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a b s t r a c t

The COVID-19 pandemic had a major impact on healthcare systems across the world. In the United
Kingdom, one of the strategies used by hospitals to cope with the surge in patients infected with
SARS-Cov-2 was to cancel a vast number of elective treatments planned and limit its resources for
non-critical patients. This resulted in a 30% drop in the number of people joining the waiting list
in 2020–2021 versus 2019–2020. Once the pandemic subsides and resources are freed for elective
treatment, the expectation is that the patients failing to receive treatment throughout the pandemic
would trigger a significant backlog on the waiting list post-pandemic with major repercussions to
patient health and quality of life. As the nation emerges from the worst phase of the pandemic,
hospitals are focusing on strategies to prioritise patients for elective treatments. A key challenge in this
context is the ability to quantify the expected backlog and predict the delays experienced by patients
as an outcome of the prioritisation policies. This study presents an approach based on discrete-event
simulation to predict the elective waiting list backlog along with the delay in treatment based on a
predetermined prioritisation policy. The model is demonstrated using data on the endoscopy waiting
list at Cambridge University Hospitals. The model shows that 21% of the patients on the waiting list
will experience a delay less than 18-weeks, the acceptable threshold set by the National Health Service
(NHS). A longer-term scenario analysis based on the model reveals investment in NHS resources will
have a significant positive outcome for addressing the waiting lists. The model presented in this paper
has the potential to be an invaluable tool for post-pandemic planning for hospitals around the world
that are facing a crisis of treatment backlog.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The Coronavirus SARS-Cov-2 (COVID-19) pandemic resulted in
n unprecedented global health, economic, and social crisis and
as exposed the vulnerabilities of healthcare systems around the
orld due to the scarcity of hospital resources. Many health-
are systems, including the NHS in the UK, diverted elective
reatment resources towards the frontline as a main mitigation
trategy throughout the pandemic. Consequently, a significant
umber of elective patients accumulated on the waiting list.
or instance, in February 2021, 4,698,348 waiting list patients
ere recorded across England, 35.5% of which incurred a delay
xceeding 18-weeks [1], the acceptable threshold set by the NHS.
The implications of prolonged waiting time include increased

ortality rates for patients, especially non-prioritised patients
2–4]. A recent study [5] examining historical data across Eng-
and found that an average two month delay per cancer patient
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211-6923/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
(considering a three-month lockdown) would result in 2.25% ad-
ditional lives lost with a backlog on referrals of 25%. Similar stud-
ies on chronic cardiac disease [6] indicated significantly higher
mortality rates among patients pending structural procedures.

Given these implications, the main factors hindering elec-
tive treatment as COVID-19 stabilises are: shortages in staff
due to sickness or enforced quarantine; inefficiencies in the
supply-chain of surgical material (e.g. consumables, equipment);
restricted availability of suitable operating theatres; rise in ex-
penses for patients and insurance companies due to elaborate
treatment protocols; and triaging non-emergency cases according
to the risk–benefit ratio for the patient and community [7].

In fact, Brown et al. [8] highlight the limitations within elec-
tive treatment services, particularly endoscopy, well before the
pandemic exposed the healthcare system’s vulnerabilities. The
authors cite ‘issues with data availability, quality and use’ as a
recurring challenge. Particularly, the endoscopy datasets should
be more comprehensive to present an indication of the reason the
patient was referred for treatment. The authors also consider the
process of accessing and processing these datasets complex due
to inconsistent publishing schedules and formats across different
datasets. Aside from how the data is presented and its timeli-
ness, Greenhalgh et al. [9] and Guerriere [10] argue that a key
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ssue is the absence of sufficient skills to analyse the available
erformance data and translate it into operational improvements.
This study pursues the lack of data or visibility on the wait-

ng list backlog to incite operational improvements across the
ecovery of elective waiting lists post-pandemic. Particularly,
racking the backlog would inform policy planning (e.g. challenge
hresholds for acceptable waiting time), short- and long-term
nvestments in expanding hospital resource capacities, short-
erm hospital resource allocation, as well as offer estimates on the
xpected delay in treatment for waiting list patients. To address
hese issues, a predictive model for the delay in post-pandemic
lective treatment is introduced based on a pre-determined
cheduling policy. The proposed model-based on discrete-event
imulation — estimates the short- and long-term trajectory of
he elective waiting list to gauge the time period and resources
equired for recovery. The model is applied to the endoscopy
epartment of Cambridge University Hospitals (CUH) as a case
tudy to demonstrate its practical capability.
The main research aims of the paper include: (i) presenting
flexible granular simulation model that can be adapted to

ifferent waiting list use cases and optimisation objectives; (ii)
ffering short- and long-term delay time and waiting list statis-
ics that can be filtered down to different patient characteristics
e.g. priority class, elective procedure); (iii) informing waiting list
olicy planning and resource allocation through highlighting pain
oints (e.g. types of patients waiting longer, short resources);
nd (iv) gauging the benefit of post-pandemic treatment capacity
nvestments limiting prolonged patient delays.

This paper is structured as follows: Section 2 presents a review
f the literature, Section 3 establishes the predictive model, and
ections 4 and 5 detail the undertaken case study along with the
indings. Sections 6 and 7 finally list the limitations of the study
nd conclude potential future prospects.

. Literature review

In the literature, various studies have addressed patient wait-
ng list problems and optimisation of resources in hospitals. Dal-
oul et al. [11] propose a stochastic mixed integer programming
odel to optimise resources such as physicians and nurses in
rder to minimise patient waiting time in the emergency de-
artment. The impact of transferring non-urgent patients as a
esult of emergency department overcrowding is examined by
ezamoddini et al. [12]. The transfer minimises patient waiting
imes while maintaining the same capacity of resources. The
odel suggested in Oh et al. [13] was used to investigate problem
reas concerning process flow, resource allocation, and opera-
ional policies in order to optimise an emergency department’s
hroughput. Bhattacharjee and Ray [14] propose a model of a
ospital appointment system that recognises different patient
lasses for a radiology department’s scanning machine. Multiple
ppointment system policies are evaluated with patient waiting
ime and resource utilisation being the monitored criteria for
uccess. Both models [13,14] are implemented using discrete-
vent simulation. Mahmoudzadeh et al. [15] target rising waiting
imes for healthcare services by investigating patient scheduling
olicies using a robust optimisation approach.
Data analytics have been widely explored in healthcare to

ulfil a multitude of patient care targets. Among these targets,
aiting time serves as a common measure for a healthcare sys-
em’s performance. In fact, most NHS trusts have continuously
xceeded their maximumwaiting targets [16]. As a result, waiting
ime predictions have been well-explored within pre-pandemic
iterature.
2

2.1. Pre-pandemic predictive models

Several authors adopted a machine learning methodology to
predict patient waiting time among other KPIs. Kaul et al. [17]
conduct a comparative study among different prediction-based
algorithms (CARE, COHESY, and HARM) highlighting their key
features and limitations. While this study [17] explores different
machine learning algorithms, Curtis et al. [18] propose a universal
predictive model for patient waiting time by assessing nine ma-
chine learning algorithms according to a set of evaluation criteria
(e.g. root mean square error). The research objectives comprise
encouraging superior staff responsiveness and patient satisfac-
tion. Sun et al. [19] employ Quantile Regression to predict waiting
time in real-time given a certain set of patient characteristics
(e.g. patient acuity) to improve patient satisfaction and quality
of care. The resulting forecasts incurred a prediction error of
only 9 to 16 min. Joseph et al. [20] and Goncalves et al. [21]
both adopt the Random Forest Regression methodology to pre-
dict waiting time and pinpoint the variables with the highest
predictive power.

While these studies have generated reasonably sound results
(e.g. accuracy of 50.09% [21]), other authors have approached
the problem using more holistic methodologies to mitigate the
limitations of ‘black box’ machine learning techniques. In fact, Liu
et al. [22] isolate the root cause of macro-level features (e.g. high
waiting time and length of stay) using agent-based simulation
modelling to improve resource allocation and strategic planning.
Babashov et al. [23] adopt a discrete-event simulation model
highlighting system bottlenecks and quantifying the impact of
resource levels to reduce patient waiting time. Chong et al. [24]
model patient flow using a system dynamics model to exam-
ine the trade-off between waiting time, occupancy, and safety
outcomes.

The studies listed above offer significant insight on healthcare
predictive models. However, when it comes to the application
pursued in this paper, a strong historical basis – an imperative
and universal factor for the accuracy of these models – for pan-
demic patient delays sufficient for isolating patterns is lacking.
The rest of this section explores approaches from existing lit-
erature on overcoming this shortcoming and adopted predictive
models for unprecedented events.

2.2. Pandemic predictive models

Throughout the pandemic, predictive analytics have been
utilised to forecast infection rates, admissions rates, and waiting
list size among a multitude of KPIs.

When it comes to predicting waiting list size and the corre-
sponding costs, authors have relied on aggregated hospital data
to draw out conclusions. In fact, based on NHS data, Macdonald
et al. [25] estimate the building backlog of elective procedures
to accentuate the current state of waiting lists and propose so-
lutions. The authors highlight the diminishing compliance with
pre-pandemic waiting time standards (87% in 2019 vs. 83.2% in
2020). They anticipate 400,000 cases to be missed every month.
Sud et al. [5] also examine the impact of different scenarios on
the waiting list backlog for cancer referrals based on histori-
cal age- and cancer stage-stratified data. For every prospective
level of backlog (ranging from 25% to 75%), the number of lives
potentially lost is quantified. The implications of capacity in-
vestments are similarly measured in terms of the number of
lives potentially saved. Fowler et al. [26] model the expected
number of surgeries performed, the resources required, and the
cost of delayed surgery. Garcia-Rojo et al. [27] conduct an obser-
vational descriptive study to assess the impact of the pandemic
on urology surgical waiting lists in high-volume hospitals. The
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esulting mean waiting time observed substantially exceeded that
f 2019 as well as acceptable delay thresholds in some cases.
owever, given the descriptive methodology design adopted in
hese studies, the analysis lacked a long-term outlook on patient
aiting time.
Other authors approached the problem using more analyti-

al methodologies. Oussedik et al. [28] model the orthopaedic
athway as a dynamic system. The research objective comprises
stimating the potential number of patients on elective waiting
ists and proposing recovery strategies. The model suggests that
hile financially burdensome, expanding service capacity by 30%
ubstantially reduces the time required to restore pre-COVID
aiting list levels. Joshi et al. [29] employ machine learning
based on an optimisation algorithm) fed by internal hospital data
o create an interactive predictive analytics tool. The tool offers
eal-time estimations on the expected backlog clearance time,
vertime required, and potential costs associated with backlog
eduction, assuming an optimal assignment of resources. While
oth studies focus on resource availability and allocation, the
odel proposed in this paper offers estimations on delay time
hich would highlight the groups of patients requiring resource

nvestments.
Wood [30] also approach predictions using a more systematic

ethodology, discrete-time simulation. The research objective is
o quantify the implications of the pandemic on the backlog and
stimate the service capacity required to restore pre-pandemic
aiting list levels. The monitored outputs concern the waiting list
ize and the proportion of waiting patients in compliance with
he 18-week standard. Given that the study was conducted back
n March 2020, a series of simplifications were considered for the
istribution of patient arrivals and priority classes. Ho et al. [31]
erves as another study that directly pursues pandemic wait-
ng lists. The model anticipates the cumulative deficit between
he actual and expected procedures based on historical data, a
ethod similarly considered in this paper. The authors postulate

hat even with mitigation measures, it could take longer than a
ear to eliminate the implications of the pandemic. Given that
he model relies on national aggregated patient data, high-level
onclusions regarding the overall trajectory of the waiting list are
resented. Thus, the limitations restricting these studies [30,31]
ies within the limited granularity in monitoring waiting time,
rrespective of patient characteristics.

To summarise the above, the main limitations of both pre- and
ost-pandemic predictive models are the limited granularity in
onitoring waiting time, irrespective of patient types and char-
cteristics, and the lack of a long-term outlook on the trajectory
f the waiting list post-pandemic.
Many papers [13,32], and [23] highlighted the value of simu-

ation modelling and, in particular, discrete-event simulation as a
ighly informative tool for healthcare planning to minimise wait-
ng lists and maintain acceptable waiting time thresholds, as well
s to investigate the impact of what-if scenarios on various KPIs.
he authors in Salmon et al. [33] provide a literature review of
pplications of simulation modelling to emergency departments.
he rise in recent publications indicate the potential of simulation
n reaching a clinical audience.

The model introduced in this paper addresses the limitations
dentified above using simulation modelling given its model-
entricity as opposed to data-centric machine learning algo-
ithms. That is, rare disruptions or soft factors (e.g. waiting list
atient mortality) with little data basis to be picked up by pattern
ecognition can also be incorporated for accuracy. The model
mploys predictive analytics supported by waiting list policy
lanning to offer a short- and long-term outlook on the waiting
ist backlog, which directly corresponds to the research aims

argeted by this study.

3

3. Model

The proposed model adopts discrete-event simulation to rep-
resent the waiting list system. This methodology is considered
given its granular representation of the system, breaking it down
to patient-by-patient events marking referral to treatment, enter-
ing the waiting list, receiving treatment, and leaving the system.
This granularity also encourages the inclusion of different patient
characteristics that define each event (e.g. a patient requiring a
colonoscopy would spend 2.5 h receiving treatment versus 3 h
in the case of gastroscopy patients). The patient characteristics
would then characterise the predictions of delays in treatment
generated by the model. The objectives of the model are de-
tailed in Section 3.1 followed by a description of the model
logic in Section 3.2. A comprehensive overview of the case study
is then presented including the data used, the experimentation
performed to set up the simulation, and the final implementation
of the model (Section 4). This structure follows the ’Strength-
ening the Reporting of Empirical Simulation Studies’ (STRESS)
guidelines for discrete-event simulation as presented in [34].

3.1. Objectives

3.1.1. Model purpose
The objectives of this model are threefold: (i) estimating the

average delay time for each patient type in the short-term, (ii)
estimating waiting list levels in the long-term for a given treat-
ment capacity and a set of resources, and (iii) studying the impact
of inflated treatment capacities.

3.1.2. Model outputs
In fact, the model offers a wide range of outputs collected

while the model is running. The following data was particularly
collected to gain a short- and long-term outlook on the expected
delay time for elective patients:

1. Short-term Performance and Delay: Proportion of patients
waiting less than 18-weeks and average delay in treatment

2. Short-term Patient-specific Delay: For every patient type,
confidence intervals for the average delay in treatment

3. Long-term Waiting List Trajectory: Waiting list levels for a
pre-determined timeframe

3.1.3. Experimentation aims
The sensitivity of these outputs in regards to treatment capac-

ity is also studied using the model. Different levels of increased
treatment capacity are considered with the objective of deter-
mining the most optimal level to mitigate the implications of the
pandemic. These scenarios are further explained in Section 5.4.

3.2. Logic

3.2.1. Base model overview and logic
To represent the waiting list system and break it down to

different events dictating a patient’s journey, the model consists
of two separate yet interdependent flows: patient and signal
flow. The patient flow represents patients joining the waiting
list with a set of characteristics/attributes and undergoing treat-
ment. This flow allows the model to keep track of granular
patient-by-patient time accounts.

The signal flow serves as a series of periodic triggers for wait-
ing list updates (e.g. updating the priority number of waiting pa-
tients every five minutes) and patient releases to treatment when
resources are available. These entities support the collection of
waiting list KPIs.

Fig. 1 summarises the overall logic of the model. The sensitiv-
ity analysis in Section 5.4 adopts the same methodology with the
only variable being treatment capacity or the number of patients

that can be treated in a given time period.
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Fig. 1. Discrete-event simulation model blueprint.
.2.2. Components
1. Entities: Patient entities represent actual patients join-

ing the waiting list and undergoing treatment. They are
characterised by a set of attributes such as priority, wait-
ing list lane, procedure required, and time of arrival. The
objective of this flow is to collect the patient-by-patient
data, most importantly the time spent in the waiting list.
Signal entities represent dummy time-based signals with
the objective of periodically collecting waiting list KPIs,
most importantly the number of patients waiting.

2. Entity Activities:
Patient Flow: When it comes to patient entities, two types
of patient arrivals are considered: current waiting list and
expected waiting list arrivals. Once current waiting list
patients enter the system, they are assigned a set of charac-
teristics or attributes (e.g. priority class, type of treatment,
elective planned date, and time of arrival) indicated by the
actual waiting list.
Once expected waiting list patients arrive, a priority class
and type of elective treatment is assigned by generating
a random variable dictated by a predetermined distribu-
tion. The time of arrival is also recorded while an elective
planned data is allocated based on the elective treatment
sought out by the patient. Depending upon the application,
a set of additional characteristics relevant to the treatment
time or type of resources required can also be assigned.
After the waiting list arrivals along with their specifications
have been established, a series of decisions dictating the
patient’s potential COVID-19 infection and/or mortality are
undertaken. When it comes to mortality, patients leave
the system directly. In the case of infection, patients’ mor-
tality is similarly reassessed with a higher mortality rate.
Otherwise, the patients are considered sufficiently healthy
to endure the delay time within the waiting list. Healthy
patients are directly transferred to a hold (representing the
waiting list) until their elective planned date approaches.
Once they are due to receive treatment, patients are trans-
ferred to a queue. The patients are released for treatment

in accordance with the signal system detailed in the next

4

section. Upon treatment, the patient seizes a series of re-
sources (e.g. clinicians, theatres) based upon the assigned
type of elective treatment. Thereafter, the patient leaves
the system.
Signal Flow: Dummy signals arrive every interval (e.g. ev-
ery five minutes) to trigger priority updates and patient
treatment signals. Within every iteration, the priority num-
ber of each patient within the waiting list is updated based
on the prioritisation classification policy. For the CUH case
study, the calculation of priority corresponding to their
pre-determined classification system is detailed in Sec-
tion 4.3.1.
Thereafter, each signal verifies whether enough resources
are idle to treat patients. If this condition is satisfied, the
patient seeking the available resources with the highest
priority is released towards treatment. The signal similarly
enters a loop to ensure that all patients in the queue re-
quiring currently idle resources are directed towards treat-
ment. Otherwise, the signal is directly disposed of.

3. Resources: Treatment resources include the clinicians and
theatres required for different types of elective procedures.

4. Queues: The waiting list queue holds all patients ready for
elective treatment waiting for available resources. These
patients are sequenced in order of decreasing priority num-
ber.

4. Case study overview

The model introduced in this study serves a multitude of prac-
tical applications in mitigating waiting list backlog implications
and planning for recovery. The specific case of endoscopy has
been considered in this study given its substantial waiting lists
relative to other types of elective treatment. In fact, during the
first six weeks of the pandemic, Longcroft-Wheaton et al. [35] re-
ported an 88% reduction in treatment capacity within endoscopy
in the UK. The pandemic is assumed to end on July 19th, 2021,
when all restrictions have been abolished in the UK.

CUH waiting lists serve as the only data source to populate
the proposed model. As it stands now, within CUH’s endoscopy

department, a sample size of 10,194 patients has been recorded
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s incomplete pathways, 45% of which incurred a delay exceed-
ng 18-weeks so far. Referring to Section 1, the aforementioned
igures validate the comparability of the selected application to
he overall state of waiting lists in England.

.1. Model inputs

The model inputs include patient-specific and hospital-specific
atasets. The former define the mix and volume of patients arriv-
ng to the waiting list system including:

1. Current Waiting Lists: Current backlog of patients on the
waiting list with a set planned date for treatment. The
patient characteristics defining this set of patients include
the following:
Waiting list lane. The current waiting list provided by
CUH’s endoscopy department is characterised by two lanes
modelled in this study: elective planning (patients that have
already been diagnosed and are looking to follow-up on
their diagnosis around a certain elective planned date),
elective diagnostic (patients looking to get diagnosed as
soon as possible, no elective planned date).
Pathway. The pathway defines the type of elective treat-
ment the patient is seeking. The considered pathways
include routine, two-week wait, urgent, and cancer path-
ways.
Endoscopy procedure category. Endoscopy procedures fall
under the following three main categories: gastroscopy,
colonoscopy, and flexi sigmoidoscopy. These categories ex-
clude specialities such as hepatology and bronchoscopy
which have minimal impact on the flow of patients as they
require speciality resources (e.g. clinicians) not shared with
other endoscopy procedures. Theatre time for these cases
is also blocked out separately and are not included in this
model’s treatment schedules.
Priority class. The defined priority classes are listed as
follows in order of decreasing priority: P1 — Urgent, P2 —
High, P3 — Moderate, P4 — Low, P5, and P6. P5 and P6 are
characterised as patient-initiated delays whose degree of
urgency is periodically reviewed.

2. Expected Waiting Lists: Expected patients arriving to the
waiting list system in the future for urgent or non-urgent
treatment. The characteristics defining this category of pa-
tients are similar to that of the current waiting list except
that they are entirely based on estimations.

3. Mortality and Infection Rates: The probability of a patient’s
early departure from the waiting list due to COVID-19
infection or mortality.

Hospital-specific inputs gauge the availability and distribution
f resources across different specialisations including:

1. Treatment Capacity: For every type of treatment, the dura-
tion of time required to treat a single patient.

2. Treatment Resources: For every type of treatment, the type
of resources required and the availability of these resources
across the week.

3. Prioritisation Policy: The policy based on which patients on
the waiting list are prioritised and scheduled for treatment.

.2. Pre-processing

.2.1. Current waiting lists
The current waiting list dataset consists of a list of waiting pa-

ients seeking endoscopy treatment, each characterised by a set of
atient specifications. The considered specifications include time
f arrival, elective planned date, pathway, endoscopy treatment,
5

and priority class. Serving as the actual current waiting list, this
data is directly fed into the model.

This dataset is also used to draw out conclusions on the
distribution of patient characteristics across the waiting list lanes
considered. These distributions are used to extrapolate any dis-
crepancies in the data as well as assign patient characteristics to
the expected arrivals introduced in the next section.

4.2.2. Expected waiting lists
The expected waiting list arrivals are derived from CUH’s

historical endoscopy data. Assuming no further COVID-19 waves
decapitating the capacity for elective treatment, waiting list levels
should account for the natural annual growth of the waiting list as
well as the significant disruption in arrivals amid the pandemic.
That is, the expected number of arrivals post-pandemic (after
COVID-19 restrictions subside on July 19th) are considered a
combination of the following components [31]:

(a) Expected number of arrivals in the current and subsequent
years assuming the pandemic has not occurred

(b) Missed arrivals during the pandemic or patients that would
have sought out treatment had there been no pandemic

Pandemic-free Arrivals. To model (a), the upward trend char-
acterising the number of waiting list arrivals between 2015 and
2019 (shown on the left in Fig. 2) is examined by means of
regression modelling. As a result, the annual number of arrivals
is extended to cover years 2020 to 2026.

To transform the projected annual arrivals to estimated daily
arrivals, the distribution of arrivals within each previous year
is studied using a piece-wise regression approach. The resulting
projected daily arrivals are thereby transformed into proportions
of the annual number of arrivals to model the distribution within
the year rather than the actual magnitude of arrivals.

Exploiting the overall annual trend of arrivals as well as their
proportional distribution within a specific year, the expected
number of patients joining the waiting list for 2021–2026 was
extrapolated. These values disregard the implications of COVID-
19 to model the pandemic-free arrivals. The resulting patient
arrivals are shown on the right in Fig. 2.

Missed Arrivals. Within the years 2020 and 2021, there has
been a notable deterioration in the number of arrivals. In fact,
the reduction in arrivals is attributed to the fact that patients
have learned to ‘live with their condition’ to avoid hospital-onset
infection until normality has been restored. This deterioration is
extrapolated up until July 19th using a similar regression ap-
proach to mark the end of the COVID-19 pandemic. In fact,
the overall upward trend in the restoration of ‘normal’ patient
arrivals is quantified using Summer 2020 data (when restrictions
were lifted).

Thereafter, the difference between the pandemic-free expected
arrivals (a) and the actual arrivals collected from CUH for the
duration of the pandemic serves as the missed arrivals (b). These
arrivals are shifted towards the period following July 19th under
a higher priority given the time waited so far.

Summing the two components, the resulting arrivals are
shown in Fig. 3. The analysis is conducted across the highlighted
post-pandemic surge in patient arrivals (July 2021–Jan. 2023, 562
days). As for the patient attributes characterising each arrival, the
distributions derived from the current waiting list are used to
randomly assign specifications to each patient.

4.2.3. Mortality and infection rates
There are a series of risks and implications resulting from

prolonged waiting time, most importantly the increased poten-
tial of COVID-19 infection and mortality. The latter comprises
infection-instigated and waiting time-instigated mortality. Given
the absence of data on how these risks were amplified by the
pandemic within CUH, the rates provided by Moreno et al. [6]
were considered.



R. Nehme, A. Puchkova and A. Parlikad Operations Research for Health Care 34 (2022) 100357

4

m
p
p
c
f
a

t
I
b
c
1
B
s
g
a
i
t
i

4

s
t
n
r
I
t
a
l
w

Fig. 2. Expected patient arrivals disregarding pandemic implications.
Fig. 3. Patient arrivals combining upward trend and pandemic implications.
.2.4. Treatment capacity
To model the treatment capacity of the endoscopy depart-

ent, historical data on the number of procedures performed
er week is collected. Thereafter, a distribution is fitted for each
rocedure category using @Risk 8.0. The software relies on bias-
orrected Maximum Likelihood Estimation (MLE) for fitting. The
it of the distributions is tested via Akaike (AIC), Bayesian (BIC),
nd Average Log-Likelihood.
Apart from the micro-behaviour of capacity, the endoscopy

reatment capacity is assumed to grow at a fixed annual rate.
n fact, the number of gastroscopies, colonoscopies, and flexi-
le sigmoidoscopies performed in the United Kingdom (UK) is
haracterised by a compounded annual growth rate (CAGR) of
.20%, 5.03%, and 5.05% respectively considering 2016 to 2019 [1].
rown et al. [8] attributed this annual growth to population
ize, population age profile, cancer incidence, new cancer referral
uidelines, and the introduction of new treatment technologies
mong other yearly variations. For the purpose of this study, CUH
s assumed to have followed a similar growth pattern from 2021
o 2026. The CAGRs are directly fed into the model as an annual
nflation rate for treatment capacity.

.2.5. Treatment resources
Resource availability has been a prominent and universal con-

traint for the re-introduction of elective treatment throughout
he pandemic. While treatment capacity serves as the maximum
umber of patients that can be treatment, the available treatment
esources determine which type of patients are treated and when.
n fact, there are certain specialised resources who can only cater
o a set of procedures and patients. Thus, the type of clinicians
nd theatres required for every endoscopy procedure are col-
ected along with their corresponding schedule across a typical
eek.
6

To select a resource for a particular patient, the model investi-
gates the availability of clinicians and theatres able to accommo-
date the procedure in-question. In case more than one complying
clinician and/or theatre are available, the model assigns the more
specialised resource (ability to perform fewer procedures). This
allows the system to support a wider variety of incoming patients
with a more comprehensive set of resources.

4.2.6. Prioritisation policy
The prioritisation policy implemented at CUH comprises

scheduling patients in decreasing order of waited time within
each priority class. To model such a system, the following equa-
tion is used to quantify the priority number of each patient i:

PriorityPoints i =PriorityWeight PriorityClass i

+ CurrentTime − PlannedDate i
(1)

The priority weight serves as a predetermined constant allow-
ing the transformation of the priority class into a time-equivalent
value to be added to the delay in treatment as it stands now. The
assignment of this value is further explored in Section 4.2.7. In
practical terms, this constant indicates the number of additional
days a patient would wait before they are deemed eligible for the
next priority class. For instance, a patient belonging to P3 whose
delay exceeds the gap between the priority weights of P3 and P2
would be scheduled before a newly arriving P2 patient.

4.2.7. Assumptions
While the actual endoscopy waiting list consists of multiple

specialists, only two lanes were modelled given the severity of
their backlog. Although the treatment resources directed to the
remaining disregarded lanes were excluded, clinicians do hold
some overlapping capabilities across multiple lanes. Thus, the
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Fig. 4. Model runtime versus half-width of delay time for a different number
f replications (sample of two months).

reatment capacity dedicated to elective planning and diagnostic
atients was not completely isolated.

.3. Experimentation

.3.1. Model initialisation
To first ensure the model setup reflects the actual system, a

arm-up period is considered. The warm-up period accounts for
he time required from the date the simulation starts (May 12th)
o arrive at the post-pandemic stage (July 19th) after which there
s a surge in waiting list levels. This phase is excluded from the
nalysis, allowing sufficient time for the waiting list to attain its
teady state — in this case, a continuous upward trend. As a result,
nly the post-pandemic delay is reported.

.3.2. Model run length and estimation approach
The model is run for five years until the end of year 2026 to

apture both short- and long-term waiting list outlooks. To cover
he variation in the stochastic patient characteristic assignments
nd treatment capacity, replications are considered imperative.
or the months of June and July 2021, up to 10 replications
ere considered. To gauge the minimum number of replications
equired to capture this variation, the half-width of the delay
n treatment (95% confidence interval) and model runtime were
onitored . After experimenting with both variables for a sample
f June and July 2021 data, four replications were deemed suffi-
ient to substantially narrow down this confidence interval to one
ay while curbing computation time as indicated in Fig. 4.

.4. Implementation

The model was implemented on Arena Simulation Software
6.0 (professional license) on a Windows 64-bit operating system.
andom sampling was conducted for a set of patients joining the
aiting list within a time period of one week to test the validity
f the model assignments.

.4.1. Model execution and calibration
To calibrate the model in accordance with the selected case

tudy, a parametric approach is derived from Wood [30]. That is,
eferring to Eq. (1), the priority weight corresponding to each pri-
rity class is deemed a variable that is iteratively altered until the
odel mimics the real system with respect to a set of KPIs that
est represent the system: average delay in treatment, minimum
elay in treatment, maximum delay in treatment, performance or
he proportion of patients waiting longer than 18-weeks.

Calibration is conducted using CUH’s 2019 waiting list given
he availability of patient arrivals as well as the corresponding
elay in treatment. The year 2019 was chosen as a reference given
7

Fig. 5. Distribution of priority classes across current waiting list (sample size:
10,194 patients).

the relative stability in treatment capacity, similarly to the years
2021 to 2026.

To perform this calibration, Arena Process Analyser Software
is employed given its ability to run multiple scenarios simultane-
ously. After considering over 70 different sets of priority weights,
by trial and error, the set of priority weights rendering the model
a true reflection of reality is deemed {154, 123, 101, 32, 15, 0}
for P1 to P6 respectively. CUH’s prioritisation policy seems to be
heavily biased towards the first three priority classes. In fact, to
achieve 2019’s actual KPIs, P1 to P3 patients are scheduled early
on followed by a significant gap in P4 to P6 treatment. Referring
to Fig. 5, P3 and P4 clearly serve as the most common prior-
ity classes when it comes to endoscopy treatment. Thus, their
priority weights hold significant consequences on the output. In
practical terms, this gap indicates that a patient belonging to
priority class P4 would be able to wait around 70 days until
their condition is reclassified as P3. As for the remaining priority
classes, the lack of sufficient data deems them irrelevant for this
application and obstructs any conclusions.

While these selected priority weights minimise the gap sepa-
rating the actual from the model-derived 2019 KPIs, a substantial
error rate of 0.4% for the average delay and a 3% unit difference
in performance was yielded. Possible sources of error include
changing patient demographics, the turnover of clinicians with
different capacities, and the introduction of a more systematic
prioritisation policy within the model with P1 to P6 priority
classes.

5. Discussion

Once the validity of the model as a true reflection of the actual
system has been established, results are generated for a time
horizon equating to the length of the post-pandemic surge in
patient arrivals.

5.1. Short-term performance and delay

Serving as a primary KPI for a healthcare system’s overall
success, waiting time is monitored by assessing performance
along with the overall delay. Currently, among the patients still
waiting for treatment, 55% have been waiting for less than 18-
weeks. After simulating the progress of the waiting list, given the
prolonged surge in patient arrivals post-pandemic, performance
fell to 21.3%, a long way from NHS’s 92% standard. In just under
600 days, 21,494 patients were serviced with an average delay of
6 months (versus 3 months in 2019). In fact, the distribution of
delays is indicated in Fig. 4. While most patients waited 4 to 7
months, a maximum delay of over 11 months was incurred.
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Fig. 6. Distribution of the delay in treatment across post-pandemic surge in patient arrivals.
.2. Short-term patient-specific delay

After considering the macro performance of the system, the
elay in treatment is studied at a micro-level considering the
ifferent patient characteristics. In fact, the average delay and
orresponding 95% confidence intervals are indicated in Fig. 6
ith respect to the waiting list lanes, pathways, priority classes,
nd endoscopy procedures respectively.
Waiting List Lanes. Fig. 7(a) indicates a significant 14.13%

jump in the average delay of elective diagnostic patients with
respect to elective planning. This gap can be attributed to the fact
that the bulk of diagnostic patients are classified at a P4 priority
while planned patients are relatively homogeneously distributed
between P3 and P4 priority classes.

Pathways. Considering Fig. 7(b), the wide confidence interval
surrounding the two-week wait and cancer pathways suggests
the absence of sufficient patients to infer any robust conclusions.
When it comes to routine and urgent patients, urgent cases seem
to incur a substantially higher delay in treatment. While this may
seem unconventional, most urgent cases fall under the elective
diagnostic waiting list lane which is mainly characterised by the
P4 priority class. Routine cases are heavily concentrated within
the elective planning waiting list and hence, are fairly distributed
across P3 and P4 priority classes.

Priority Classes. Fig. 7(c) validates the prioritisation policy
applied for patient assignments. The relative jump in the delay
between priority classes is dictated by the set priority weight.
This is supported by the sharp shift between P3 and P4, mirroring
the similar shift in priority weights discussed in Section 4.2.7.

Endoscopy Procedures. Fig. 7(d) demonstrates a homoge-
neous distribution of the delay across different endoscopy
procedures. While Enteroscopy, Dilatation, PEG, TBBX, and Pou-
choscopy correspond to a limited sample size, the remaining
procedures seem to incur a delay of around 181 days. This
consistency can be attributed to CUH’s assignment of specialised
treatment resources according to the relative number of patients
requiring this speciality.

5.3. Long-term waiting list trajectory

The long-term waiting list trajectory is studied for the next
five years, until the end of 2026. Referring to Fig. 8, the aver-
age number of patients waiting is indicated per day along with
a shaded margin of error. The waiting list seems to maintain
growth across the studied timeframe up to a peak of 37,400
patients. The initial sharp growth pertains to the post-pandemic
arrival surge while the steady growth thereafter is attributed to
the natural long-term inflation in patient arrivals. Meanwhile,

the treatment capacity is tailored to the current reduced demand

8

as indicated by the slight decrease in waiting list levels at the
beginning of the simulation. While the treatment capacity is
inflated annually as per Section 4.2.4, this growth was insufficient
to completely stabilise the waiting list in the long term. This
can be attributed to the pandemic acting as a massive disruption
and obstructing any growth in treatment capacity in 2020 and
2021 while patient arrivals continued to grow. The impact of this
disruption is indicated in Fig. 8. As a result, capacity is lagging
demand. In fact, this has been the case well before the pandemic.
According to a report published by the Health Foundation [36],
meeting the 92% performance standard pre-pandemic would have
required the treatment of 500,000 additional patients per year
until 2024. Thus, without a substantial investment in capacity, it
was highly unlikely to attain the 18-week standard by 2024 with
the existing infrastructure and staffing levels. Considering the
pandemic has only exacerbated this vulnerability, it now seems
completely unrealistic that the waiting list levels will recover by
2026 as seen in Fig. 8.

5.4. Sensitivity analysis

This section closely considers investing in expanding treat-
ment capacities. Reiterating the model’s significance as intro-
duced in Section 1, the tool gauges the payback of investing
in treatment resources by quantifying the resulting reduction in
patient delays and performance. Given the homogeneous distri-
bution of the delay across the different endoscopy procedures as
indicated in Section 5.2, an overall inflation rate for the capacity
is considered for all endoscopy treatments. This assessment was
performed for capacity inflation rates of 20%, 40% and 60%. To
that end, the implications of the resource investments are shown
in Fig. 9.

Comparing inflation rates, the 40% increase in capacity seems
to offer greater improvements in delay KPIs. This improvement
exhibits the exponential behaviour characterising waiting list lev-
els versus capacity. That is, as more patients miss treatment early
on, the more likely incoming patients will have their treatment
delayed. Certainly, there would be a limit to the growth in ben-
efits after which the delay KPIs would plateau, as demonstrated
by the 160% capacity. In fact, to attain the NHS’s 92% standard
for performance, approximately, a 55% treatment capacity in-
vestment is required across the post-pandemic surge in patient
arrivals.

Fig. 10 presents the long-term waiting list trajectory for the
said capacity levels along with their respective shaded margins
of error. While a 60% capacity investment would reverse any
pandemic implications on the waiting list, a 20% investment
would stabilise and level up waiting list levels by the first quarter

of 2023.
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Fig. 7. Short-term patient-specific delay.
. Constraints and limitations

The model’s lack of operational practicality serves as the pri-
ary drawback of adopting a simulation methodology. In fact, the
odel is ill-suited for daily use by the hospital. The tool should
e maintained regularly to ensure that the model is populated
ith updated data reflecting the system. Hence, the model setup
s well as its maintenance is deemed highly expensive.
The generalisability of the findings can also be considered

imiting. While the prioritisation policy implemented is universal
cross the UK healthcare system, other aspects of the model,
articularly around treatment capacity, are specific to the appli-
ation.

. Conclusion

The undertaken research presents a clear indication of the
everity of the imminent waiting list backlog as a rising threat
9

to the well-being of patients across all medical fields. Not only
is the current backlog presenting as a major burden based upon
current treatment capacities, but the upcoming expected surge
in patient arrivals serves as an exceptional circumstance. The
proposed model presents a pandemic recovery tool that offers
visibility on the short- and long-term trajectory of the backlog.

After estimating the expected patient arrivals and treatment
capacity for CUH’s endoscopy department, the resulting delay was
approximated at 6 months, with 78% of patients’ delay exceed-
ing the 18-week NHS standard. In the long-term, the waiting
list is expected to maintain its upward trend in the next five
years unless resource investments are initiated. Testing the po-
tential expansion in resources yielded substantial improvements.
In fact, a 55% capacity investment over the post-pandemic surge
in waiting list levels was deemed necessary to maintain the
92% NHS standard for performance, validating the importance of
considering recovery investments.
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Fig. 8. Long-term waiting list trajectory (2021–2026).
Fig. 9. Average delay and performance considering resource investments of 20%, 40%, and 60%.
Fig. 10. Waiting list long-term trajectory considering resource investments of 20%, 40%, and 60%.
While the conclusions disclosed in this study should serve
s guidance for pandemic recovery planning rather than cer-
ain predictions, the modelling process is generalisable beyond
ndoscopy. Similar to other elective fields, resources such as
heatres and clinicians are shared between different patient types
cross a wide variety of procedures. Other factors not included
n this model that may differ across other elective fields include
ultiple-stage treatment procedures and emergency cases.
Potential future prospects for this study primarily include:

xpanding the scope to include all endoscopy waiting list lanes
nd specialities to accurately gauge the available capacity for
reatment; quantify the costs associated with expanding treat-
ent capacity; testing different prioritisation policies from the
10
literature to validate/refute the optimality of the current cate-
gorisation system in recovering waiting list levels as efficiently
as possible.
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