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S u m m s r y  

How peptide-major histocompatibility complex (MHC) class II complexes are naturally generated 
is still unknown, but accumulating evidence suggests that unfolding proteins or long peptides 
can become bound to class II molecules at the dominant determinant before proteolytic cleavage. 
We have compared the immunogenicity of hen egg-white lysozyme (HEL) in nonobese diabetic 
(NOD), (NOD x BALB/c)F1, and E~ transgenic NOD mice. We find that a response to the 
subdominant AN~ determinant disappears upon introduction of an E a molecule, and 
is restored when scission of HEL separates this determinant from its adjoining, competitively 
dominant, Ed-restricted determinant. This suggests that the E d molecule binds and protects its 
dominant determinant on a long peptide while captured neighboring determinants are lost during 
proteolysis. These results provide dear evidence for "determinant capture" as a mechanism of 
determinant selection during antigen processing and a possible explanation for MHC-protective 
effects in insulin-dependent diabetes mellitus. 

T he nature of the actual binding event between an anti- 
genic derivative and class II molecules is still unknown. 

Peptides eluted from class II are longer than those from class 
I molecules, mostly 13-22-mer, suggesting that many amino 
acid residues can protrude from both sides of class II mole- 
cules (1, 2). Sette et al. (3) demonstrated that even full-length 
protein antigens, provided they were unfolded, could directly 
bind to class II molecules. Interestingly, the unfolded antigens 
bound preferentially to one of the two class II MHC mole- 
cules according to the presence of appropriate binding sites 
on the antigen molecules. 

The possibility thus arises that even local unfolding of a 
protein molecule, revealing some residues previously inacces- 
sible for binding to class II MHC molecules is sufficient to 
permit protein binding (4). Proteolytic degradation would 
follow, leaving a bound peptide with most outlying and 
flanking residues trimmed. Upon unfolding, the first, most 
available, and high-affinity binding region on the antigen 
would preferentially bind to class II molecules. According 
to this scenario, these protein sequences would be protected 
from proteolysis by the MHC molecule and could later be- 
come the immunodominant T cell determinant (5-7). This 

mechanism predicts that a single, or a small number of de- 
terminants, would emerge as competitively favored over other 
determinants up- or downstream on the antigen sequence. 
Furthermore, in binding via the dominant determinant, the 
mouse class II E molecule for example, would concomitantly 
capture other A- (or E-) restricted determinants present on 
the bound protein, reducing the probability that the captured, 
less dominant determinants could later become involved in 
productive formation of peptide-class II ligands. Competi- 
tion between E and A molecules for antigen binding would 
otherwise only come about with promiscuous peptide deter- 
minants (8, 9) binding to both MHC molecules. This general 
model of determinant capture would readily explain, at a single 
stroke, many cases of dominance, as well as the existence of 
cryptic antigenic determinants, that can induce responses but 
only in the absence of other determinants (10, 11). Likewise, 
evidence for determinant capture would strongly support a 
model in which longer peptides regularly bind to class II mol- 
ecules. 

One relevant aspect of determinant capture is its extension 
to the mechanism of protection provided by added MHC mol- 
ecules in autoimmune diseases such as insulin-dependent di- 
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abetes mellitus (IDDM). 1 Several reports have recently ap- 
peared demonstrating that female nonobese diabetic (NOD) 
mice, which contract IDDM spontaneously, can be protected 
from disease if they are made transgenic for certain extra- 
MHC class II molecules. The NOD mouse only expresses 
a single MHC molecule I-A N~ and it can be protected by 
making it transgenic, for example, by the introduction of E~ 
or A k (12-14). Likewise, particular F1 mice with a NOD 
parent do not contract IDDM (15, 16). Population studies 
examining class II DR-DQ haplotypes in Caucasian and other 
ethnic IDDM patients and matched controls indicate that 
known disease-protective alleles have been identified at both 
the DQB1 or DRB1 loci (17-19). 

Determinant capture by transgenic MHC molecules could 
provide a explanation for disease protection. To establish 
whether or not this was a suitable model for protection in 
IDDM, we have compared the immunogenicity of hen egg- 
white lysozyme (HEL) in NOD, (NOD x BALB/c)F1, and 
E~ transgenic NOD mice. This work provides the first clear 
evidence for "determinant capture" and supports a model in 
which the protective effects are exerted at the moment of 
antigen processing in the peripheral immune system. 

Materials and Methods 
Animals. Mice were purchased from the Jackson Laboratory 

(Bar Harbor, ME) or bred in our facility. NOD-E~16 transgenic 
mice, a transgenic line of NOD mice expressing a wild-type copy 
of the E~ gene, and nontransgenic littermates were obtained and 
typed as described (20). E~ and E~ are considered functionally 
equivalent, having a single N ~ Q  exchange in the czl domains of 
these molecules. NOD(ym) mice were obtained from the Univer- 
sity of California, Los Angeles colony, and F1 mice were produced 
by crossing NOD(ym) with BALB/c from Jackson Laboratory. 

Antigens. HEL, three times recrystaUized, was obtained from 
Sigma Chemical Co. (St. Louis, MO), and was purified by chro- 
matography on a weak cation-exchange column of Bio-Rex 70 (Bio- 
Rad Laboratories, Richmond, CA). CB-HEL Cyanogen bro- 
mide-cleaved HEL (CB-HEL): HEL was treated with a 100-molar 
excess of resublimated cyanogen bromide in 70% formic acid for 
24 h at room temperature and twice lyophilized. Cleavage at residues 
12 and 105 was confirmed after reduction of disulfide bonds in CB- 
HEL as described (Ametani, A., A. Sette, and E. E. Sercarz, manu- 
script submitted for publication). HEL peptides were synthesized 
through use of a peptide synthesizer (model 430A; Applied Bio- 
systems, Inc., Foster City, CA). The peptides were purified by 
reversed-phase HPLC and showed correct amino acid ratios upon 
hydrolysis in 6N HC1. Sequences were confirmed by gas-phase 
microsequencing. A complete series of 15-met HE[, peptides over- 
lapping by 14 amino acids was synthesized using a modified pin 
synthesis technique (21) and was purchased from Chiton Mimo- 
topes Pty Ltd. (Clayton, Australia). Peptide yield was estimated 
as described previously (21). Peptides in PBS were directly added 
to single wells without further purification to a final concentra- 
tion of 7/~M for T cell proliferation assays as described (21, 22). 

T Cell Proliferation. Mice were immunized subcutaneously in 

1 Abbreviations used in this paper: CB-HEL, cyanogen bromide-cleaved hen 
egg-white lysozyme; IDDM, insulin-dependent diabetes mellitus; NOD, 
nonobese diabetic. 

a hind footpad, usually with 7 nmol HEL emulsified in CFA con- 
taining H37Ra mycobacteria (Difco Laboratories Inc., Detroit, MI). 
9 d later, popliteal lymph node cells were cultured (5 x 10 s per 
well) in 96-well plates in Hbl  serum-free medium (Ventrex Labora- 
tories, Portland, ME) supplemented with 2 mM glutamine and the 
indicated concentrations of antigen. Tuberculin purified protein 
derivative (PPD; Evans Medical, Horsham, UK) was used as a posi- 
tive control for each culture at a final concentration of 5/zg/ml. 
Proliferation was measured by addition of 1 ~Ci of [3H]thymidine 
for the last 15-18 h of a 5-d culture and the incorporation was 
assayed by liquid scintillation counting. 

Results 
T Cell Proliferative Response of N O D  Mice to HEL. To map 

the HEL determinants that elicit an immune response in NOD 
mice, a panel of 15-met HEL peptides overlapping by 14 amino 
acids was synthesized and used to test proliferative responses 
in draining lymph node cells from mice primed with 7 nmol 
of HEL. The results shown are representative of three repeated 
experiments (Fig. 1). Clearly, there are two responsive regions. 
The major or dominant response was elicited with peptides 
6-20 through 14-28. As we have previously described (22, 
23), this identifies a "core" sequence, composed of residues 
14-20, that is critical for recognition. A minor response was 
detected with peptides 88-102 through 95-109, indicating 
a minor, subdominant determinant with a core of 95-102. 
(We will refer to determinants by their core sequences in the 
rest of this paper.) These two HEL determinants are recog- 
nized in association with I-A N~ since this is the only 
MHC class II molecule expressed by NOD mice. Previous 
studies had identified the HEL 14-20 determinant response 
in the H-2 d haplotype (Apple, R., H. Deng, A. Miller, E. 
Sercarz, and J. Cogswell, manuscript submitted for publica- 
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Figure 1. The T cell proliferative response of NOD mice to HEL. Three 
NOD mice were immunized with 7 nmol (100/~g) of HEL in CFA. LNC 
were pooled at day 10 and tested for in vitro reactivity against a final con- 
centration of 7/~M of the 15-met peptide series overlapping by 14 amino 
acids. The peptide number shown at the bottom corresponds to the posi- 
tion of the NH2-terminal residue of the peptide in the HEL sequence. 
The average non-HEL peptide background response of three wells + SD 
was 2 + 0.3 (cpm x 10-3). (Note that there is a gap in the sequence 
[peptides starting with residues 51-72]). 
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Figure  2. The response t o  HEL 95-102 is lost in (NOD x BALB/c)Ft 
mice. Three (NOD x BALB/c)Ft mice were immunized with 7 nmol 
of HEL in CFA. See legend to Fig. 1 for further details. The average non- 
HEL peptide background response of three wells _+ SD was 7 _+ 1.2 (cpm 
x 1 0 - 3 ) .  

tion). Interestingly, the A NOD is identical to A~, while A~ OD 
is unique, but similar to the I-A~ molecule (24). 

Response to HEL 95-102 Is Lost in (NOD x BALB/c)FI 
Mice. Previous investigation of the HEL-induced response 
in BALB/c mice showed a dominant Ed-restricted response 
to either peptide 106-116 or 108-120 (core 108-116) (22). 

d d To express the native E=Ea molecule in the same cell with 
the NOD I-A N~ molecule so that the determinant capture 
model could actually be tested, we studied the response to 
HEL in the (NOD x BALB/c)F1 mouse, in which AdAm, 
Ea~E~, and EdS~ ~ MHC molecules are expressed in addi- 
tion to AdA~ ~ There are no mixed-haplotype I-A mole- 
cules that are not present in either parental strain because 
the AN OD is identical to A d. In addition, E NOD has a pro- 
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Figure 3. The response to HEL 95-102 is detected in NOD mice after 
low-dose immunization. Three NOD mice were immunized with 1.4 nmol 
of HEL in CFA. LNC were pooled at day 10 and tested for in vitro reac- 
tivity against the 15-mer peptide series encompassing HEL amino acids 
87-109. The peptide number shown at the bottom corresponds to the 
position of the NHz-terminal residue of the peptide in the HEL sequence. 
The average medium-only background has been subtracted in each case. 
The control response to medium of three wells _+ SD was 7,149 + 705 cpm. 

moter defect and cannot be expressed. Therefore, in these 
a a and Ft mice there are only two types of E molecules: E~E a 

E~E~ ~ Figure 2 shows the HEL peptide response profile 
of HEL-primed (NOD • BALB/c)F~ mice. In F1 mice the 
response to the subdominant N O D  determinant 95-102 is 
lost, while the response to both the dominant NOD deter- 
minant 14-20 and the dominant BALB/c Ea-restricted de- 
terminant 108-116 are retained. 

To confirm the loss of reactivity to the NOD subdominant 
determinant 95-102 in Ft mice, we immunized F1 and 
NOD mice with HEL at varying doses and compared their 
response patterns. Fig. 3 shows that the 95-102 determinant 
response can still be detected in NOD mice after low-dose 
immunization (1.4 nmol) (stimulation index -- 6.6), while 
the F1 mouse displays no 95-102 reactivity, even when 7 nmol 
of HEL was used for immunization (Fig. 2). 

Cyanogen Bromide Cleavage of HEL Restores the Response 
to 95-102 in FI Mice. The loss of response to determinant 
95-102 in the (NOD • BALB/c)F1 mice could be attrib- 
uted to a number of factors such as I-E-mediated suppres- 
sion, effects on antigen processing resulting in the decreased 
formation of HEL 95-102/A rq~ complexes, or absence from 
the peripheral T cell repertoire of cells capable of interacting 
with HEL 95-102/A N~176 after negative selection on I-E self- 
peptide complexes. One way to test these possibilities directly 
was provided by the convenient positioning of methionine 
at residue 105 in HEL. Thus, direct treatment of HEL with 
cyanogen bromide in 70% formic acid results in scission at 
Met-105, as well as at Met-12, creating flexibility and in- 
creased determinant availability at the new termini, although 
the four disulfide bonds of the derivative (equaling CB-HEL) 
maintain the overall molecular integrity. Therefore, (NOD 
• BALB/c)F1 mice were immunized with CB-HEL: as seen 

in Fig. 4, the response to determinant 95-102 was thereby 
reestablished, presumably because the scission in the mole- 
cule splits apart the determinants 95-102 and 108-116, ob- 
viating any determinant capture in which 95-102 responses 
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Figure 4. Cyanogen bromide cleavage of HEL at methionine residues 
12 and 105 restores the response to 95-102 in F1 mice. Three (NOD x 
BALB/c)FI mice were immunized with 7 nmol of CB-HEL in CFA. See 
legend to Fig. 1 for further details. The average non-HEL peptide back- 
ground response of three wells +_ SD was 9.2 _+ 1.3 (cpm x 10-3). 
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Figure 5. The response to HEL 95-102 can be produced in Ft mice 
by direct immunization with the peptide. Five representative FI mice were 
immunized with 7 nmol of HEL 91-105 in CFA. LNC from these five 
individual mice were assayed in vitro with peptide 91-105. Each curve 
represents values from one individual mouse. The backgrounds were sub- 
tracted; they ranged from 1,500 to 8,000 cpm. 

would have been lost because of the presence of the neigh- 
boring competitive sequence on the same peptide strand. 

These results also indicate that mice expressing I-E mole- 
cules have an adequate T cell repertoire capable of responding 
to HEL 95-102. This was confirmed by direct immuniza- 
tion of F1 mice with the 91-105 peptide. F1 mice mount 
a significant proliferative response to 91-105 (Fig. 5). 

The HEL Response Pattern Is Not Altered in E a Transgenic 
NOD Mice: d a Capturing Entity, Not E~Ea Is the Dominant 
E~E~ ~ At this stage, the major unknown quantity was 
whether in the (BALB/c x NOD)F1, the E~E~ or the 
Ea~E~ ~ molecules, or both, were engaged in competitive 
capture. To test whether E~E~ ~ itself could influence the 
specificity of response to HEL, we chose the E,A6 transgenic 
NOD mouse (20) to test the effect of I-E~E~ ~ expression. 
E~16 transgenic NOD mice and nontransgenic littermates 

were primed with 7 nmol per mouse of HEL-CFA and 
draining LN cells (LNC) were tested for T cell proliferation 
to a panel of 15 overlapping HEL peptides. Fig. 6 A shows 
that in NOD mice a dominant HEL epitope is included in 
the sequence 12-29, and a subdominant one in the region 
94-110. Weaker responses are induced by three other pep- 
tides and no response (data not shown) by the remaining nine 
peptides. This confirms the results obtained with 15-met pep- 
tides in the pepscan series (Fig. 1). No change in the HEL 
response pattern was observed in these Ea~ transgenic NOD 
mice (Fig. 6 B). Although HEL 106-116 is a dominant de- 
terminant in the context of I-E a (25), and HEL 1-18/E k is 
a dominant determinant in the C3H mouse (26), neither of 
these peptides nor any other HEL peptide tested is presented 
to T cells by the transgenic Ea~E~ ~ molecule. This corre- 
lates well with sequence data demonstrating that the I-E~ ~ 
molecule is unique (27). These findings make it clear that 
the capturing determinant in the F~ mice must have been 
the E~E~ and not the ~dl~NOD �9 ~,~fl molecule. 

Discussion 

The T cell proliferative response to HEL in the NOD mouse 
is composed of a very dominant response to an A N~ 
restricted determinant with a core of 14-20 and a subdominant 
response centered on residues 95-102. The introduction of 
an E d molecule, known to exert a dominant role in mice of 
the H-2 d haplotype by binding 108-116, prevented a re- 
sponse to the A N~ binding determinant with the core of 
95-102, located upstream on the HEL molecule, a clear ex- 
ample of competitive determinant capture. Determinant cap- 
ture occurred only if the capturing and the captured deter- 
minant were adjoining on HEL. Thus, scission of the bond 
at Met-105-Asn-106 in creating CB-HEL leaves it as a single 
entity with its four disulfide bonds intact, but prevents de- 
terminant capture and reinstates the response to 95-102. As 
a matter of fact, presumably the enhanced mobility and avail- 
ability of 95-102, after cleavage of the 105M-106N bond by 
cyanogen bromide, led to a more intense response to this de- 
terminant. We assume that CB-HEL undergoes reduction 
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Figure 6. The HEL response pattern is not al- 
tered in F~ transgenic NOD mice. (A) Five NOD 
and (B) five NOD-E~16 mice were immunized 
with 7 nmol per mouse of HEL in CFA. The 
draining lymph nodes from individual mice were 
removed 9 d after immunization, and tested for 
in vitro reactivity against a panel of 15 overlap- 
ping HEL peptides. Proliferation was measured on 
the third day of culture by [3H]thymidine incor- 
poration. Results are expressed as mean counts per 
minute of triplicates from five mice per group. Only 
peptides to which a response was raised are shown. 
( I ) 1-18; (--A--) 8-29; (--| 12-29; 
(.. + ..) 25-43; ( ~ )  94-110; ( - -0 - )  101-116. 
The average medium-only backgrounds were 2,113 
(for NOD) and 1,672 (for NOD-F_~16) cpm. 
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of the disulfide bonds and further enzymatic attack which 
fully detaches 106-116 from 91-105. 

For determinants to become involved in competitive cap- 
ture, it is evident that they must lie on the same molecule: 
short peptides only able to bind to distinct MHC molecules 
are not subject to determinant capture. It has been shown 
that long peptides are capable of binding to MHC molecules, 
provided that they are unfolded, rendering internal agretopes 
of the antigen accessible. Previous work (3) had shown that 
reduced full-length protein molecules (lysozyme, OVA, 
cytochrome c, transferrin) could also bind to class II mole- 
cules. More recently, a series of lysozyme derivatives, either 
full-length or slighdy smaller, were shown to directly bind 
to the E k molecule, even when only two peptide bonds were 
cleaved within the HEL molecule as in CB-HEL (Ametani 
et al., manuscript submitted for publication). Jensen (28) also 
has shown that native protein antigens, provided that they 
are reduced/unfolded or under acidification, can bind to MHC 
molecules. 

Our results show that in F1 mice, T cells specific for 
A N~ complexed to HEL determinant core 95-102 are no 
longer activated after HEL immunization. If determinant- 
size peptides were created initially from a protein molecule 
before MHC binding, it should never arise that E a and 
AN~ determinants would actually compete, be- 
cause the determinants would lie on separate structures. These 
determinants happen to be directly in apposition on the na- 
tive molecule and thereby would be unlikely to be separated 
by an early random cleavage. Presumably, increasing the dis- 
tance between the capturing determinant and its target may 
allow the determinants to become separated by intermedi- 
ated cleavage or trimming. During the trimming phase, large 
peptides may be created by endopeptidase cleavage as well 
as small ones, and the former may get a second chance to 
bind to MHC molecules. 

There is some other evidence supporting the determinant 
capture model. In vivo, a limited set of processing products 
(2-15 kD) are bound by class II molecules, as demonstrated 
by direct detection with a radiolabeled antigen (29). The im- 
plication is that some fragments are not further processed 
but remain bound to MHC molecules. This is in agreement 
with the observation that peptides as large as 12 kD could 
be eluted from class II molecules (30). It also has been demon- 
strated that immunodominance is exerted through in- 

tramolecular competition between covalently linked T cell 
determinants for binding to MHC class II molecules of dif- 
ferent isotypes (31, 32). Nepom (33) has presented a compe- 
tition model in which a single promiscuous diabetogenic pep- 
tide is capable of binding, with high affinity, to a variety of 
class II molecules. We believe that this model involving a 
single peptide is too restrictive to completely explain the 
breadth of protective effects afforded by a heterogeneous popu- 
lation of class II molecules encoded at multiple loci. 

Our results provide evidence for determinant capture as 
a mechanism of determinant selection during antigen pro- 
cessing in (NOD x BALB/c)F, mice. This mechanism 
offers insights into the protective effect of I-E or I-A ~ mol- 
ecules on the incidence of IDDM in the NOD mouse, as 
well as for the protective effect of certain DQB1 and DRB1- 
encoded alleles in human IDDM (17-19). If HEL had been 
the major autoantigen in IDDM, evidence for HEL deter- 
minant capture by E n~ molecules in NOD-E,d6 transgenic 
mice would have easily provided a mechanism for protection. 
This possibility obviously remains to be tested using reason- 
able diabetogenic candidates. 

In trying to understand the protection afforded by the class 
II transgenes, two phenomena have lacked an explanation. 
One is that very different class II MHC molecules can over- 

d d d k come IDDM, including E,,E a and A,,A a. A second derives 
from the observation that pancreatic biopsies from A k trans- 
genic mice show islets mostly free from insulitis but a few 
with a mild degree of infiltration (13). This indicates that 
the mechanism of protection is "leaky:' Such an incomplete 
degree of protection has also been reported by Miyazaki et 
al. (34). These two protection features can be easily explained 
by the determinant capture model. First, any different MHC 
molecule may act as a competitive restriction element. How- 
ever, it is evident that two equally dominant determinants, 
A~A~~ and E~E~108-116 can concomitantly induce 
specific T cells. It appears that determinant capture is more 
likely to occur when there is a disparity in the affinity of 
the competing determinants along a multideterminant mol- 
ecule for their different MHC binding sites. Second, an in- 
complete degree of protection is an inherent feature of the 
determinant capture model which is dependent on the quan- 
tity of a given antigen, the relationship between the binding 
constants of the competing determinants for the MHC mol- 
ecule, and the vagaries of antigen processing. 
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