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Abstract Cellobiose dehydrogenase (CDH), a secreted flavocytochrome produced by a num-
ber of wood-degrading fungi, was detected in the culture supernatant of a biotechnologically
important strain of Cerrena unicolor grown in a modified cellulose-based liquid medium. The
enzyme was purified as two active fractions: CuCDH-FAD (flavin domain) (1.51-fold) with
recovery of 8.35 % and CuCDH (flavo-heme enzyme) (21.21-fold) with recovery of 73.41 %.
As CDH from other wood-rotting fungi, the intact form of cellobiose dehydrogenase of
C. unicolor is a monomeric protein containing one flavin and one heme b with molecular mass
97 kDa and pI=4.55. The enzyme is glycosylated (8.2 %) mainly with mannose and glucos-
amine residues. Moreover, the cellobiose dehydrogenase gene cdh1 and its corresponding
cDNA from the fungus C. unicolor were isolated, cloned, and characterized. The 2316-bp
full-length cDNA of cdh1 encoded a mature CDH protein containing 771 amino acids preceded
by a signal peptide consisting of 18 amino acids. Moreover, both active fractions were
characterized in terms of kinetics, temperature and pH optima, and antioxidant properties.
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Introduction

Fungi form an important group of microorganisms that have beneficial effects on the envi-
ronment and human life. In forest ecosystems, they are mostly responsible for breakdown of
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abundant large biopolymers such as cellulose, hemicellulose, and lignin [1]. White-rot basid-
iomycetes are a group of fungi comprising from 1600 up to 1700 species characterized by the
ability to depolymerize and mineralize lignin using a set of extracellular ligninolytic enzymes
and low molecular compounds [2, 3]. At the same time, in modern biotechnology, filamentous
fungi are major sources of bioactive metabolites, including proteins, peptides, glycoproteins,
polysaccharides, lipopolysaccharides, phenolic compounds, triterpenoids, lectins, lipids, and
their derivatives [4].

Among the many hitherto-characterized fungal species, Cerrena unicolor was described in
literature as one of the best laccase producers [5]. Moreover, this species belonging to
Aphyllophorales was proved to secrete extracellular manganese peroxidase, versatile peroxi-
dases [6], and xylanase or cellulase when grown on cellulose [7]. This fungus commonly
called Bmossy maze polypore^ may be found on dead northern hardwood tree species as
maple, birch, or alder, where it causes white rot [8]. Besides extracellular enzymes, C. unicolor
may be a source of polysaccharides [9] or low molecular fractions of secondary metabolites
[10], which possess interesting biomedical and bioelectrochemical properties. However, up to
date, cellobiose dehydrogenase, which was proven a crucial enzyme in decomposition of both
cellulose and lignin, has not been described in cultures of the genus Cerrena.

Cellobiose dehydrogenase (CDH; EC 1.1.99.18; cellobiose [acceptor] 1-oxidoreductase) is
a fungal extracellular hemoflavoprotein, which was discovered in 1974 by Westermark and
Eriksson in white rot fungi Trametes versicolor [11] and Phanerochaete chrysosporium
(Sporotrichum pulverulentum) [12]. CDHs are usually monomeric enzymes that belong to
the glucose–methanol–choline (GMC) family together with other sugar oxidoreductases like
the catalytically related enzymes glucose oxidase, pyranose dehydrogenase, and pyranose-2
oxidase [13]. It is composed of two prosthetic groups, a heme type b (ferriprotoporphyrin IX)
and a flavin adenine dinucleotide (FAD) [14] connected through a flexible polypeptide linker
region enriched in hydroxy amino acids [15]. This enzyme catalyzes the oxidation of the
reducing end of cellobiose and higher cellodextrins in vivo, whereas in vitro lactose and
other oligosaccharides with β-1,4-glycosidic linkages are acceptable substrates [16]. The
catalytic cycle of CDH involves oxidation of sugar substrates to corresponding 1,5-lactones
using various electron acceptors with concomitant reduction of flavin to FADH2 [17].
Lactones are finally converted to their carboxylic acids, and flavin is reoxidized by the heme
group in two single-electron steps reactions [18]. Phylogenetic analysis of all known cdh
genes showed division of the enzymes into three distinct classes: class I, representing only
basidiomycetous CDHs; class II, exclusively comprising ascomycetous CDHs; and class III,
containing so far uncharacterized or actively expressed CDHs [19]. Although the physiolog-
ical function of this enzyme has not yet been revealed, our current knowledge points to its
participation in the degradation and modification of lignocellulose by generating hydroxyl
radicals via the Fenton reaction [20]. Recently, an interaction of CDH with copper-dependent
polysaccharide monooxygenases (PMOs) involved in the degradation of cellulose has been
proposed [21, 22]. This model for oxidative cellulose degradation may be widespread
throughout the fungal kingdom in parallel with the better described hydrolytic cellulase
enzyme system [23]. Recent papers have reported successful application of cellobiose
dehydrogenase in a large variety of bioprocesses such as biocatalysis, bioremediation, or
production of lactobionic acid [24]. The unique catalytic and bioelectrochemical properties of
CDH have been used in biosensors for detection of cellodextrins [25], maltose [26], lactose
[27, 28], diphenolic compounds [29], and catecholamines [30] in biofuel cells [15, 31] or in
biomedical applications [32, 33].
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Given the widespread biotechnological application of cellobiose dehydrogenase, new
sources of this enzyme are being constantly searched. Recently, C. unicolor strain FCL139
has been found to be a producer of laccase, a unique enzyme in many biotechnological
applications. Hereby, we successfully attempted to purify and characterize cellobiose dehy-
drogenase from this strain. Moreover, the corresponding cdh gene and cDNAwere sequenced
and analyzed.

Materials and Methods

Microorganism and Culture Conditions

The white rot fungus C. unicolor was obtained from the culture collection of the Regensburg
University and deposited in the fungal collection at the Department of Biochemistry (Maria
Curie-Sklodowska University, Poland) under the strain number 139. The fungus was main-
tained on 4 % (w/v) malt agar plate. To obtain the inocula, pieces of agar plates with the fungus
were grown in the Lindenberg and Holm [34] medium in conical flasks for 10 days at 25 °C.
Ten-day-old mycelia were homogenized in a disperser homogenizer T18 basic ULTRA-TURR
AX (IKA, Staufen, Germany). The fragmented mycelial culture (10 %v/v) was used as a
standard inoculum for further studies.

In order to obtain the high level of CDH, the strain of C. unicolor (FCL139) was grown in
submerged culture for 10 days on a cellulose-based medium [35] with authors’ modifications.
The medium had the following composition (1 l): 5 g Avicel, 10 g (NH4)2HPO4, 1 g KH2PO4,
0.3 g MgSO4×7H2O, 0.08 g CaCl2, 5 mg ZnSO4×7H2O, 1.5 mg MnSO4×4H2O, 1.5 mg
CoCl2×6H2O, 5 mg FeSO4×7H2O, 100 mg yeast extract, and 0.1 mg thiamine. The pH was
adjusted to 6.5 with 5 M HCl. After inoculation, the cultures were incubated at 28 °C in an
incubator shaker Multitron (Infors, Bottmingen, Switzerland) at 120 rpm.

Enzyme Purification Procedure

The culture supernatant (6 l) was collected on day 10 from the cellulose medium after
centrifugation (12,000×g for 30 min) on a 6K15 (Sigma, Osterode am Harz, Germany). The
clear supernatant was concentrated to 300 ml by the Prep/Scale TFF Cartridge PTGC 10 k
polyethersulfone (Millipore, Bedford, MA) and used as a source of a crude enzyme. The
proteins in the crude preparation were precipitated by the addition of solid ammonium sulfate
in the range of 15–85 % saturation. The resulting suspension was collected by centrifugation,
and the protein pellet was resolved in 100 ml deionized water and desalted using a preparative
chromatography column (8×30 cm) filled with a Sephadex G-50 carrier. Fractions containing
the protein were concentrated and applied to an anion-exchange DEAE-Sepharose (fast flow)
column (2.5×15) connected to Econo System (Bio-Rad, Richmond, VA). The column was
previously equilibrated with a 50-mM sodium acetate buffer (pH 5.0), and the proteins bound
on the chromatography matrix were eluted using a linear gradient of 0 to 0.5 M NaCl in the
same buffer at a flow rate of 1 ml/min. Fractions containing cellobiose dehydrogenase activity
were pooled and concentrated in an Amicon-stirred cell using a polyethersulfone membrane
(10 kDa cutoff). In the next step, affinity chromatography was performed. The concentrated
protein was loaded onto a lactose-CPG column (1.5×8 cm) equilibrated with buffer A (50 mM
sodium acetate buffer (pH 5.5)), washed with buffer B (50 mM sodium acetate buffer
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(pH 4.0)), eluted with buffer C (200 mM sodium acetate buffer (pH 4.0)), and applied 0.7 M
ammonium sulfate. The eluent was collected in 0.5 ml portions. Fractions containing CDH
activity (obtained from lactose-CPG) were collected, and a chromatofocusing analysis was
performed on an Econo-chromatography column (Bio-Rad, Richmond, VA, USA; 130 cm,
packed to a bed height of 20 cm) with a Polybuffer exchanger PBE 94 equilibrated with
250 ml of 0.025 M imidazole-HCl buffer (pH 7.4). Samples from lactose-CPG chromatogra-
phy showing CDH activity (5 ml) were injected onto the column, and the enzyme was
desorbed by elution with 200 ml Polybuffer 74-HCl (pH 3.0) at a flow rate of 0.5 ml/min.
The active fractions were pooled out, and the purified enzyme solutions were used for kinetic
experiments.

Synthesis of Lactose-CPG

The controlled porous glass (CPG) (Cormay, Lublin, Poland) was prepared according to the
method described previously [36]. The support was activated by γ-aminopropyltriethoxysilane
(γ-APTES) according to a method that permits a high density of amino groups on the glass
surface [37]. The activated support (APTES-CPG) was further used for affinity chromatogra-
phy by binding the CDH substrate lactose to the activated support according to a method
described in detail elsewhere [38]. The resulting sorbent lactose-CPG was used in the affinity
chromatography.

Enzyme Assays and Protein Determination

The activity of cellobiose dehydrogenase was assayed according to Baminger et al. [1] with
slight modifications. CDH activity was specifically determined by monitoring the reduction of
the electron acceptor 2,6-dichloroindophenol (DCIP) (Sigma Chemical Co., St. Louis, MO,
USA) at 520 nm (ε520=6.8 mM−1 cm−1), pH 4.5, and 30 °C using a Shimadzu UV-160A
(Shimadzu, Tokyo, Japan) spectrophotometer. The reaction mixture (1 ml) contained 50 μl of
3 mM DCIP (solution in water containing 10 % v/v ethanol), 100 μl lactose (300 mM in
100 mM sodium acetate buffer, pH 4.5), 50 μl NaF (80 mM NaF) in water, and an appropriate
amount of the same buffer. After temperature adjustment, the reaction was started by the
addition of an appropriately diluted CDH sample (100 μl) and the decrease in absorbance was
monitored during the first 60 s. The final enzyme activity was expressed as nkat per liter.

Alternatively, CDH activity was selectively determined by following the reduction of
20 μM cytochrome c at λ=550 nm and 30 °C (Sigma Chemical Co., St. Louis, MO, USA).
The reaction was performed in 100 mM sodium acetate buffer, pH 4.5, containing 30 mM
lactose and 4 mM NaF. The extinction coefficient (ε) was 19.6 mM−1 cm−1 [39]. This assay
determined the activity of the intact protein containing both the flavin and the heme domains.

The protein concentration was determined using the Bradford method [40] with crystalline
bovine serum albumin (BSA) as a standard or by monitoring the ultraviolet (UV) absorbance
at 280 nm.

Spectral Characterization

The spectrum of CDH purified to homogeneity was recorded from 250 to 650 nm in both the
oxidized and the reduced states using a Shimadzu UV-160A spectrophotometer (Shimadzu,
Tokyo, Japan). Purified CDH was diluted in 100 mM sodium acetate buffer, pH 4.5, to an
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absorbance of ∼2.5 at 280 nm, and the spectrum was recorded before and immediately after the
addition of an approximately 1000-fold molar excess of lactose to the cuvette. The index of
purity (RZ) of the oxidized CDH was calculated as the ratio of the absorbance at 420 nm to the
absorbance at 280 nm [19].

Effect of Temperature and pH on CDH Activity and Stability

DCIP and cytochrome c as electron acceptors and lactose as a substrate were used for assessing
the effect of pH and temperature on the cellobiose dehydrogenase activity and stability. The
effect of pH on enzyme activity was estimated in the range from 2.5 to 8.0 in 0.1 M
McIlvaine’s buffer. Dependence of stability on pH was determined at 30 °C by incubation
in variable pH ranges (pH 2.0–9.0 0.1 M Britton-Robinson buffer) for 12 h followed by
measurement of the residual activities every 30 min.

The optimum temperature of the purified CDHwas determined by performing enzymatic assays
at different temperatures (4–80 °C). The thermal stabilitywas investigated by incubating the enzyme
solution in a 0.1M sodium acetate buffer (pH 4.5) at various temperatures (30–90 °C); aliquots were
drawn every 30 min for 12 h, and their residual enzyme activities were measured. Controls were
carried out using the enzyme solutions without preheating, and its activity was taken as 100 %.

Determination of Kinetic Constants

Kinetic constants were determined for various concentrations of CDH substrates (0.1 to
10 mM) and DCIP and cyt c as electron acceptors. All measurements were performed in
triplicates. The Km and Vmax for the purified enzyme were calculated by nonlinear least-
squares regression, fitting the observed data to the Michaelis–Menten equation. The OriginPro
8 software (OriginLab Corporation, Northhampton, MA, USA) was used for data analysis.

Effect of Metal Ions and Potential Inhibitors

Effects of various metal ions and other reagents on CDH activity were investigated by adding
inorganic salts, imidazole, and SDS (to the final concentration from 0.1 to 100 mM) to the
samples of the enzyme dissolved in 100 mM sodium acetate buffer (pH 4.5) to the total volume
of 1 ml. These assays were performed with lactose as a substrate and DCIP as an electron
acceptor. Control tests were performed in parallel in the absence of metal ions and inhibitors.

Electrophoresis and Peptide Sequencing by LC-MS/MS

Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (10 %) was performed
as described by Laemmli [41]. Proteins were visualized by silver staining [42] and Coomassie
Brilliant Blue G250 using PageRuler Prestained Protein Ladder (Fermentas, Glen Burnie, MA,
USA). After the electrophoretic separation of the samples, equal pieces of 2×7 mm were cut out
from the gel lanes. The spectrometric analysis of polypeptides was carried out in the Environ-
mental Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics of the Polish
Academy of Sciences in Warsaw (Poland). The equipment used was sponsored in part by the
Centre for Preclinical Research and Technology (CePT), a project co-sponsored by European
Regional Development Fund and Innovative Economy, The National Cohesion Strategy of
Poland. The samples were analyzed by HPLC coupled with tandem mass spectrometry (liquid
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chromatography/two stage mass spectrometry - LC-MS/MS) according to Kordan et al. [39]. The
output list of precursor and product ions was compared with the protein database of the National
Center for Biotechnology (NCBI, USA) using the MASCOT local server.

Analysis of the CDH Carbohydrate Moiety

For sugar analysis, the CDH sample was hydrolyzed with 2 M trifluoroacetic acid (TFA)
(100 °C, 4 h). The liberated monosaccharides were reduced with NaBD4 and converted into
alditol acetates [43]. The components were identified on the basis of retention times and mass
spectra of authentic standards using the gas chromatography-mass spectroscopy technique.
GC-MS was carried out on an Agilent Technologies gas chromatograph (7890A) connected to
a mass selective detector (inert XL EI\CI MSD 5975C). The chromatographwas equippedwith
a capillary column HP-5MS (30 m×0.25 mm, film thickness 0.25 μm) (Agilent Technologies,
Santa Clara, CA, USA). The carrier gas was helium with a flow rate of 0.7 ml min−1. The
temperature program was as follows: 150 °C for 5 min, raised to 310 °C at 5 °C min−1, and kept
for 10 min. Total carbohydrates were determined by phenol–sulfuric method (Dubois) [44]. A
standard curve was prepared to quantify mannose.

Antioxidant Activity Assays

The antioxidant properties of C. unicolor CDH was investigated in the presence of cellobiose
and lactose as the substrates of enzyme as we described previously [45]. The standards (Trolox
and vitamin C) well known for their strong antioxidant activity were used as a positive control.
All measurements were performed in triplicate.

DPPH Free Radical-Scavenging Test

The antioxidant activity of cellobiose dehydrogenase was determined using the DPPH equiv-
alent, according to an adapted colorimetric procedure described by Paduch et al. [46] with
slight modification. This method is based on the ability of 1,1-diphenyl-2-picrylhydrazyl
(DPPH), a stable free radical, to decolorize in the presence of antioxidants. The tested
compound (0.1 ml) at concentrations ranging from 6.25 to 800 μg/ml was added to 0.1 ml
of DPPH. solution (0.2 mg/ml in ethanol). The absorbance was measured spectrophotometri-
cally at 515 nm using a Microplate Reader Elx800 (BioTek, Winooski, VT, USA) after 15 min
(the time required to achieve the reaction plateau) of incubation at room temperature.

The capability of scavenging DPPH. radicals was calculated by the following formula:

DPPH:scavenging effect %ð Þ ¼ A0−A1ð Þ=A0½ � � 100

where A0 means the absorbance of the control sample and A1 means the absorbance of the
standards or tested compounds.

ABTS Free Radical-Scavenging Test

The ABTS (2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) radical-
scavenging ability of cellobiose dehydrogenase was recorded according to the procedure of Re
et al. [47] with some modification. For detection of the antioxidant capacity, 10 μL of the
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investigated compounds at concentrations ranging from 6.25 to 800 μg/mL was mixed with
990 μL of the ABTS radical solution. The percentage of ABTS oxidation was calculated by
the presented formula:

ABTS:þscavenging effect %ð Þ ¼ A0−A1ð Þ=A0½ � � 100

where A0 means the absorbance of the control samples and A1 is the absorbance at 734 nm of
the investigated compounds/standards.

The EC50 value, defined as the amount of the antioxidant necessary to decrease the initial
DPPH and ABTS concentration by 50 %, was calculated from the results. The inhibition
curves were prepared, and EC50 values were obtained as described previously [10].

DNA Manipulation Techniques

Standard techniques for plasmid isolation, agarose gel electrophoresis, and DNA cloning were
employed [48]. Automatic sequencing was performed using the BigDyeTM Terminator Cycle
Sequencing Kit and an ABI PRISM 310 sequencer or ABI PRISM 3730 XL (Applied
Biosystems, Carlsband, CA, USA).

Preparation of Total mRNA, cDNA Synthesis, and Amplification

Total mRNA and cDNA synthesis and amplification were performed, as described previously
[45]. To amplify the CDH 3′ cDNA fragment, degenerate primer GSP1 was designed using CDH
gene sequences available in GenBank. To amplify complete CDH cDNA, gene-specific primers
(GSP) were designed on the basis of an available sequenced CDH 3′ cDNA fragment (Table 1).

Genomic DNA Isolation, Amplification, and Cloning of the cdh1 Gene

DNA from C. unicolor was isolated according to Borges et al. [49], as described previously [45].
To amplify the cellobiose dehydrogenase gene, two pairs of primers genCerCDH (Table 1) were
designed on the basis of already sequenced CDH cDNA. All PCR amplifications were carried out
using Sigma RedTaq in a Tpersonal thermal cycler (Biometra, Goettingen, Germany). Specific
PCR products were purified using the Cleanup kit (A&A Biotechnology, Gdynia, Poland) and
inserted into the pTZ57R/T vector from the InsTAclone kit (Fermentas, Glen Burnie, MA, USA).
Clones with target fragments were analyzed by sequencing.

Table 1 Gene-specific primer sequences and annealing temperatures

Primer Sequence 5′–3′ Tm [°C]

CerCDHGSP1 GCCCAGTTWTCWTANGCWTCGAT 53.5–55.3

CerCDHGSP2 CGAAGGGTTGTCCGACACAGCCTGCCC 67.3

CerCDHGSP3 TCGACCGACGGCCAGCGCTACCTCG 67.5

CerCDHGSP4 GGGAGGTTCGCCGCCGCGGTG 66.1

genDNA1F GCCCTGTTTCAGCTCTCC 52.6

genDNA1R ACCGAAAGCATGATCTTTGAAGTCCG 58

genDNA2F GGTGGACCAAGTACGGCTGAAAAG 59,1

genDNA2R ATTGTCGAGATAACATCCTTGAGTGC 56,4
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Nucleotide Sequence Accession Numbers

The following GenBank accession numbers were given to the CDH nucleotide sequences
determined in this study: KC862284—C. unicolor strain FCL139 cellobiose dehydrogenase
gene (cdh), complete cds; KC862282—C. unicolor strain FCL139 cellobiose dehydrogenase
mRNA (cdh), complete cds.

Bioinformatics Tools

Nucleic acid sequences were analyzed using Lasergene v.8.0 analysis software (DNASTAR,
Inc, Madision, WI, USA). Database searches were performed with the BLAST and FASTA
programs at the National Centre for Biotechnology Information (Bethesda, MD, USA) and
European Bioinformatics Institute (Hinxton, UK), respectively. Multiple DNA and protein
sequence alignments were performed with the Clustal-W algorithm [50]. Phylogenetic tree
visualization was performed using the TreeView applet [51]. Glycosylation sites were detected
with NetNGlyc v.1.0 (http://www.cbs.dtu.dk/services/NetNGlyc/) and NetOGlyc v.4.0 [52].
Conserved domains were analyzed by CDART [53].

Statistical Analysis

All presented results are expressed as a mean±SD from three independent experiments (n=3).
The mean values as well as standard deviation were calculated by the Excel program (Microsoft
Office 2010 package), and only values of p≤0.05 were considered as statistically significant.

Results and Discussion

Production and Purification of Cellobiose Dehydrogenase

Cellobiose dehydrogenase production by C. unicolor strain FLC139 was performed in shaking
flasks on the cellulose-based medium. The mycelium was grown for 10 days, and then the
culture liquid was collected, concentrated, and used as a source of crude enzyme for further
purification steps and other studies. CDH was partially purified by ammonium sulfate precip-
itation in the range of 15 to 85 % saturation with a purification factor of 2.07-fold and a
recovery of 84.93 % (Table 2). The resulting precipitate was dissolved in 100 ml distilled water
and desalted on the Sephadex G-50 column. The protein fractions obtained from ammonium
sulfate precipitation were applied to a DEAE-Sepharose chromatographic column. The elution
profile from the ion-exchange chromatography on the DEAE-Sepharose column showed the
CDH activity as a single peak, which was purified 28.97-fold with a yield of 70.34 %. The
active fractions of cellobiose dehydrogenase were combined, concentrated on the stirred
ultrafiltration cell equipped with a 10-kDa cutoff polyethersulfone membrane, and used in
the subsequent step of chromatography on the lactose-CPG column. The affinity fractionation
(lactose-CPG) gave only one cellobiose dehydrogenase activity peak purified approximately
53-fold in yields of 59 %. The active fractions of cellobiose dehydrogenase were pooled out
and further fractionated by chromatofocusing on a Polybuffer exchanger PBE 94. A summary
of the purification procedures of the cellobiose dehydrogenase is presented in Table 2. The last
purification step (chromatofocusing) resulted in separation of two active fractions: CuCDH-

Appl Biochem Biotechnol (2015) 176:1638–1658 1645

http://www.cbs.dtu.dk/services/NetNGlyc/


FAD (a flavin-only fragment of the enzyme), i.e., a very small fraction purified with recovery
of 1.5 %, and CuCDH (the intact enzyme) purified with a yield of 21.2 % (73.4-fold). Two
CDH activities were also obtained from fungi Irpex lacteus [54], T. versicolor [55], and
Pycnoporus sanguineus [45]; however, Humicola insolens contained three CDH fractions
while P. chrysosporium contained only one [56]. In this study, the major fraction of CDH
(CuCDH) was used for further investigation as CDH from C. unicolor. The enzyme was
purified from the culture supernatant to apparent homogeneity (Fig 1). The high spectral ratio
A420/A280 (RZ value) is generally accepted as an indication of the absence of contaminating
proteins [57]. The purified intact CDH from C. unicolor showed an A420/A280 ratio of 0.57,
whereas the flavin fragment has a low RZ value (0.21). Besides the purity factor (RZ), the
most important was the ratio of DCIP and cyt c activity (value around 1), which determines the
rate of degradation of the intact enzyme on the flavin and heme domains [58]. The factor
obtained in this study indicates that the intact CDH was rather stable in the culture conditions

Table 2 Purification of CDH from Cerrena unicolor strain FCL139 culture filtrate

Purification step Total protein
(mg)

Total activity
(nkat)

Specific activity
(nkat/mg)

Yield (%) Purification
fold

Culture filtrate 1800.00 21180.00 11.77 100 1

Ultrafiltration (10 kDa) 1275.00 20377.50 15.98 96.21 1.36

Precipitation (NH4)2SO4 737.00 17988.00 24.41 84.93 2.07

DEAE-sepharose
chromatography

43.70 14898.48 340.93 70.34 28.97

Lactose-CPG chromatography 20.30 12598.60 620.62 59.48 52.74

Chromatofocusing PBE-94
CuCDH-FAD

3.25 319.15 98.20 1.51 8.35

Chromatofocusing PBE-94 CuCDH 5.20 4491.50 863.75 21.21 73.41

Fig. 1 Activity staining (A) and SDS-PAGE (B) of the purified fractions cellobiose dehydrogenase from Cerrena
unicolor: CuCDH-FAD (I) and CuCDH (II). PageRulerPrestained Protein Ladder (Fermentas, Glen Burnie, MA,
USA) (lane 1), purified CDH (lane 2)
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and during the purification procedure. The proteolytic cleavage to the DCIP active flavin
fragment is negligible.

Enzyme Functional Parameters

The optimum temperature of CDH was evaluated by measuring the activity of the purified
enzyme at different temperatures. The enzyme activity was investigated with lactose as a
substrate and two different electron acceptors (DCIP and cyt c). The maximum activity was
recorded at 60 °C for both substances (Fig. 2A). Similar results were obtained for cellobiose
dehydrogenase from Ceriporiopsis subvermispora [57]. Thermostability was examined by
measurement of the activity over time (Fig. 3a). Complete loss of enzyme activity was
recorded at 90 °C after heat exposure for 30 min and at 50 °C after 12 h. The enzyme seemed
to be more stable than cellobiose dehydrogenase from Pycnoporus cinnabarinus [59].
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The effect of pH changes on the activity of the purified enzyme from C. unicolor was also
investigated usingMcIlvaine buffer with a pH range from 2.5 to 8.0. CDH exhibited maximum
activity at pH 4.5 independently from the electron acceptor (Fig. 2B). Cellobiose dehydroge-
nases from most Basidiomycetes fungi are known to have pH optima in the acid range as
opposed to Ascomycetes showing optimum activity in alkaline conditions [19]. CDHs from
different sources are generally stable in a wide range of pH from 3 to 10 [15]. In this study, the
enzyme was stable for 12 h at pH 3–6, losing 50 % of its initial activity within approximately
3 h at pH 2.0 and 8.0. CDH was especially sensitive to pH values above 9.0 (Fig. 3b).

The kinetic parameters of the purified cellobiose dehydrogenase were analyzed with
cellobiose, lactose, and glucose as substrates using DCIP and cytochrome c as electron
acceptors at 30 °C (Table 3). The results indicate that cellobiose was the best substrate of
CDH with the catalytic efficiencies with a kcat/Km value of 66 mM−1 s−1 when DCIP was an
electron acceptor and 109 mM−1 s−1 when cytochrome c was used. Lactose was the least
preferred substrate, with a kcat/Km value of 4 and 11 mM−1 s−1 in the presence of DCIP and
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cytochrome c, respectively. The results obtained suggested that CDH from C. unicolor strain
FCL139 was unable to oxidize glucose. Strong discrimination of glucose as a substrate is a
characteristic for the Basidiomycete enzymes belonging to the class I CDHs [15]. Similar
values of kinetic constants were reported for other fungal cellobiose dehydrogenases [60, 61].

The influence of metal ions and substances that are potential inhibitors of different enzymes
on the activity of cellobiose dehydrogenase was tested (Table 4). The activating/inhibiting
effect of the analyzed substances on CDH was dependent on their concentration. The enzyme
from C. unicolor is sensitive to higher concentrations of SDS and CuCl2, similarly to the
protein from P. sanguineus [45]. Azide and cyanide have a slight inhibitory effect just like the
CDH from Schizophyllum commune [61]. A similar activating effect in the case of divalent
cations was observed by [40]. The other investigated reagents did not have any significant
effect on the CDH activity.

C. unicolor Cellobiose Dehydrogenase Structure

The UV–vis spectra of the oxidized and reduced states of the purified CDH from C. unicolor
indicated the presence of heme and flavin cofactors in the protein (Fig. 4). The main absorption
peak of the oxidized enzyme appearing at 421 nm is typical for heme b, whereas the
absorbance occurring in the region between 450 and 500 nm is mainly attributed to the
FAD group [57, 62]. Reduction of the enzyme by addition of lactose resulted in appearance
of peaks at 429, 532, and 562 nm and a decrease in absorbance at wavelengths between 450
and 500 nm, which probably represented the reduced form of FAD [62].

The molecular weight of both fragments (CuCDH-FAD and CuCDH) was predicted to be
58 and 97 kDa, respectively, as determined by SDS-PAGE analysis (Fig. 1). Most fungal
CDHs are monomeric proteins with molecular masses between 80 and 115 kDa [15]. Native
PAGE was also performed to identify the enzymatic activities of the proteins (Fig. 1).

Chromatofocusing was used to determine the isoelectric points for CuCDH-FAD and
CuCDH, which were detected at pH 5.50 and 4.55, respectively. Many other intact CDHs from
Basidiomycetes, such as P. chrysosporium, I. lacteus, T. versicolor, C. subvermispora, Phlebia
lindtneri, and P. sanguineus, have acidic isoelectric points ranging from 3.0 to 5.1 [15, 45, 57,
63–65]. The protein containing only the FAD domain has a higher pI (5.5–6.7) [45, 63, 64].

Monosaccharide analysis of CDH from C. unicolor strain FCL139 showed that the sample
contained mainly mannose (Man, 74.1 %). Small amounts of glucose (Glc, 6.2 %), galactose
(Gal, 2.5 %), and glucosamine (GlcN, 17.2 %) were also present. Summarizing, the

Table 3 Kinetic constants of cellobiose dehydrogenase for carbohydrate substrates

Enzyme Substrate Electron acceptor Km
[mM]

Vmax
[μM/min]

kcat
[s−1]

kcat/Km
[mM−1 s−1]

CuCDH-FAD Cellobiose DCIP 0.158 0.034 4.83 30.59

Cyt c – – – –

Lactose DCIP 10.121 0.052 7.39 0.73

Cyt c – – – –

CuCDH Cellobiose DCIP 0.285 0.189 18.86 66.18

Cyt c 0.175 0.191 19.06 108.92

Lactose DCIP 5.241 0.209 20.86 3.98

Cyt c 1.850 0.195 19.46 10.52
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carbohydrate content of CDH was estimated at 8.2 % using the Dubois method with mannose
as a standard. The up-to-date characterized fungal cellobiose dehydrogenases comprise from
8.9 up to 19 % of sugar moiety [66, 67].

The identity of cellobiose dehydrogenase from C. unicolor was further proved by LC-MS/
MS spectrometry analysis of the protein band observed in SDS-PAGE. The MS/MS raw data
obtained were used to search against the NCBI protein database. The analyzed protein was
identified when the MASCOT probability-based score (p<0.05) was greater than 52. The
protein from the gel slice was identified as CDH from C. unicolor with a MASCOT score of
55,248 and sequence coverage of 67 % (Fig. 5). The deduced molecular mass of C. unicolor
CDH (80.9 kDa) was very similar to that determined by in silico analysis of the CDH amino
acid sequence (82.6 kDa).

Molecular Properties of C. unicolor CDH

To our knowledge, this is the first in silico analysis of the Cerrena cellobiose dehydrogenase
gene. Analysis of sequenced full-length cDNA of the cdh1 gene from C. unicolor strain
FCL139 revealed one open reading frame (ORF) of 2316 bp. The deduced protein sequence of
cdh1 shared similarity of 72 % with P. lindtneri cellobiose dehydrogenase (accession number
AGE45679). The dendrogram obtained from the alignments of 12 cellobiose dehydrogenase
amino acid sequences of Basidiomycetes and Ascomycetes showed that the putative CDH1

Table 4 Effect of metal ions and some reagents on the cellobiose dehydrogenase activity

Relative activity (%)

0.1 mM 1 mM 5 mM 10 mM 50 mM 100 mM

None 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00

Imidazol 110±0.73 109±0.35 107±5.31 102±3.80 97±0.01 67±0.89

EDTA 100±3.58 100±2.11 98±0.25 97±2.48 91±7.44 70±8.57

NaF 100±0.43 96±3.73 93±3.59 93±1.29 58±1.86 46±4.88

KF 100±4.41 99±1.88 95±1.81 89±2.35 58±0.29 49±0.45

KCN 98±1.74 98±2.71 98±0.77 97±0.39 91±0.58 33±1.94

SDS 95±2.41 71±1.30 5±0.01 3±0.01 3±0.56 0±0.00

NH4Cl 102±3.62 102±1.50 102±1.09 99±1.67 97±0.26 97±1.42

Na2SO4 106±5.57 109±1.54 108±8.42 101±0.37 104±0.77 105±2.25

NaCl 94±0.25 92±0.53 94±2.33 94±2.26 97±0.02 97±1.56

KCl 102±0.02 101±0.32 100±0.65 100±3.30 103±1.01 105±2.02

MgCl2 99±0.01 98±1.40 98±1.37 96±1.15 87±0.29 85±1.46

CaCl2 99±1.21 99±0.61 98±3.02 96±2.24 94±1.04 93±0.58

CoCl2 105±0.02 104±0.84 102±0.81 101±0.81 102±2.07 97±0.22

MnCl2 100±1.65 100±1.43 100±2.65 100±2.36 99±3.30 97±3.32

CuCl2 98±0.67 98±1.54 93±0.59 84±2.20 7±0.18 1±1.15

ZnCl2 99±5.11 99±1.48. 99±1.49 97±2.10 95±1.01 95±1.65

MgSO4 101±3.83 101±0.89 101±1.59 101±0.01 100±0.22 99±1.79

MnSO4 102±1.36 101±3.19 103±0.69 100±0.45 100±2.96 100±0.91

CuSO4 101±1.33 96±2.41 96±0.02 91±2.80 86±1.04 86±0.60

ZnSO4 104±1.12 103±2.88 104±3.11 100±0.66 101±0.22 102±3.99
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clustered together with a similar protein from C. subvermispora (Fig. 6). Moreover, both
sequences belonged to the cluster including cellobiose dehydrogenases from T. versicolor,
P. lindtneri, and P. chrysosporium. The analyzed protein sequence (771 aa) comprised a signal
sequence within the first 18 amino acids (SignalP 0845). The results obtained place the length
of the C. unicolor CDH signal peptide between P. lindtneri (17 aa) and P. sanguineus (19 aa)
[45, 65]. A number of publications were produced indicating that proteolytic cleavage in the
linker region resulted in the presence of the FAD domain in the culture medium [15, 68] even
if some paper reported exceptions to this fact [57, 69]. However, our recent studies suggest that
whether the linker region is digested by proteases may be a consequence of both its
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Fig. 4 UV-visible spectrum of the oxidized (line) and reduced (dashed line) forms of CDH purified from
Cerrena unicolor strain 139 in 100 mM sodium acetate buffer, pH 4.5. Reduction was performed with lactose.
Spectra of oxidized (peak at 421 nm) and reduced (peaks at 429, 532, and 562 nm) CDH forms

1 QTASSYVDPG NGFQFVGLTD PVHQVTYGLT FPPLPSTGPA PTEFIGEIVA 

51 PIATKWIGFA LGGAMLHNLL LVAWPNNGQI VTSTRYATTY NLPTQYDGPT 

101 LTTLPSSSVN STHWKWVYRC QNCTSWQGGS LPLDSGAAVA WAYSDVAVDQ

151 PSNPQSTFSE HTDFGFFGID FSSAHNPNYE SYLSGNAPAP PTSVPPTGPS 

201 TTTQPTGPTI QPTPYDYIVV GAGPGGIIAA DRISEAGKKV LLIERGGPST

251 AETGGTYYAP WTADKKLTKF DVPGLFESMF SDSNPWYWCK DITVFAGCLL 

301 GGGTSINGAL YWYPTTSDFS TAAGWPSSWT NHGPYTNKLK ARLPSTDHPS

351 MDGKRYLTQA YDVAWQMLKN QGYNQITLND NPDFKDHAFG YSAFDFVDGK

401 RGGPVASYLR TAKARSNFAY MDYTIVSNVV RNGSKITGVQ TNNTQIGGNG 

451 IIPLNPNGRV ILSAGSFGSP RILFQSGIGP SDMLTLVQGN ADAAKKLPPS

501 NQFINLPVGM NVQDNPSINL VFTHPSIDAY ENWADVWSKP RPADAQKYLN

551 GFDGVFAGAS PKANFWRAYG AADGITRYAQ GTVRPGAASI NTTLPYNASN 

601 IFTITMYLST GITSRGRVGI DAALRARPLV NPWFADPTDK TVLVKALKDV

651 ISTMDQVPDL TMITPDVQMT IDQYVDAYDP SSMNSNHWVG SNKIGTSPST

701 AVVDENTKVF NTDNLFIVDA SIIPSLPTGN PHGMLMSAAE QAVAKILALS 

Fig. 5 Complete sequence of C. unicolor CDH (AGS09133) with matched peptides in bold (sequence coverage:
67 %)
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vulnerability and higher proteolytic activities in the cellulose-based medium. It is probable that
among many proteases produced by white rot fungi only, one fraction is capable of cleaving
cellobiose dehydrogenase. The problem should be addressed in detail in future studies
comprising various techniques and fungal species.

Within the putative protein sequence of C. unicolor CDH, conserved domains typical for
fungal cellobiose dehydrogenase were found at positions 23 to 189 aa (heme-binding
cytochrome domain) from 206 to 231 aa (the linker region) and 233 to 769 aa (choline and
flavoproteins domain). Moukha et al. [70] and Harreither et al. [19] proposed conserved
residues constituting a putative cellulose binding module in basidiomycetous cellobiose
dehydrogenases, which was also found in P. sanguineus CDH [45]. A similar module was
detected in C. unicolor CDH in positions Tyr-275, Trp-279, Phe-288, Phe-294, Phe-298, Trp-
304, Trp-306, and Phe-313. Analysis of N-glycosylation sites (Asn-X-Thr/Ser) showed gly-
cosylation points at positions Asn-128, Asn-140, Asn-450, Asn-533, and Asn-615. In com-
parison with the P. sanguineus cellobiose dehydrogenase [45], only ten O-glycosylation sites
were found within the linker region.

The complete C. unicolor CDH gene (3038 bp) was amplified by PCR using a genomic
DNA as a template and primers designed on the basis of the nucleotide sequence of the cdh1
cDNA, as described in the BMaterials and Methods^ section. The position of putative introns
within the cellobiose dehydrogenase gene was determined by comparison of the genomic
DNA and cDNA sequences. Eleven introns were found, ranging in size from 53 to 92 bp and
all of them fell into the GT-AG rule [71]. Similarly to P. sanguineus, the cellobiose dehydro-
genase gene contains fewer introns, likewise those of P. cinnabarinus [70] or P. chrysosporium
[72]; however, the last intron is exceptionally long (92 bp).

Antioxidant Activity Assays

Fungi are producers of a large number of bioactive compounds with antioxidant properties. In
the earlier studies, we have shown strong antioxidant capability of the fungal CDH from
P. sanguineus [45]. Determination of the antioxidant activity of the newly isolated cellobiose
dehydrogenase from C. unicolor is important for future research on its biotechnological

Fig. 6 Unrooted UPGMA-based phylogenetic trees constructed with 12 protein sequences. The dendrogram of
several cellobiose dehydrogenases from fungi. AGE97206- Phlebia lindtneri, AAB61455.1- Phanerochaete
chrysosporium, AAC50004.1- Trametes versicolor, AGS09133- Cerrena unicolor, ACF60617.1-Ceriporiopsis
subvermispora, EJD48894- Auricularia delicata TFB-10046 SS5, EAA27355.1- Neurospora crassa OR74A,
ELQ44991.1- Magnaporthe oryzae Y34, EEY23987.1- Verticillium alfalfae VaMs.102, ENH81675.1-
Colletotrichum orbiculare MAFF 240422, ENH71366.1- Fusarium oxysporum f. sp. cubense race 1,
AAF69005.1- Humicola insolens
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potential. We applied two different methods commonly used to estimate the antioxidant
potential: the DPPH and ABTS method. The obtained results showed that intact CDH without
substrates have no antioxidant activity. Evaluation of antioxidant activity of the intact CDH
with substrates (cellobiose and lactose) is shown in Fig. 7 (ABTS method) and Fig. 8 (DPPH
method). Antioxidant activity measured by DPPH showed the similar effects as the ABTS
method if the substrate was the electron donor. The scavenging abilities of CDH with lactose
and cellobiose at the concentration range of 6.25–800 μg/ml were estimated at 89.3–91.6 %
for ABTS and 81.8–82.1 % for the DPPH method, respectively. The EC50 values of CDH, i.e.,
the concentration of the enzyme necessary to decrease the initial concentration of DPPH and
ABTS by 50 %, was calculated and expressed in Table 5. The lowest values of EC50 were
observed for the DPPH radical scavenging method, i.e., 39.8 μg/ml for CDH with lactose and

Fig. 7 Comparison of the antioxidant properties of cellobiose dehydrogenase with and without substrates
(cellobiose and lactose) from Cerrena unicolor determined by the ABTS method. Values represent the mean±
SD of triplicate samples
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48.5 μg/ml for CDH with cellobiose. The EC50 values for the ABTS method used for testing
the CDH antioxidative properties were 103.7 and 93 μg/ml, respectively. All the results
obtained indicate strong redox potential of the CDH enzyme only in the presence of lactose
and cellobiose substrates. Therefore, it would be interesting to investigate whether C. unicolor
CDH may be applied as an antimicrobial agent, as recently described for Myriococcum
thermophilum cellobiose dehydrogenase [73].

C. unicolor strain FCL139 was proven to produce not only biotechnologically important
laccase but also cellobiose dehydrogenase with interesting features as well. Given the size and
gene content of the available C. unicolor genome, its CDH is only part of the wood degrading
machinery and it would be interesting to characterize in detail the abilities of this white rot
fungus of decompose lignocellulose. The recent explosion of interest in cellobiose dehydro-
genase, which was proven to act in concert with LPMO (lytic polysaccharide monooxygenase)
in cellulose breakdown and was successfully applied in different biotechnological areas,
encourages scientists all over the world to search for new CDH with exceptional features.
By applying high throughput techniques, new insight into the wood decomposition is possible.
In consequence, the acquired knowledge will contribute to accelerating the application of the
discovered and characterized enzymes in new biotechnological areas.
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