTBP1 be-
cause both peak callers show similar CDFs even though the
processing of the data was different. Thus we checked the

Figure 3: Cumulative density function (CDF) of the log2 fold change (LFC) of the

genes of hg38 for a knockdown experiment of PTBP1. The identified targets of
CLIPper and PEAKachu have nearly identical trends and show a significantly
shifted CDF (P-values of 1-sided t-test in the plot), as well as the targets with the
identified motifs CAGGCUGG (CLIP-Explorer), CCAGGCUG (CLIPper), and UUCCU-

UUC (CLIP-Explorer and CLIPper) with P-values of 1-sided Wilcoxon test, in com-
parison with the nontargets. The number of targets is listed after the P-value.

motif CAGGCUGG (from CLIP-Explorer), CCAGGCUG (from CLIP-
per), and another motif UUCCUUUC (from CLIP-Explorer and
CLIPper). All 3 CDFs are significantly shifted. Consequently,
CAGGCUGG might not be a false-positive result.

Potential implications

CLIP-Explorer is a valuable tool for researchers working with
CLIP-Seq data because it simplifies and integrates many process-
ing steps in a well-tested and optimized pipeline. CLIP-Explorer
provides the user with an extensive overview of the potential
function of the RBP and its target RNAs. It can be easily ex-
tended or modified and has no installation overhead because it
is integrated into Galaxy. CLIP-Explorer is thus the first general
and fully automatic pipeline for eCLIP, FLASH, and uvCLAP data,
which can also be applied to iCLIP and other types of CLIP-Seq
protocols. Besides, it is permanently maintained, and new tools
can be implemented or exchanged with existing ones to carry
out a highly efficient data analysis.

We analyzed different eCLIP datasets and compared our find-
ings with different databases [49, 50] and the results from the
study by Van Nostrand et al. [13]. The analysis of different pro-
teins, such as DROSHA, HNRNPK, and in more detail RBFOX2,
showed the strength of the flexibility provided by CLIP-Explorer.
We could identify similar and even new sequence motifs for
PTBP1 with the motif CAGGCUGG, and U2AF2 with ACAG. We
also verified the sequence motif UGCAUG for RBFOX2 and found
other guanine-, cytosine-, and uracil-rich binding regions. The
most significant sequence motif UGCAUG of RBFOX2 was found
by Piranha, PEAKachu, and PureCLIP, even though the 3 peak
callers predicted 3 substantially different peak sets. On the ba-
sis of our results we recommend testing >1 peak-calling algo-
rithm for other RBPs to assess the robustness of the motifs. We
showed that different peak-calling tools might result in differ-



8 Galaxy CLIP-Explorer: a web server for CLIP-Seq data analysis

ent peak sets and thus encompass different false-positive and
false-negative results. However, CLIP-Explorer’s user-friendly in-
terface allows this very easily—the peak caller can be exchanged
in an instant. CLIP-Explorer is also essential for a subsequent
data investigation such as sequence motif detection or GO term
analysis because it reduces noise in the data. CLIP-Explorer en-
abled us to identify the involvement of RBFOX2 in splicing be-
cause of the availability of specific annotation tools such as RCAS
[42]. We were able to identify a decrease of RBFOX2 occupancy
around the exon-intron boundaries, linked RBFOX2 to the regu-
lation of splicing and DNA structural modifications, and verified
other observations from previous studies.

We have recently integrated GraphProt [53], one of the popu-
lar tools for RBP binding profile predictions, into our pipeline. We
will also include StoatyDive [54] in a later version to refine peak
shape clustering in the hope of achieving better noise reduction
because it showed promising results for CLIP-Seq data. All in all,
CLIP-Explorer is a flexible and easily extendable pipeline, which
greatly simplifies CLIP-Seq data analysis on a transcriptome-
and genome-wide scale.

Methods

CLIP-Explorer includes all major processes that are required to
analyze CLIP-Seq data. All tools for each step were selected on
the basis of review [17, 19, 55] or benchmark articles (stated be-
low for each tool), or experiences. The analysis involves 3 ma-
jor steps as shown in Fig. 1, each followed by a specific quality
control. In the pre-processing step, the data are demultiplexed
into the read libraries stemming from different experiments. If
necessary, adapter sequences (using Cutadapt [34, 56]) as well as
in-line barcodes and UMIs are removed. During that step FastQC
[35] performs a standard quality check for the read and library
quality.

The post-processing for CLIP experiments is similar to RNA-
Seq experiments; i.e., the reads are aligned and filtered. An
additional deduplication step is required in the case of recent
CLIP-Seq protocols such as iCLIP and eCLIP. The deduplication
removes PCR duplication artifacts. CLIP-Explorer performs an-
other quality control during the post-processing using mainly
FastQC [35] and deeptools [41].

The final and major part of CLIP-Explorer is the analysis step.
CLIP-Explorer searches in that step for sequence and coverage
motifs, and potential targets of the investigated RBP. Peak call-
ing and motif detection are the fundamental and most critical
processes. The quality and amount of detected binding sites can
vary significantly on the basis of the tools used, whereas the
tools depend heavily on the experimental set-up. Different tools
therefore lead in part to different results. For that reason, CLIP-
Explorer provides several peak-calling and motif detection tools
to determine the robustness of the results.

Input and output of CLIP-Explorer

The user needs to provide their experimental data in FASTA
or FASTQ format. Nonstandard adapter sequences can be pro-
vided by the user; otherwise, CLIP-Explorer automatically de-
tects them. The pipeline is designed for multiplexed or demul-
tiplexed paired-read data and supports replicates and control
experiments. Barcode sequences are required in case of de-
multiplexing. Other additional files are provided by the Galaxy
database. CLIP-Explorer can be easily changed, for example, to
allow for single-end reads and different tool settings.

The user obtains a MultiQC [57] report for the raw reads,
trimming, alignment, and deduplication to assess the quality of
the raw data and important processing steps of CLIP-Explorer.
MultiQC collects the FastQC reports made during the pre- and
post-processing of CLIP-Explorer to inspect the mapping quality,
elaborating on the amount of unmapped and multiply mapped
reads, the length of mapped reads, and other important charac-
teristics of the read library. Further quality control is provided
by deeptools because it can elicit differences in signal and con-
trol experiments. A heat map and a fingerprint plot assess the
correlation between the signal and control libraries, providing
evidence for correct execution of the CLIP experiment. CLIP-
Explorer also generates coverage files (bigWig and bedGraph) for
the alignments and the cross-linking sites to inspect the peak-
calling quality. Most importantly, CLIP-Explorer will produce a
bed and gtf file of significantly enriched regions, representing
the binding sites of the protein on the transcriptome or genome.
A MEME-ChIP [43] report will further analyze the peaks, detect-
ing potential sequence motifs of the protein. A FIMO [43] report
then lists reference sequences, which were not covered by the
peak calling, but contain the detected sequence motifs. Finally,
an RCAS [42] report determines the target distribution of the pro-
tein over RNA classes and transcript regions. It also includes a
GO term analysis and plots to reveal the coverage of the protein
binding around splice junctions, along the transcripts and along
various other regions. CLIP-Explorer can also generate a list of
robust peaks (shared among all input files). This feature is use-
ful for peak callers that do not support replicated data such as
Piranha.

Mapping and deduplication

We integrated STAR [36] into CLIP-Explorer to map reads against
the genome based on the good performance and usability of
STAR for RNA-Seq data [58–60]. STAR is an annotation- and
splice-aware aligner, which is important for transcriptomic data.
Thus, we used extra information about the transcriptome. The
data of RBFOX2 were mapped against hg19 to better reproduce
the literature results; all other proteins such as DROSHA and
HNRNPK were mapped against hg38. STAR was executed with
the “two pass mode” turned on and in the end-to-end alignment
scheme. CLIP-Explorer further checks for incomplete pairs and
ambiguously mapped and low-quality reads. CLIP-Explorer also
includes a deduplication step to lower the false-positive rate for
the identification of binding regions. PCR duplicates are often
collapsed into 1 representative [2, 19]. CLIP-Explorer identifies
potential PCR duplicates with the help of UMI-tools [32]. Dupli-
cated reads are identified after the alignment step, searching for
reads with identical genomic positions (begin and end) and ori-
entation. Yet, sequencing errors can also occur in the UMIs. UMI-
tools clusters the reads on the basis of their UMI to handle these
sequencing errors. Thus, we merged sequences with a high node
count and a small Hamming distance between unique UMIs [32].

Identification of enriched regions and sequence motifs

Searching for enriched regions and motifs is the most challeng-
ing task because of the differences in gene expression between
CLIP experiments and background controls. Hence, high false-
negative rates are a common result in the detection of differen-
tially enriched regions (peaks) [19]. CLIP-Explorer allows the user
to choose among 3 different peak callers, namely, PEAKachu,
PureCLIP, and Piranha, which we picked on the basis of their per-
formance, availability (i.e., open source and conda package), and
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support of different CLIP-Seq datasets with replicates or controls
[1, 20, 22, 61–64].

PEAKachu was executed in adaptive mode with a MAD mul-
tiplier of 0, a log2 fold change threshold of 2.0, a BH-adjusted
P-value threshold of 0.05, and a maximum insert size of 200,
identified beforehand by Picard. All other parameters were set
to their default values. For Piranha we used a negative binomial
distribution with a bin size of 20 and a 0.05 P-value threshold. We
omitted the control data for Piranha to test for possible experi-
ments without control datasets. PureCLIP was trained on chro-
mosome 1, 2, and 3 of hg38 (for RBFOX2 we used hg19, respec-
tively) and executed with “-bc 0” as the default option. The re-
sulting binding regions of PEAKachu, Piranha, and PureCLIP were
then extended by 20 nucleotides because many peak callers of-
ten call peaks that stop before the motif itself. The resulting re-
gions were analyzed with RCAS [42] to determine the target dis-
tribution over genomic regions and possible binding patterns of
RBFOX2. The peaks were also analyzed with the MEME Suite [43]
tool package (MEME-ChIP) to find sequence motifs in the peaks.
We used MEME-ChIP because of its versatility and performance
for known motifs [65, 66]. Because of the missing ground truth
for CLIP-Seq data, benchmarking for motif-finding tools remains
to be carried out. MEME-ChIP was set to find 0 or 1 occurrence of
the motif sites per sequence (ZOOPS model).

Intersecting peaks

We used the intersect module of bedtools [40] to assess the
occurrence of the predicted peaks between CLIPper and CLIP-
Explorer with PEAKachu, and between the 3 different CLIP-
Explorer pipelines with Piranha, PureCLIP, and PEAKachu. We set
bedtools intersect with the option “-s” to search for intersections
on the same strand and kept the default value for “-f,” resulting
in a minimum overlap of 1 base for overlapping regions to be
reported. Further, we used the flag “-u” to consider only unique
overlaps.

Analyzed data

We used eCLIP data from DROSHA (ENCSR653HQC),
HNRNPK (ENCSR828ZID), IGF2BP1 (ENCSR744GEU),
KHDRBS1 (ENCSR628IDK), LIN28B (ENCSR861GYE), PTBP1
(ENCSR981WKN), QKI (ENCSR570WLM), RBFOX2 (ENCSR987FTF),
SLBP (ENCSR483NOP), and U2AF2 (ENCSR202BFN) from the
study by Van Nostrand et al. [13] to validate CLIP-Explorer. The
data, which originated from human liver cancer cells (Hep
G2) and immortalized myelogenous leukemia cells (K562),
comprised 2 CLIP-Seq replicates and 1 control library for each
RBP.

RBFOX2 was analyzed by CLIP-Explorer with PEAKachu, Pure-
CLIP, and Piranha based on hg19. We took the peaks from the
CLIPper pipeline (hg19 peaks ENCFF154DRN) and analyzed them
with MEME-ChIP.

All other proteins were analyzed by CLIP-Explorer with
PEAKachu on hg38. For the CLIPper pipeline we used the peaks
from the IDR (signal normalization) from hg38 and analyzed
them with MEME-ChIP. We investigated SLBP more thoroughly
and used a more stringent parameter set for PEAKachu (i.e., no
default) to find more robust peaks between replicates because
CLIPper does the same with an IDR calculation. We set the fold
change to 4, the MAD to 1.0, the minimum block overlap to 0.5,
minimum cluster expression fraction to 0.001, and the mini-
mum block expression to 0.6. This parameter set was optimal
for the SLBP data, but it can be suboptimal for other proteins

or CLIP-Seq data. To better compare the 2 tools, we also filtered
for peaks that do not overlap with repeat regions and that have
an annotated feature because CLIPper (i.e., the CLIPper pipeline)
implements similar filter steps.

We also analyzed data from a short hairpin RNA knockdown
experiment against PTBP1 in Hep G2 cells followed by RNA-Seq
(ENCSR064DXG), including a control short hairpin RNA against
no target (ENCSR603TCV). Both data samples are from ENCODE
and encompass 2 replicates for each experiment. We took the
alignments that were mapped with STAR against the genome
(hg38). We calculated the coverage for each gene in hg38 with
htseq-count [67]. We then obtained the log2 fold change for each
gene from DESeq2 [44], taking both the knockdown and the con-
trol experiment into account. We then intersected the identified
sites from PEAKachu and CLIPper for PTBP1 with the genes of
hg38 and plotted the CDF of the log2 fold changes.

Availability of Supporting Source Code and
Requirements

Project name: CLIP-Explorer
Project home page: https://clipseq.usegalaxy.eu/
Operating system(s): Galaxy
Training material: https://galaxyproject.github.io/training-mat
erial/topics/transcriptomics/tutorials/clipseq/tutorial.html
biotools:CLIP-Explorer
RRID:SCR 018128

Availability of Supporting Data and Materials

CLIP-Explorer provides a small dataset for a test run, which can
be found in the training material and on the CLIP-Explorer web-
site. The complete eCLIP data used in this article, such as RB-
FOX2 and PTBP1, are listed in the supplementary material of the
study by Van Nostrand et al. [13].

Additional Files

Supplementary Table S1. Comparison of the peak length and the
distance between the peaks between PEAKachu, Piranha, Pure-
CLIP, and CLIPper for the RBFOX2 data.
Supplementary Table S2. Top 5 DREME sequence motifs of
MEME-ChIP [43] of different proteins. CLIP-Explorer’s sequence
logos of different proteins from the binding regions that were
identified by PEAKachu. Furthermore, sequence motifs of MEME-
ChIP from the binding regions that were identified by the CLIPper
algorithm [21]. The sequence motifs of CLIP-Explorer and CLIP-
per originated from eCLIP data [13]. To compare the sequence
logos other motifs were collected from different databases [49,
50].
Supplementary Table S3. Peak intersections between PEAKachu
[20] of CLIP-Explorer and CLIPper from the study by Van Nos-
trand et al. [13]. A list of Venn diagrams showing the overlap be-
tween PEAKachu [20] (CLIP-Explorer) and CLIPper peaks [13].
Supplementary Table S4. Number of peaks of the SLBP peak set
of PEAKachu and CLIPper overlapping with the stated features.
P-genes: pseudogenes.

Abbreviations

BH: Benjamini-Hochberg; bp: base pairs; CLIP-Seq: cross-linking
immunoprecipitation in combination with high-throughput se-
quencing; CDF: cumulative density function; GO: gene ontology;
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IDR: irreducible discovery rate; lncRNA: long noncoding RNA;
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molecular identifier; UTR: untranslated region.
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