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a b s t r a c t 

The COVID-19 pandemic has created unprecedented challenges worldwide. Artificial intelligence (AI) technolo- 
gies hold tremendous potential for tackling key aspects of pandemic management and response. In the present 
review, we discuss the tremendous possibilities of AI technology in addressing the global challenges posed by the 
COVID-19 pandemic. First, we outline the multiple impacts of the current pandemic on public health, the econ- 
omy, and society. Next, we focus on the innovative applications of advanced AI technologies in key areas such 
as COVID-19 prediction, detection, control, and drug discovery for treatment. Specifically, AI-based predictive 
analytics models can use clinical, epidemiological, and omics data to forecast disease spread and patient out- 
comes. Additionally, deep neural networks enable rapid diagnosis through medical imaging. Intelligent systems 
can support risk assessment, decision-making, and social sensing, thereby improving epidemic control and public 
health policies. Furthermore, high-throughput virtual screening enables AI to accelerate the identification of ther- 
apeutic drug candidates and opportunities for drug repurposing. Finally, we discuss future research directions for 
AI technology in combating COVID-19, emphasizing the importance of interdisciplinary collaboration. Though 
promising, barriers related to model generalization, data quality, infrastructure readiness, and ethical risks must 
be addressed to fully translate these innovations into real-world impacts. Multidisciplinary collaboration engag- 
ing diverse expertise and stakeholders is imperative for developing robust, responsible, and human-centered AI 
solutions against COVID-19 and future public health emergencies. 
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. Introduction 

The COVID-19 pandemic caused by the SARS-CoV-2
oronavirus has created unprecedented global challenges
panning public health, economics, and society [ 1 , 2 ].
ince its emergence in late 2019, the highly infectious
irus has led to over 620 million confirmed cases and
ore than 6.5 million deaths as of October 2022 [3] .
eyond the staggering direct impacts, the pandemic has
everely disrupted international travel, supply chains, ed-
cation, and health care systems. The resultant economic
osses and societal burdens continue to be felt across the
orld [4–6] . 
To curb the spread of COVID-19 and mitigate its multi-

aceted impacts, governments have implemented various
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1 
ontainment and mitigation measures, including lock-
owns, mask mandates, social distancing rules, mass test-
ng, and vaccination drives [ 7 , 8 ]. However, the rapidly
volving nature of the pandemic has strained the capac-
ties of public health systems and challenged traditional
esponse strategies [9–11] . Innovative technological solu-
ions have become imperative to tackle the unique com-
lexities of this public health crisis in a timely and effec-
ive manner [12] . 

Artificial intelligence (AI) has emerged as a promising
ool, offering data-driven solutions to address major chal-
enges in managing the pandemic [ 13 , 14 ]. Advanced ma-
hine learning and deep learning techniques can unlock
nsights using large-scale datasets related to coronavirus
ransmission, disease progression, patient outcomes,
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Fig. 1. Applications of artificial intelligence (AI) in the COVID-19 pandemic. 
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opulation mobility, and health care operations [15–17] .
I-based predictive analytics, intelligent diagnosis, risk
ssessment systems, decision support platforms, and com-
utational drug discovery hold tremendous potential for
mproving the prediction, detection, control, and treat-
ent of COVID-19 [ 14 , 18–21 ]. However, to translate
roofs of concept into real clinical and public health im-
act, technological innovations must be paired with a nu-
nced understanding of relevant epidemiological, clini-
al, ethical, and social contexts. 

In this review, we summarize state-of-the-art applica-
ions of AI methodologies in combating COVID-19, high-
ight key enabling factors as well as limitations, and dis-
uss directions for future research. In the following sec-
ions, we discuss AI applications in COVID-19 control and
anagement, drug development, and other related do-
ains ( Fig. 1 ). Intelligent systems incorporating risk as-

essment, decision support, and social sensing have been
2

eveloped to aid public health responses. Machine learn-
ng and deep learning models have accelerated the discov-
ry of anti-COVID-19 therapeutics via high-throughput
creening and drug repurposing. In this review, we aim to
rovide an overview of state-of-the-art AI techniques that
re transforming the battle against the COVID-19 pan-
emic. By leveraging the power of AI, we can continue
o effectively combat the challenges posed by the ongo-
ng pandemic and pave the way for a healthier future. 

. General introduction to AI 

AI refers to the capability of computer systems to ex-
cute functions that typically necessitate human intel-
igence, such as visual perception, speech recognition,
ecision-making, and language translation [ 22 , 23 ]. The
undamental objective of AI is to enable machines to
earn from data and experience, thereby enabling them to
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ffectively and adaptively perform tasks resembling those
arried out by humans. Machine learning, a subset of
I, facilitates algorithms in learning from data without
xplicit programming. Instead of relying solely on hard-
oded rules, machine learning algorithms construct pre-
ictive models by identifying patterns within extensive
atasets [24] . As more data are incorporated, these mod-
ls continuously update to enhance their performance in
pecified tasks such as classification, regression, and clus-
ering. Commonly used machine learning algorithms in-
lude linear regression, logistic regression, naive Bayes
lassifiers, the k-nearest neighbors algorithm, support
ector machines, decision trees (DTs), and neural net-
orks, each with its own strengths, weaknesses, and ap-
lication scenarios [ 25 , 26 ]. Selection of the most suitable
achine learning technique is crucial to harnessing the
otential of AI in various fields. As research advances,
ew and hybrid algorithms are being actively developed
nd applied to address real-world problems [27] . 

Deep learning is an AI technique that emulates the neu-
al networks of the human brain [28] . Deep learning uses
ulti-layered neural networks to extract high-level ab-

tract features from data, enabling pattern recognition
nd predictive analysis. In comparison with traditional
achine learning methods, deep learning excels in do-
ains such as image, speech, and text processing. Deep

earning has greatly contributed to COVID-19 pandemic
orecasting [29] . For instance, early warning systems de-
eloped using deep learning algorithms can analyze clin-
cal data and computed tomography (CT) scans to predict
he deterioration of patients with COVID-19 in advance,
hereby aiding physicians in making well-informed treat-
ent decisions [ 30 , 31 ]. 
Neural networks are computational models that simu-

ate the connections and functioning principles of neurons
n the human brain [32] . They consist of interconnected
rocessing units and establish nonlinear mapping rela-
ionships between inputs and outputs through learning
rom training datasets. Unlike traditional algorithms, neu-
al networks can learn complex data patterns and exhibit
trong adaptability, performing exceptionally well in han-
ling high-dimensional data such as images, speech, and
ext [33] . In prediction during the COVID-19 pandemic,
eural network models have played a pivotal role. The
otent nonlinear expressive capability of neural network
odels lends a significant advantage in addressing com-
lex problems like pandemic forecasting, making them a
ey technological approach in this field [ 34 , 35 ]. 

The decision tree model is a widely used machine
earning algorithm with diverse applications in prediction
nd classification problems [36] . These models utilize a
ree representation to partition a dataset and derive de-
isions based on features. Although these models are in-
erpretable, they can easily overfit. Random forests im-
rove performance by averaging predictions from mul-
3

iple trees. By analyzing and determining features, the
T represents the decision-making process in a tree-like

tructure, facilitating accurate predictions and decisions
 37 , 38 ]. In the context of the COVID-19 pandemic, the
pplication of DTs holds great importance in predicting
atient hospitalization time, mortality risk, and other crit-
cal indicators. 

The long short-term memory (LSTM) network is a
ecurrent neural network (RNN) commonly applied for
ime-series prediction [39] . LSTM has the capability to
earn long-term dependencies in time-series data and
se them in forecasting [40] . Within the context of the
OVID-19 pandemic, LSTM has been applied to model the
ime series of confirmed cases and predict future trends
41] . In comparison with other forecasting models, LSTM
emonstrates superior accuracy in capturing complex pat-
erns within time-series data, thereby making it highly
aluable for epidemic prediction [ 42 , 43 ]. 

. AI for COVID-19 prediction 

.1. Prediction of patient disease progression 

Recent advancements in AI have paved the way for var-
ous applications in predicting disease progression and
utcomes in patients with COVID-19. Specifically, deep
earning AI systems based on chest CT images and clinical
ata have been adopted to predict COVID-19 disease pro-
ression [ 44 , 45 ]. Wang et al. used CT image segmentation
echniques to screen pneumonia lung tissues and iden-
ify abnormalities in the lung parenchyma from COVID-
9-positive patients [44] ( Fig. 2 A). Those authors built
everity and disease course prediction models using deep
earning to anticipate progression to adverse outcomes
uch as admission to the intensive care unit, use of me-
hanical ventilation, or death. The concordance indices
or these models were 0.719 and 0.774, respectively, indi-
ating their importance for timely intervention in patient
are to reduce mortality [44] . 

Researchers have also developed early warning sys-
ems using deep learning algorithms with collected clini-
al data and patient CT scans to predict deterioration pro-
esses in patients with COVID-19 [ 48 , 49 ]. By successfully
ntegrating clinical data and CT images, Fang et al. vali-
ated an area under the receiver operating characteristic
urve (AUC) of 0.920 for this method in a single-center
tudy, compared with 0.851 and 0.787 for clinical data
r CT images alone, respectively [49] . The AUC is a vital
etric for evaluating the performance of binary classifi-

ation models. It represents the area under the receiver
perating characteristic curve, which plots the true pos-
tive rate against the false positive rate at different clas-
ification thresholds. AUC values range from 0 to 1, with
igher values indicating better model classification per-
ormance. Generally, an AUC above 0.5 suggests some
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Fig. 2. Applications of different artificial intelligence (AI) techniques for COVID-19 prediction. (A) Deep learning AI system using chest computed tomography 
images and clinical data to predict disease progression in patients with COVID-19 [44] . (B) Combination of deep neural networks and gradient boosting models 
used to assess the risk of disease progression and deterioration in patients with COVID-19 through analysis of chest X-ray images [46] . (C) Long short-term memory 
algorithm augmented with an embedded rolling update mechanism for long-term prediction of COVID-19 cases [47] . 
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lassification ability whereas values above 0.8 indicate
ood performance, and those above 0.9 signify exception-
lly high performance. In summary, the AUC reflects a
odel’s ability to correctly classify positive and negative

amples across different thresholds. The system can also
dentify key indicators of worsening conditions, such as
iomarkers like troponin, brain natriuretic peptide, and
hite blood cell count [49] . This helps physicians deter-
ine the treatment priorities for patients to optimize ther-

peutic strategies. 
An AI system has also been developed to predict the

eterioration trend of patients with COVID-19 pneumo-
ia in the emergency department [46] . Shamout et al.
sed chest X-ray images and routine clinical variables to
redict the trend of deterioration using a data-driven ap-
roach that combines deep neural networks and gradient
oosting models ( Fig. 2 B). When predicting the deterio-
ation trend within 96 hours for 3661 patients, the model
chieved an AUC of 0.786. This method provides clini-
ians with a quantitative estimate of the risk of deterio-
ation, helping to prioritize and treat high-risk patients
46] . 
4

With the capabilities of AI models, it is possible to accu-
ately predict the hospitalization time and mortality risk
f patients with COVID-19 [ 50 , 51 ]. Mahboub et al. col-
ected clinical data of COVID-19 cases from the Dubai
ealth Authority in 2019 and used multivariate analysis

o identify key variables [52] . Subsequently, they built
 DT using these key variables to predict patient hospi-
alization time and mortality risk. The model achieved a
etermination coefficient of 49.8% for predicting hospi-
alization time and an accuracy rate of 96% for predicting
ortality risk. These results are of great importance for

linicians to strengthen treatment plans and management
trategies, enabling the rational allocation of resources
52] . 

In another study, a probability model was developed to
redict whether patients with COVID-19 would develop
cute respiratory distress syndrome (ARDS) by analyzing
he clinical characteristics of patients with ARDS [53] .
he researchers compared clinical data of patients with
nd without ARDS and used machine learning and deep
earning algorithms to analyze clinical features related
o ARDS, such as cough, dyspnea, lung consolidation,
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nd secondary bacterial infections. Additionally, they
onstructed a DT using patients’ biochemical indicators to
etermine whether patients without ARDS would develop
RDS [53] . The model demonstrated good sensitivity and
pecificity, with an accuracy rate of 91%, surpassing the
verage accuracy rate of other models in the same cate-
ory (70%). This research contributes to alleviating the
lobal shortage of ventilators caused by ARDS. 

Another algorithm was developed to rapidly identify
atients with COVID-19 at high risk of rapid death [54] .
ang et al. analyzed the clinical features and laboratory

ndicators of patients with severe and non-severe COVID-
9 as well as patients who survived and those who died
54] . They found significant differences in the neutrophil-
o-lymphocyte ratio, C-reactive protein, and lactate de-
ydrogenase among the different groups. Based on these
ndicators, they developed a DT to identify high-risk pa-
ients with COVID-19. The model could accurately predict
he mortality rate of critically ill patients with a precision
f 98%. This aids in prioritizing the treatment of high-risk
atients [54] . Similarly, an AI statistical approach devel-
ped by Sinha and Rathi analyzes exploratory factors such
s age and sex to predict the likelihood of survival in pa-
ients with COVID-19 [55] . The researchers constructed a
odel using hyperparameter-tuned machine learning and
eep learning based on autoencoders to assess the impact
f different factors on the survival rate of patients in isola-
ion and conduct prediction. With an average accuracy of
1% in predicting deaths according to logistic regression
nalysis, such predictive models can analyze critical time
oints in the spread of an epidemic to assist in national
olicy planning [55] . 

.2. Forecasting epidemic size or COVID-19 trends 

Continued advancement in customized predictive so-
utions that incorporate expanded data sources may fur-
her aid pandemic response efforts. One effective forecast-
ng model for daily COVID-19 cases worldwide combines
he auto regressive integrated moving average (ARIMA)
odel and neural network approaches [56] . Initially, the

uthors used the ARIMA model to predict daily COVID-
9 cases globally in 2021 [56] . However, owing to its
nability to capture the nonlinear structure of the data,
he model had low computational intensity. To over-
ome this limitation, the authors adopted a multilayer
erceptron (MLP) neural network to analyze the resid-
als of the ARIMA model, enabling nonlinear analysis.
his MLP-ARIMA hybrid model can make accurate pre-
ictions in advance by considering dynamically updated
ata, thereby reducing the number of new cases [56] .
owever, it is worth noting that this model does not ac-
ount for the impact of data mutations, although it can
till produce satisfactory results over an extended period

nder certain control conditions. w  

5

Another study used an improved chaotic marine preda-
ors algorithm-adaptive neuro-fuzzy inference system
CMPA-ANFIS) model to predict confirmed COVID-19
ases in Brazil and Russia [57] . The authors used an AN-
IS to establish a short-term prediction model and en-
ance it with the marine predation algorithm (MPA).
dditionally, chaos mapping was applied to the MPA

o improve its balance detection and exploitation stage
erformance. Taking the prediction in Russia as an ex-
mple, the CMPA model achieved lower root mean
quare error/mean absolute error/mean absolute per-
entage error/root mean square relative error values
493/379/0.03223/0.0004) than ANFIS, particle swarm
ptimization, and MPA models [57] . The CMPA-ANFIS
odel can predict the total number of COVID-19 cases in

 specific region and assist decision-makers in formulat-
ng epidemic prevention plans. 

The establishment of accurate prediction models holds
rucial importance in forecasting COVID-19 cases. Sinha
t al. applied artificial neural networks (ANNs) and LSTM,
 type of RNN, for prediction and conducted model test-
ng in five different countries [58] . Taking France as an
xample, the mean squared errors for the LSTM and ANN
odels were 0.0044 and 0.0140, respectively. The results
emonstrated that the LSTM model yielded fewer pre-
iction errors than the ANN model across all countries,
ndicating a higher level of prediction accuracy. By op-
imizing the model, better epidemic predictions can be
chieved, guiding health care professionals in the ratio-
al allocation of medical resources for effective preven-
ion and control [58] . 

Researchers have developed a hybrid prediction model
or COVID-19 transmission at various time points [59] .
uilding upon traditional models, they incorporated an

mproved–susceptible–infected model, a natural language
rocessing module, and an LSTM network to enhance
rediction accuracy. The study revealed that the period
etween days 3 and 8 after infection is when patients
re most likely to transmit the virus, aligning with real-
orld observations. This model significantly reduces er-

ors, with average absolute percentage errors of only
.52%, 0.38%, and 0.03% for prediction in Wuhan, Bei-
ing, and Shanghai, respectively. By considering the im-
act of prevention and control measures, this model high-
ights the crucial role of information disclosure in epi-
emic prevention and control [59] . 

An improved LSTM deep learning model has been de-
eloped to predict the trend of COVID-19 outbreaks [47] .
ang et al. enhanced traditional statistical models by

ncorporating an embedded rolling update mechanism
nto the LSTM algorithm, enabling long-term predictions
 Fig. 2 C). They also included diffusion index analysis to
valuate the effectiveness of prevention and control mea-
ures. The model achieved an average error of only 1.43%
hen predicting confirmed cases in Russia from July 8 to
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uly 11 in 2020, closely matching the actual development
f the epidemic in that country [47] . This model provides
aluable support for government decision-making in for-
ulating prevention and control plans. 

.3. Predicting variants of the SARS-CoV-2 virus 

The emergence of new viral variants of SARS-CoV-2,
haracterized by increased immune evasion, transmissi-
ility, and pathogenicity, has compounded the challenges
n controlling the COVID-19 pandemic [ 60 , 61 ]. There-
ore, it is crucial to effectively predict these variants. Ul-
ah and his team employed a convolutional neural net-
ork (CNN) for classifying COVID-19 variants [62] . The

esearchers used one-dimensional CNNs, batch normal-
zation, and self-attention layers to identify sequence rela-
ionships and mutations in adenine, cytosine, uracil, and
hymine within SARS-CoV-2 nucleic acids. By predict-
ng variant strains based on given nucleotide sequences
f SARS-CoV-2, they applied a variational autoencoder–
ecoder network and used the Basic Local Alignment
earch Tool (BLAST) to determine whether the variant
riginated from existing strains or represented a novel
utation [62] . This approach of predicting nucleotide se-

uences of variant strains can assist vaccine manufactur-
rs in enhancing vaccine quality. 

The rapid global spread of the Omicron variant of
ARS-CoV-2 and its increased transmissibility have re-
ulted in a higher mortality rate, severely affecting the
ffectiveness of global vaccination programs [63] . The
pike protein, a glycoprotein on the virus envelope, is in-
olved in attachment and invasion of the virus in host
ells [64] . Nagpal et al. proposed a system called Strain-
ow, which carries out genomic surveillance of COVID-
9 spike protein sequences [65] . The system splits the
equence codons and uses supervised and causal predic-
ion models based on unsupervised latent space features
o estimate novel variants associated with spike protein
utations. By analyzing 900,000 spike protein gene se-

uences and applying the random forest regression algo-
ithm, the model could successfully capture the increase
n case numbers 2 months before the surges caused by the
elta and Omicron variants [65] . This system can help
itigate the reduced vaccine efficacy caused by SARS-
oV-2 variants by predicting variant strains. 
The emergence of SARS-CoV-2 mutations can impact

he virus’s infectivity and the effectiveness of vaccines.
redicting variant strains that can evade immune detec-
ion is crucial for vaccine development. Thadani et al.
eveloped EVEscape, a deep learning generative model
rained on historical virus sequences, combined with
tructural and biophysical constraints [66] . This model
an predict mutation pathways of the virus without rely-
ng on the latest virus sequences and antibody informa-
ion. The model is suitable for the early stages of COVID-
6

9 development and enables continuous assessment of
ewly emerging variants [66] . This method achieves pre-
iction accuracy similar to that of high-throughput ex-
erimental scanning, anticipates mutations months ahead
f antibody and serum tests, and can also be applied
o predicting variations in other influenza and pandemic
iruses. 

. AI for detection of COVID-19 

.1. AI-based COVID-19 detection using chest X-ray 

CNNs have emerged as crucial tools in detecting
OVID-19 using chest X-ray, offering a powerful means

or early detection and diagnosis of the disease [ 67 , 68 ].
onsequently, CNNs have an important role in hospital

nfection control and patient care. One example of AI ap-
lications in COVID-19 detection is the use of deep learn-
ng models to analyze chest X-ray scans [69] . Vaid et al.
eveloped a deep learning model based on the CNN algo-
ithm, which can detect abnormalities and classify dis-
ases directly from chest X-ray scans. To enhance the
etection capability of the CNN, transfer learning was
dopted by examining patients’ anterior and posterior
hest images. The model achieved 96.3% accuracy and
an be used for direct chest X-ray testing, eliminating the
eed for radiologists to perform secondary examinations
69] . 

The DeepCOVID-XR algorithm is a method specifically
esigned for identifying COVID-19 from chest X-ray [70] .
t was developed by Wehbe et al. and utilizes the re-
ults of reverse transcription polymerase chain reaction
RT-PCR) as an indicator [70] . The algorithm uses an
nsemble of CNNs to analyze chest X-ray images. The
ataset images are preprocessed and four images are gen-
rated from each, which are then fed into six CNN frame-
orks: densenet-121, ResNet-50, Inception-v3, Inception-
esNetV2, Xception, and EfficientNet-B2. By fine-tuning

he input set through transfer learning, the predictions
rom these six frameworks are combined using a weighted
verage to evaluate whether the image indicates COVID-
9 positivity or negativity [70] . This study surpasses
imilar research in terms of both dataset quantity and
uality, with positive implications for hospital infection
ontrol. 

Computer-aided diagnosis systems can analyze chest
-ray to identify COVID-19 infections. The system ini-

ially uses a Unet to extract the region of interest on lung
mages, obtaining binary lung maps [71] . Image prepro-
essing methods are then applied to enhance rotation.
he segmented images are combined with a CNN model
nd a transformer vision model. The CNN model uses
ixel arrays, and the transformer vision model divides
he image into visual tokens. The CNN-based EfficientNet-
7 (with an accuracy of 99.82%) and the vision-based
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Fig. 3. Innovative artificial intelligence approaches for COVID-19 detection. (A) Intelligent COVID-19 diagnostic model, based on the barnacle mating optimization 
algorithm and cascaded recurrent neural network model, aids in disease diagnosis using low-contrast X-ray images [75] . (B) Deep learning approach using visual 
transformers developed to create a lateral flow immunoassay platform for smartphones, enabling colorimetric detection of neutralizing antibodies against SARS-CoV-2 
in serum [79] . 
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egFormerB5 (with an accuracy of 99.81%) perform com-
arably. Furthermore, this system enables the visualiza-
ion of areas of infection on chest X-ray images, facilitat-
ng better care provision and expediting the patient re-
overy process [71] . 

Researchers have proposed a method for detecting
OVID-19 using chest X-rays based on an intelligent
eep convolutional network [72] . Alshahrni et al. com-
ine deep CNNs, integrated bootstrap aggregating neural
etworks, and multiple neural network clustering meth-
ds to enhance diagnostic sensitivity and reduce error
ates. They used the TSEBANN model to investigate the
ffect of qualification procedures. The algorithm clas-
ifies examples through preprocessing, feature extrac-
ion, and CNN strategies, and it has been tested on a
OVID-19 X-ray dataset, which confirmed its effective-
ess through cross-validation with a classification accu-
acy of 98.062%. Compared with chest CT, this method is
ore cost-effective [72] . 
A deep CNN based on homomorphic transformation

nd a visual geometry group has been developed for de-
ecting COVID-19 from chest X-ray images [73] . This
ethod uses contrast-limited adaptive histogram equal-

zation and homomorphic transformation filtering for
ixel-level processing of X-ray images. It solely relies
n single-channel image data as input, which reduces
he complexity of three-channel operations required with
GB image datasets. The processed information is then

ed into a deep CNN based on a visual geometry group for
nalysis, ultimately classifying the images into three cat-
gories: normal, COVID-19, and pneumonia. The model
an achieve a multi-class classification accuracy of up to
8.06% [73] . This method is simple and fast, serving as
 key tool in the detection of COVID-19 from chest X-
ay. It provides robust support for the early detection and
iagnosis of COVID-19, with a positive role in hospital
nfection control and patient care. 
7

Technological advancements have a crucial role in
he early screening and diagnosis of COVID-19, enabling
ealth care professionals to effectively identify and cat-
gorize the disease. Recent studies have investigated the
otential of RNNs in detecting COVID-19 across different
odalities [74–76] . RNNs, a specific type of ANN, have

een designed to handle sequential data. Unlike conven-
ional feedforward neural networks, RNNs incorporate
eedback connections that facilitate information propa-
ation within the network [77] . In COVID-19 diagnosis,
hest X-ray and CT scans are crucial for assessing patients’
ealth conditions. However, chest CT screening involves
reater radiation exposure and is more expensive whereas
raditional X-ray machines are convenient and portable
n clinic settings [78] . Shankar et al. introduced an in-
elligent COVID-19 diagnostic model based on the barna-
le mating optimization (BMO) algorithm and cascaded
ecurrent neural network (CRNN) model [75] ( Fig. 3 A).
he CRNN model has been applied in feature extraction
rom chest X-ray images, followed by the BMO algorithm
or hyperparameter optimization of the CRNN to enhance
lassification performance. The BMO algorithm can de-
ermine the optimal values of CRNN hyperparameters,
ncluding learning rate, batch size, activation function,
nd epoch count. The resulting model achieved an aver-
ge sensitivity of 97.01%, specificity of 98.15%, accuracy
f 97.31%, and F-measure of 97.73% [75] . This research
ontributes to the diagnosis of diseases by radiologists us-
ng low-contrast X-ray images. 

.2. AI-based approaches to COVID-19 diagnosis using CT 

maging 

AI has been used to differentiate between COVID-19
nd community-acquired pneumonia (CAP) using chest
T scans [80] . Researchers developed a deep learning
odel called COVNet, which takes CT slices as input
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(  
nd extracts both two-dimensional and three-dimensional
lobal features from chest CT scans. These features are
ombined using max pooling and passed through fully
onnected layers and a softmax activation function to
enerate probabilities for COVID-19 and CAP. The model
chieved an AUC of 0.96 for COVID-19 prediction and
.95 for CAP prediction, effectively distinguishing be-
ween the two conditions [80] . 

To reduce radiation exposure during examinations,
ltra-low-dose CT (ULDCT) imaging has been similarly
sed for COVID-19 diagnosis. However, the low dose of
T images leads to decreased accuracy and requires more
ime for COVID-19 classification [ 81 , 82 ]. Kannan et al.
pplied an attention segmental recurrent neural network
ASRNN) to detect patients with COVID-19 using ULDCT
mages [83] . First, they extracted radiomic features such
s morphology, grayscale statistics, and Haralick textures
rom CT images using generalized additive models with
tructured interactions. The ASRNN classifier, optimized
ith the Archimedes optimization algorithm, could clas-

ify ULDCT images as patients with COVID-19 or nor-
al individuals. The F-score of the proposed method was
6.43% higher than the Multiple Kernels-ELM-based Deep
eural Network model reported by Turkoglu [ 83 , 84 ]. 
A multi-task deep learning approach enables the rapid

dentification of patients with COVID-19 [85] . Alom et al.
sed a residual recursive CNN based on transfer learn-
ng for pneumonia detection and their NABLA-N net-
ork model for infection region segmentation [85] . This
ethod not only permits qualitative diagnosis of pa-

ients who have COVID-19 with 87.26% accuracy but it
lso facilitates quantitative analysis of the extent of in-
ection areas based on CT images, achieving accuracy
f 98.78%. 

.3. AI-assisted lateral flow immunoassay and acoustic 

nalysis 

AI-assisted lateral flow immunoassay with colorime-
ry can be used to detect neutralizing antibodies in pa-
ients with COVID-19 infection. Neutralizing antibod-
es can bind to the virus and eliminate its infectivity
86] . Researchers applied the deep learning method of
ision transformers to assist lateral flow immunoassay
ith polydopamine-based colorimetric detection [79] .
hey developed a lateral flow immunoassay platform

ntegrated with a smartphone-based reader for quan-
itative detection of neutralizing antibodies in serum
 Fig. 3 B). The algorithm has a detection range of 625–
0,000 ng/mL. The polydopamine-based colorimetric de-
ection method exhibits strong absorption in the visible
ight region, enhancing the sensitivity of detection. This
pproach can be adopted to effectively evaluate the im-
une response of vaccine recipients, contributing to the

stablishment of herd immunity [79] . 
8

Hassan et al. proposed a method for early screening
nd diagnosis of COVID-19 based on language signals
76] . They used a RNN with an LSTM framework to an-
lyze the acoustic features of patients’ cough and res-
iratory sounds. Performance of the model in detecting
OVID-19 based on cough and respiratory sounds was
valuated in terms of accuracy, recall rate, and AUC.
he results showed an accuracy of 98.2% for respiratory
ounds and 97% for cough sounds. The research team
ims to improve the accuracy of the speech test by ex-
anding the sample set [76] . 

. Control and management 

.1. Risk assessment 

In recent years, various systems and technologies have
een developed to address COVID-19 risk assessment.
hese advancements use AI algorithms and techniques
o dynamically assess the risk of COVID-19 transmission
nd infection, assist health care professionals in data col-
ection and risk assessment, determine social distancing
ompliance, and leverage cloud and fog computing for
fficient monitoring and control [ 87 , 88 ]. 

One notable system is the 𝛼-Satellite system, which is
sed to dynamically assess the risk of COVID-19 in the
nited States [89] . This system automatically generates
 layered risk index based on user-input points of in-
erest (POIs). Initially, the system establishes a database
nd uses an attribute heterogeneous information network
AHIN) to model the data [89] . Subsequently, perfor-
ance of the AHIN is enhanced through the generation

f conditional improvements using generative adversar-
al networks (GANs), resulting in a diverse COVID-19 risk
ssessment system. Upon validation with 5060 real POIs,
he system achieved an AUC of 0.9202. This system can
id in selecting appropriate protective measures to miti-
ate viral spread and infection. 

The DDC19 system has been used to assist health
are professionals in data collection and dynamic risk
ssessment during the COVID-19 pandemic [90] . This
ystem combines the medical process with designed
owcharts and questionnaires. By evaluating the ques-
ionnaires, the system establishes a dynamic risk stratifi-
ation model and enhances the model ̓s accuracy through
egression analysis [90] . The model demonstrates
trong predictive capabilities for risk levels in various
cenarios. 

Rezaei and Azarmi developed a hybrid computer vi-
ion and Yolov4-based deep neural network model for de-
ecting persons and social distancing detection [91] . The
odel integrates adaptive inverse perspective mapping

echnology and the SORT tracking algorithm to automat-
cally detect crowds in indoor and outdoor environments
 Fig. 4 A). Through extensive testing, the model achieves
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Fig. 4. Artificial intelligence-empowered control and management of COVID-19. (A) DeepSocial enables automatic monitoring of indoor and outdoor crowds and 
social distancing to identify areas with the highest likelihood of virus transmission and infection [91] . (B) Combining radio frequency identification devices with fog 
computing in the Internet of Things (IoT), and capturing social interactions and physical symptoms to classify users [87] . 
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n average precision of 99.8%, enabling the identification
f areas with the highest likelihood of virus transmission
nd infection. This capability has proven highly beneficial
or government agencies in designing layouts and imple-
enting preventive measures in public spaces [91] . 
Cloud and fog computing offer a cost-effective and

ime-saving approach to monitoring and controlling the
apid spread of infections. Singh and Kaur combine cloud
nd fog computing with a classifier that integrates ran-
om forest, naive Bayes, and GANs for COVID-19 classi-
cation [92] . They proposes a service quality framework
ased on fog-assisted IoT, which collects sensitive infor-
ation from connected devices and responds by issuing

lerts to relevant departments for action [92] . 

.2. Intelligent decision-making 

The COVID-19 pandemic has presented unparalleled
hallenges to global health care systems, necessitating
nnovative and effective approaches to combat spread
f the virus [93] . AI has emerged as a potent tool in
he fight against COVID-19, offering new possibilities for
olicy decision-making [ 9 , 94 ]. For instance, a novel AI-
ased technology has been developed to identify and re-
otely monitor patients, combining wireless radio fre-

uency identification (RFID) devices with fog computing
n the IoT [87] . This innovative approach enables effi-
ient patient identification and management, using RFID
o capture social interactions and using IoT technology to
ather information on physical symptoms ( Fig. 4 B). Bha-
ia et al. applied a DT to assess infection severity and clas-
ify users based on their corresponding symptoms, achiev-
ng an impressive accuracy rate of 96.68% and enabling
ffective and timely monitoring [87] . 

In the context of disease outbreaks, an AI algorithm
an be applied to formulate policies for reopening schools
95] . This algorithm comprises a multi-input multi-output
odel with uncertainty and adaptive background pa-

ameter modeling. It establishes an adaptive background
ingle-input multiple-output parameter model and fol-
ows an adaptive strategy for external manipulation to
enerate appropriate policies. The model’s long-term pre-
ictor evaluates the potential impacts under the current
olicy, and the policy maker proposes alternative mea-
ures to minimize these impacts. By leveraging this al-
orithm, policymakers can formulate effective policies
imed at minimizing COVID-19 mortality and maximiz-
ng school enrollment [95] . 

The Epidemic and Media Impact Tool (EMIT), an ad-
anced technology, leverages COVID-19-related informa-
ion from social media for outbreak detection and control.
azebnik et al. proposed a dual-model approach consist-
ng of a next-wave predictor and a social epidemiolog-
cal simulator, which is used for training and inference
96] . In the training phase, machine learning techniques
10
re used to fit the parameters of the next-wave predictor
nd the simulator. In the inference phase, the latest data
re used for prediction and computation of baseline pre-
ictions of widespread transmission. The EMIT provides
redictive estimation regarding the impact of historical
ata, social media trends, and disease transmission data
n public health measures, achieving an impressive AUC
f 0.909 [96] . 

A top-down multiscale engineering approach can effec-
ively determine optimal control measures implemented
y regulatory agencies during the COVID-19 pandemic
97] . This approach involves global-scale modeling of
OVID-19 growth rates and mortality rates, supple-
ented by deep neural networks that consider multiple

ime steps in the prediction modeling step. The SHap-
ey Additive exPlanations method is used to identify the
ost influential control factors. These identified factors

reatly contribute to reducing epidemic growth rates and
ortality rates. Based on this study, it is concluded that

ovid-contact-tracing, public-gathering-rules, and covid-
tringence-index are the three most effective control mea-
ures for minimizing growth rates. The control factors as-
ociated with mortality rates depend on the specific mod-
ling scenario [97] . 

Levashkin et al. developed an intelligent decision-
aking system to study the impact of decisions in the

ontext of COVID-19 [98] . Initially, they constructed the
wareness–Compartmental Model-Susceptible–Exposed–

nfectious–Removed (ACM-SEIR) model based on the
EIR model, incorporating parameters such as risk per-
eption and cumulative case count. Machine learning
echniques were then used to investigate the model,
nd the ACM-SEIR parameter module was adjusted us-
ng ontology-based association methods to transform it
nto an intelligent decision-making system. This advanced
odel allows for the evaluation of social, economic, and

ther factors in decision-making processes [98] . 

. Drug development 

.1. Drug repurposing 

Given the complexity of drug design and clinical tri-
ls, repurposing existing drugs is crucial in the search
or COVID-19 treatments. Mohapatra et al. applied ma-
hine learning models to a dataset selected from Pub-
hem [ 99 , 100 ]. To enable the system to learn from
atasets containing details and practical outcomes, they
dopted mathematical classifiers for supervised learn-
ng. The naive Bayes classifier was found to be the opti-
al choice, avoiding overfitting issues encountered with

andom forest or sequential minimal optimization algo-
ithms [ 99 , 100 ]. The model achieved an accuracy of ap-
roximately 73% in drug prediction. Ultimately, they
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Fig. 5. Applications of artificial intelligence for COVID-19 drug repurposing. (A) Machine learning model that uses extracellular data encoded with chemical 
fingerprints to partition molecular fingerprints using a collection of individual tree models to uncover drug molecule characteristics and predict potential candidate 
drugs [101] . (B) Mechanism-driven neural network approach (DeepCE) that predicts the impact of new chemical entities on differential gene expression profiles by 
simulating the relationships between chemical substructures and genes, as well as gene–gene interactions [102] . 
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etermined that the antiretroviral drug amprenavir was
he most effective against COVID-19 infection. 

Researchers have conducted drug-based prediction of
ntiviral activity against COVID-19 to identify potential
andidates for drug repurposing. Delijewski and Hanec-
ok developed a supervised machine learning model that
ses in vitro data encoded with chemical fingerprints,
epresenting specific molecular substructures [101] . They
dopted a sequence ensemble of individual tree models
o partition the molecular fingerprints and uncover the
olecular properties of various candidate drugs ( Fig. 5 A).
y updating the tree models, they improved the model,
esulting in an AUC of 0.72. Ultimately, zafirlukast was
etermined as the most promising drug for repurposing
101] . 

Exploring drug–target interactions (DTIs) is a critical
tep in detecting drug actions and conducting drug repur-
osing. El-Behery et al. proposed a DTI prediction model
hat specifically integrates protein sequence and struc-
ured data [103] . The model uses the physical and chem-
cal properties of protein amino acid sequences to obtain
eatures and adopts encoding techniques to extract fea-
ures from drug SMILES (Simplified Molecular Input Line
ntry System) strings. Various machine learning tech-
iques, deep learning techniques, and ensemble learning
echniques are then applied to predict the interactions be-
ween drugs and target proteins in human cells. By using
roteins affected by COVID-19 infection in human cells,
hey discovered potential drugs that are suitable for re-
urposing. For example, they predicted a 100% proba-
ility of interaction between ACE2 protein and DB00691
nd DB05203 [103] . 

The primary challenge in drug repurposing lies in diag-
osing and identifying unique drug–disease relationships
 104 , 105 ]. Multiple AI algorithms can greatly facilitate
rug repurposing and utilization during the COVID-19
ra. Mohanty et al. used the Repurpose Drug Database and
pen Chemical/Drug Database as inputs for their model,
11
nd then used machine learning, deep learning, RNNs,
NNs, and deep belief network algorithms to rapidly and
ccurately screen and output the desired drugs [106] .
his technology enables drug repurposing without the
eed for initial and toxicity testing, allowing modified
rugs to be used directly in late-stage treatment. 

Phenotype-based compound screening, which uses
ene expression profiles, offers advantages over target-
ased drug discovery and plays a crucial role in COVID-19
rug development [ 102 , 107 ]. Researchers have followed
 mechanism-driven neural network approach called
eepCE, which incorporates graph neural networks and
ulti-head attention mechanisms [102] . This approach
odels the relationships between chemical substructures

nd genes, as well as gene–gene interactions, to predict
ifferential gene expression profiles influenced by novel
hemical entities ( Fig. 5 B). Additionally, the researchers
xtracted valuable information from the L1000 dataset
o enhance the data. This method was applied to repur-
ose drugs for COVID-19. The team successfully identi-
ed 10 novel lead compounds that align with the clinical
vidence, including chloramphenicol and cyclosporine
102] . 

.2. Drug screening 

In the search for potential small-molecule inhibitors
gainst SARS-CoV-2, researchers have used neural net-
orks to expedite virtual screening processes [ 108 , 109 ].
ne noteworthy approach is the development of ChemAI,
 deep neural network known as SmilesLSTM-ChemAI,
reated by Hofmarcher et al. [110] . This innovative
odel was trained using comprehensive drug databases

uch as ChEMBL, ZINC, and PubChem. By predicting bi-
logical outcomes such as target binding, inhibition, and
oxicity, ChemAI ranks compounds based on their poten-
ial as inhibitors of SARS-CoV-2. Remarkably, this method
acilitated the prediction of approximately one billion
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olecules. Subsequently, a library of potential SARS-CoV-
 inhibitors was generated, with compounds prioritized
ccording to their inhibitory effects on SARS-CoV-2 pro-
eases, potential toxicity, and proximity to known ac-
ive compounds. Finally, this list was narrowed down to
0,000 compounds for further biological assay [110] . 

Ge et al. developed a framework for predicting effec-
ive candidate drugs against coronaviruses [111] . They
pplied machine learning and statistical analysis methods
o create a data-driven drug repurposing framework that
ystematically integrated and mined extensive knowledge
raphs, literature, and transcriptomic data to discover po-
ential anti-SARS-CoV-2 candidate drugs. Through this
ramework, they identified poly (ADP-ribose) polymerase
 inhibitor cvl218 as a potential therapeutic agent. In
itro experiments demonstrated the effective inhibitory
ctivity of CVL1218 against SARS-CoV-2 replication,
hereby validating the effectiveness of the framework in
OVID-19 drug discovery [111] . 
Deep learning-based phenotypic omics profiling can

nveil potential COVID-19 drugs [112] . Michael et al.
sed deep learning-based cellular morphological analysis
o develop a "phenotypic omics" platform capable of iden-
ifying immunomodulators, toxins, pathogens, and ge-
etic perturbations, as well as dose-dependent and high-
imensional relationships of small and large molecules
113] . This platform revealed a phenotypic model of ac-
ive SARS-CoV-2 infection and COVID-19-associated cy-
okine storms. The authors discovered that Janus ki-
ase inhibitors can effectively mitigate severe cytokine
torm phenotypes, demonstrating the great potential of
his mechanism within a complex immune cascade back-
round [113] . 

. Discussion and perspective 

In this review, we summarized the innovative appli-
ations of AI methodologies in combating the COVID-19
andemic. Advanced machine learning and deep learn-
ng models have shown tremendous potential in tack-
ing critical challenges posed by this public health crisis.
pecifically, AI-based predictive analytics enable accurate
orecasting of disease spread trajectories and patient out-
omes using clinical, epidemiological, and omics data.
eep neural networks facilitate rapid diagnosis based on
edical images [114] . Intelligent systems incorporating

isk assessment, decision support, and social sensing aid
n pandemic control and shaping public health policies.
dditionally, virtual screening powered by AI can aug-
ent therapeutic drug discovery and repurposing oppor-

unities [115] . As highlighted in this review, the use of AI
o fight COVID-19 is still in its early stages. Considerable
rogress has been made in the areas of prediction, de-
ection, and drug discovery. However, predictive systems
arrant further validation with real-world evidence. Di-
12
gnostic algorithms should evolve from binary classifica-
ion to quantification of infection severity [ 116 , 117 ]. Al-
hough structural biology and bioinformatics models have
dentified various drug candidates, extensive clinical tri-
ls are needed to evaluate their safety and efficacy [118] .

The reviewed studies demonstrate the great potential
f AI in tackling the enormous challenges that have arisen
s a result of the COVID-19 pandemic. Advanced machine
earning and deep learning algorithms have enabled ac-
urate prediction of disease spread, rapid diagnosis us-
ng medical images, data-driven policy making, and ac-
elerated drug discovery. Multiple research teams have
eported improved performance of AI models compared
ith traditional statistical methods in areas such as fore-

asting, detection, risk assessment, and drug repurposing.
Although AI has shown tremendous promise during the

OVID-19 pandemic, there remain substantial challenges
n translating proofs of concept into real-world impacts.
 major limitation is a lack of the large, high-quality,
tandardized datasets required for developing robust AI
odels, especially early during the pandemic when re-

iable testing was absent [119–121] . Variations in de-
ographics, protocols, and data formats can also con-

train model generalization across different populations
nd settings [122] . Additionally, integration with exist-
ng clinical workflows and legacy information technol-
gy systems poses barriers to adoption, compounded by
 lack of expertise in AI among frontline health care
orkers [ 123 , 124 ]. There are outstanding concerns re-
arding scalability, cost-effectiveness, and unfair biases
hen AI is deployed at scale. The “black box ” nature
f deep learning models hampers interpretability and ac-
ountability regarding AI-based decisions [ 125 , 126 ]. All
hese challenges are magnified by the urgency and unpre-
ictability of the pandemic response, where reliance on
naccurate predictions or recommendations from imma-
ure AI could endanger human lives and undermine pub-
ic trust. Thoughtful solutions embracing not just techni-
al but also clinical, ethical, and social perspectives will
e key to maximizing the benefits of AI for COVID-19
anagement. 
When applying AI to address challenges in health

are and biomedicine, it is crucial to assess various
odeling approaches to determine the most effective
ethods [127–129] . For instance, in the context of
I-driven drug discovery and repurposing, researchers
ave conducted comparative evaluations of different ma-
hine learning and deep learning techniques. In one
tudy, multiple algorithms were benchmarked to predict
rug–target interactions using a dataset comprising over
60,000 compound-protein pairs [130] . These algorithms
ncompassed similarity-based methods, matrix factoriza-
ion, graph convolutional networks (GCNs), and gradi-
nt boosting DTs. The GCN model had the highest per-
ormance, achieving an AUC of 0.965. It outperformed
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imilarity-based methods by 3%–13% and other meth-
ds by 1%–7%. The effectiveness of the GCN model was
ttributed to its capacity to incorporate topological in-
ormation from graphs and learn intricate connectivity
atterns. When it comes to virtual screening for identi-
ying bioactive compounds, deep learning generally sur-
asses other machine learning approaches. A comprehen-
ive evaluation of 15 datasets revealed that deep neu-
al networks achieved an average AUC 13% higher than
hose of random forests [131] . The advantages of deep
eural networks lie in their ability to recognize com-
lex feature representations and model interdependen-
ies between input molecules and targets. However, in-
erpretability remains a challenge [120] . In summary,
omparative assessments offer practical insights into the
radeoffs and benefits of different AI techniques in health
are applications. Further evaluation is necessary as inno-
ative methods continue to emerge. Nevertheless, estab-
ishing head-to-head benchmarks using standard biomed-
cal datasets can guide appropriate algorithm selection
nd optimize performance. 

Finally, ethical risks surrounding privacy, fairness, and
ccountability must be addressed, especially when AI is
sed to guide high-stakes decisions like hospitalization
riage [ 132 , 133 ]. Transparency regarding data prove-
ance and model features is needed to build public and
rovider trust. Rigorous testing for biases and contin-
ous monitoring of outcomes are imperative to avoid
isproportionate impacts on marginalized communities
 134 , 135 ]. Ultimately, AI should augment but not re-
lace human expertise and experience during pandemic
esponse. 

Moving forward, multidisciplinary collaborations be-
ween computer scientists, biomedical researchers, and
ublic health experts are crucial in developing robust,
rustworthy, and socially responsible AI solutions with re-
pect to COVID-19 as well as future pandemic threats. Ad-
ances in computational methods should be paired with a
eep understanding of epidemiology, virology, health sys-
ems, and ethical implications. Beyond the sandbox of sci-
ntific publications, participatory design processes engag-
ng diverse stakeholders will be instrumental in creating
uman-centered AI systems that solve real-world prob-
ems and improve population outcomes. Additionally, hy-
rid AI approaches combining the strengths of different
echniques could enhance predictive power and applica-
ility. Democratizing access to high-quality biomedical
ata and models would spur further innovations [136] .
etailed protocols and benchmarks are needed to fairly
ompare emerging methods. More importantly, centering
uman needs and values is vital as AI becomes increas-
ngly involved in health care decisions. 

In summary, translating promising AI applications into
eal-world impacts necessitates robust advances across
echnological, clinical, ethical, and implementation do-
13
ains. Beyond innovations in algorithms and data, cul-
ivating partnerships, infrastructure, evidence, and trust
re all critical enablers of unlocking AI’s potential to guide
he global community through the COVID-19 pandemic
nd beyond. 
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