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The thymus is a primary lymphoid organ essential for the induction of central immune
tolerance. Maturing T cells undergo several steps of expansion and selection mediated by
thymic epithelial cells (TECs). In APECED and other congenital pathologies, a deficiency in
genes that regulate TEC development or their ability to select non auto-reactive
thymocytes results in a defective immune balance, and consequently in a general
autoimmune syndrome. Restoration of thymic function is thus crucial for the emergence
of curative treatments. The last decade has seen remarkable progress in both gene editing
and pluripotent stem cell differentiation, with the emergence of CRISPR-based gene
correction, the trivialization of reprogramming of somatic cells to induced pluripotent stem
cells (iPSc) and their subsequent differentiation into multiple cellular fates. The combination
of these two approaches has paved the way to the generation of genetically corrected
thymic organoids and their use to control thymic genetic pathologies affecting self-
tolerance. Here we review the recent advances in differentiation of iPSc into TECs and
the ability of the latter to support a proper and efficient maturation of thymocytes into
functional and non-autoreactive T cells. A special focus is given on thymus organogenesis
and pathway modulation during iPSc differentiation, on the impact of the 2/3D structure on
the generated TECs, and on perspectives for therapeutic strategies in APECED based on
patient-derived iPSc corrected for AIRE gene mutations.

Keywords: thymus, IPSC, thymic epithelial cells (TEC), differentiation, APECED, tolerance
Abbreviations: AIRE, autoimmune regulator; APECED, polyendocrinopathy candidiasis ectodermal dystrophy syndrome;
ATO, artificial thymic organoid; DN, double negative CD4-CD8- thymocyte; DP, double positive CD4+CD8+ thymocyte; ESc,
embryonic stem cells; ETP, early thymic progenitor; iPSc, induced pluripotent stem cells; mTEChi, MHC-II high medullary
thymic epithelial cell; nTreg, natural regulatory T cell; RA, retinoic acid; RTE, recent thymic emigrant; SCID, severe combined
immunodeficiency; TCR, T cell receptor; TEC, thymic epithelial cells; TEP, thymic epithelial progenitor; TRA, tissue restricted
autoantigen; 3PP, third pharyngeal pouch.
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INTRODUCTION

Immune tolerance isprimarily set in the thymuswith thegeneration
of non-autoreactive T cells originated from the maturation of
thymocytes through intimate interactions with specialized sets of
thymic epithelial cells (TECs). These complex interactions enable
the selection of maturing thymocytes for the functionality and non
autoreactivity of their T cell receptors (TCR). The step of negative
selection, which is responsible for the induction of thymocyte self-
tolerance, is mediated by TECs that reside in the thymic medulla
and express the autoimmune regulator (AIRE) (1). Loss-of-
function mutations in the AIRE gene result in the rare
autoimmune polyendocrinopathy candidiasis ectodermal
dystrophy syndrome (APECED), a life-threatening autoimmune
disease characterized by severe autoimmune lesions in peripheral
tissues (2). The direct cause of this syndrome is the impairment of
negative selection due to AIRE deficiency, resulting in the escape of
autoreactive T cells into the periphery. Current treatments of
APECED are only symptomatic including the administration of
immunosuppressants, antifungal drugs with a constantmonitoring
of candidiasis infection, and hormone replacement. Although these
therapeutics have improved the course of APECED, they don’t
address the root cause of the disease, leaving the patients at risk of
premature death (3). Induced pluripotent stem cells (iPSc) are a
promising tool for the development of new cellular and genetic
therapies for APECED. These cells are reprogrammed somatic cells
obtained by the induced expression of four genes (OCT4/POU5F1,
KLF4, SOX2, MYC) (4). The remarkable proliferation potential of
iPScandtheir ability todifferentiate intovarious cell fates (5–7)have
paved the way to promising therapeutic strategies aiming to restore
tissue functions, notably in rare genetic diseases. Several iPSc-
derived cell therapies against various pathologies such as cancer,
autoimmune disorders or Parkinson’s disease are currently being
evaluated by clinical trials (8–10). However, some concerns have
been raised regarding the overall safety of stem-cell based therapies,
since reprogramming of somatic cells can lead to enhanced
mutation susceptibility and selection of deleterious mutations
originally present in a minority of somatic cells. In addition, with
the implication of OCT4 in tumorigenesis, the risk of inducing
teratoma and malignant tumor formation is to be seriously
considered (11). Thus, stringent quality controls of the generated
iPSc and their differentiatedproducts, aswell as thefinepurification
of the populations of interest are crucial (12). This review covers the
recent developments of iPSc differentiation into TECs, the different
approaches used to mimic thymic embryological development and
how it can provide new strategies for therapeutic application
against APECED.
THYMUS FUNCTION: T CELL
MATURATION AND SELECTION

In the thymus, maturing T cells undergo several steps of
expansion and selection mediated by TECs that account for
0.5% of the thymic cellularity in the adult thymus (13)
(Figure 1). TECs form the backbone of the stromal
Frontiers in Immunology | www.frontiersin.org 2
compartment and interact with a large number of thymocytes
(14). They have been historically separated into cortical TECs
(cTECs) and medullary TECs (mTECs) located in the outermost
and the core areas of the thymic lobules, respectively. These two
populations exhibit different phenotypes and play distinct roles
in the control of T cell maturation. cTECs drive the commitment
of the early thymic progenitors (ETPs) to the T cell lineage by
providing Notch ligands such as Dll4 (15). They also control ETP
homing and expansion through the secretion of chemokines and
growth factors such as Ccl25, Cxcl12, Scf and Il-7 (16). At the
later double-positive (DP) stage, thymocytes with TCR that are
able to recognize peptide:major histocompatibility complex
(MHC) receive survival signals from cTECs and are thereby
positively selected (Figure 1). The peptides presented by cTECs
are generated by a unique proteasome comprising the cortical
marker ß5t encoded by the Psmb11 gene (15, 17). After the
positive selection, thymocytes undergo a step of negative
selection aiming to deplete those with a TCR having a high
avidity for self-antigen peptides. This step is mediated by mTECs
that attract single-positive (SP) thymocytes through the secretion
of chemokines like Ccl21 (18). The negative selection is enabled
by the unique ability of mTECs to express 90% of the genome
(19–21), including the expression of a broad repertoire of tissue-
restricted antigen (TRA) genes under the regulation of
transcriptional activators such as FEZF2, CHD4 and especially
AIRE (22–24). The non-conventional activation factor Aire
controls the expression of a large fraction of these TRAs (25,
26) and is specifically expressed in the mature subpopulation of
mTECs showing high levels of the major histocompatibility class
II (MHCII) molecule (mTEChi) and a high turnover.
Importantly, the last decade has seen many aspects of the Aire-
driven regulation of TRA expression being uncovered (26, 27). In
mice, the expression of TRA genes follows a stochastic order:
they are co-expressed in modules randomly present in individual
mTEChi spread out in the thymic medulla. This pattern of
expression enables a complete screening of the TRA repertoire
by the thymocytes passing through the medulla. The intensity of
the interactions between TRA peptide:MHCII complexes at the
surface of mTEChi and the TCR is determinant for the fate of
thymocytes (1). Thus, thymocytes with a strong self-reactive
TCR will undergo apoptosis, while those harboring a self-reactive
TCR with an intermediate strength will be directed into the
natural T regulator (nTreg) lineage which plays a major role in
peripheral immune tolerance (28) (Figure 1). At their final stage
of maturation, the thymocytes will enter the periphery through
the cortico-medullary junction vasculature, as recent thymic
emigrants (RTEs) characterized by their expression levels of
CD69, CD62L (SELL), Qa2 and CCR7 (29, 30) (Figure 1).
TEC HETEROGENEITY AND MATURATION

From the homing of hematopoietic progenitors to the thymus to
the escape of RTEs into the periphery, the maturation of T cells
mostly relies on intimate interactions between thymocytes and
TECs. These interactions are crucial for the maturation of TECs
June 2022 | Volume 13 | Article 930963
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through a process referred to as thymic crosstalk (31–34).
Indeed, TECs need to receive signals such as those mediated
by Rankl and Cd40l to mature and survive (35). In recent years,
advances in high-throughput single-cell (sc)RNA sequencing
(scRNA-seq) have pushed further our understanding of TEC
heterogeneity beyond the typical dichotomy between cTEC and
mTEC in mice (16, 21, 36) and humans (37–39). Hence, new
TEC populations were identified, notably populations composed
of atypical tuft cells sharing similarities with intestinal tuft cells
(16), myoid-like epithelial cells or neuroendocrine epithelial cells
(37). While these populations are well characterized at the
transcriptomic level, their functional role in the thymic
microenvironment and their potential effect on thymocyte
development remain elusive.

scRNA-seq studies of TEC heterogeneity in individuals of
different ages also contributed to reveal the existence and identity
of a TEC progenitor (TEP) population (36, 38). TEPs exhibit a
cortical phenotype characterized by the expression of CD205 and
ß5T (encoded by the LY75 and PSMB11 genes, respectively) (40–
42). They were shown to be the source of mTECs and cTECs in
fetal and neonatal thymuses (14, 43, 44). However, there is still a
lack of evidence supporting this model in adults. After birth the
thymus undergoes involution with a drastic decrease of its
activity and cellularity, and shows a shift of the relative cTEC
vs mTEC abundance in favor of the mTEC compartment (45,
Frontiers in Immunology | www.frontiersin.org 3
46). In addition, it is assumed that TEPs enter quiescence in
response to BMP4 and Activin A inhibitor follistatin (FSH)
signaling (37, 47, 48). Thus, the emerging model for the origin
of TECs relies on bipotent cTEC-like fetal TEPs entering
quiescence upon aging and giving rise to lineage-restricted
immature populations for the replenishment of medullary and
cortical TEC compartments. However, additional studies based
on single-cell fate-mapping need to be carried out to precisely
understand the relationship between TECs and their progenitors
upon aging. Another question left unanswered is the nature of
signals underlying the medullary or cortical orientation of
bipotent TEPs.

Promising results have been obtained over the last years,
notably describing the role of Notch modulation in this fate
decision (37, 49, 50). Indeed, Notch signaling has been shown to
be essential for the mTEC specification of TEPs, notably through
its fine-tuned regulation by the chromatin regulator HDAC3
(51). Thus, these findings support a model of a cTEC-like
bipotent TEP population undergoing a default cortical
differentiation, with Notch signalization promoting the mTEC
transcriptional program. Despite the main paradigm of a TEC
compartment of exclusive endoderm origin, Chakrabarti et al.
recently showed that a population of bone-marrow
hematopoietic progenitors transdifferentiate in true Foxn1-
expressing TECs in the thymus (52). These hematopoietic bone
FIGURE 1 | cTEC and mTEC orchestrate thymocyte maturation and selection. Early thymic progenitors (ETP) originating from the bone marrow enter the thymus
and are attracted to the cortical region by chimiokines expressed by cTECs, also inducing growth and T lineage commitment by contact with NOTCH ligands. After
TCR rearrangement CD4/CD8 DP thymocytes enter positive selection of the functional TCRs mediated by cTEC expressing the thymoproteasome. Resulting SP T
cells are attracted to the medulla where thymocytes with auto-reactive TCRs are negatively selected by mature mTECs presenting the self-antigen repertoire under
AIRE regulation. Thus, T cells with functional TCRs, able to recognize foreign antigens but tolerant to the self, are generated by the thymus.
June 2022 | Volume 13 | Article 930963
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marrow progenitors would migrate in the same manner as Cd34
+ thymus seeding progenitors but would further differentiate
into epithelial cells expressing cytokeratins and the master
regulator of TEC development Foxn1. Moreover, Cd45+
Epcam+ cell could also give rise to Fsp1-expressing thymic
fibroblasts. Thus, this fate mapping study identify a bone-
marrow originating population able to transdifferentiate into
TECs and fibroblasts to replenish the thymic stroma, suggesting
that the TEC lineage development is more plastic than previously
thought and may involve various progenitor populations
originating from different embryological layers. However,
proper characterization studies using high-throughput omics
are still needed to precisely describe this newly identified
cell population.

We mainly focus here on the role of TECs in thymocyte
selection given the origin of APECED. However, other cell
populations in the thymus have been shown to participate to
this process. Indeed, dendritic cells (DC) have also the ability to
induce clonal deletion and Treg generation (53–55). Different
processes involving multiple DC subpopulations have been
described. Briefly, migrating DCs can transport peripheral
antigens to the thymus, negatively select thymocytes and
induce Tregs (56, 57). Transendothelial DCs located in thymic
vasculature capture blood circulating antigens and use them for
selection (58, 59). Another source of antigens for DCs directly
come from the thymic stroma through a mechanism of
intercellular antigen transfer from the TECs (60, 61).
Lymphotoxin b receptor (LTbR) expressed by mTECs has
been shown to be central in this interaction by controlling the
frequency and composition of intrathymic DC populations (62).
DCs could also process self-antigens produced by thymic
fibroblasts as a complementary source of self-antigens (63).
Often neglected, thymic fibroblasts are now revealed as a
crucial actor of the thymic microenvironment, with distinct
subpopulations involved in functions as diverse as self-antigen
production and regulation of both TEC and T cell maturation
(63–65). Finally, these alternative sources of autoantigens or
presenting cells are supported by studies in which disrupted
thymuses with low TEC cellularity and morphological anomalies
have no effect on mature T cell population frequency nor on the
repertoire diversity (66).
THYMUS ORGANOGENESIS

The first advances in the understanding of thymus organogenesis
relied on comparative anatomical observations and histology
studies of fetal tissues. These approaches revealed that the
thymus is derived from the pharyngeal pouches that are
transitory embryonic structures appearing between the third
and fourth week of development in humans (67) and from E8
in mice (68, 69) (Figure 2). The pharyngeal pouches are
invaginations originating from the most anterior foregut
endoderm (67, 70, 71). It was shown in human fetuses that the
thymus mostly derived from the third pharyngeal pouch (3PP)
(72, 73). However, the embryological layer of origin of the
Frontiers in Immunology | www.frontiersin.org 4
thymus has long (74, 75) been uncertain. In the early 2000s,
the single endodermal origin was demonstrated after ectopic
transplantation experiments of pharyngeal endoderm proving
that it is sufficient to give rise to a fully formed and functional
thymus (68, 76).

Although thymus organogenesis has been well described in
mice (74, 75) the precise cellular and molecular mechanisms
governing human thymus development are still elusive. In
humans, the thymus forms from the 3PP endoderm at week 7
of development and initiates migration at 8.5 week (77).
Involution of the 3PP endoderm results in a stratified
epithelium of Cldn3/4-expressing cells polarized around a
central lumen (78, 79) showing an early morphogenesis similar
to other organs with epithelia organized in branching ducts, such
as lung or pancreas. However, the definitive histological structure
of the thymus is radically different, with formation of a 3D
network of TECs that is far from the stratified epithelium
constituting a branching architecture. This key aspect of
thymic functionality, allowing the maximization of contacts
between thymocytes and TECs, is mainly explained by the
expression of the main TEC marker, Foxn1. This gene was first
identified as the nude gene, originally described in the eponym
hairless mice mutants exhibiting an absence of functional thymus
(80). In mice, Foxn1 expression is detected in the 3PP endoderm
as early as E9.5 and reaches high levels at E11 (80, 81). However,
Foxn1 is not directly responsible for the commitment to thymic
epithelial cell fate, since ectopically transplanted E9 3PP tissues,
which do not express Foxn1 yet, are still able to generate fully
developed thymuses (68). Nude mice show normal thymic
primordium formation and migration but impaired maturation
of the TEC compartment and consequently of T cell colonization
(82). Thus, Foxn1 may be downstream of a regulatory network
driving the commitment to thymic epithelial progenitors but
would play a central role in the differentiation of TEPs into TECs
(44, 68, 80, 83). Thymus rudiments from Foxn1 deficient mice
shows an atypical branching structure, with formation of
multiple lumens giving rise to a fully develop ductal system
similar to the pancreas. In addition, ectopic expression of Foxn1
results in impaired epithelium formation and absence of lumen
(84), showing Foxn1 ability to disrupt the classical tubular
morphogenesis program. Finally, Foxn1 has been shown to be
necessary for the expression of a full set of factors that control
TEC transcriptional programs, such as Cxcl12, Ccl25, Dll4 and
MHCII genes (85). More recently, Foxn1 has also been shown to
control the expression of Cd40, Cd80, Aire and FgfrII that are
crucial for TEC differentiation, amplification and function (85–
87). Thus, by inhibiting tubulogenesis of the thymic epithelium
and inducing expression of key genes of the TEC program, Foxn1
allows the structuration of the thymic environment and TEC
generation (88).

Molecular Regulatory Networks in 3PP
and Thymus Organogenesis
A complex interplay between the neural crest cells, the
mesoderm-derived mesenchyme and the 3PP endoderm
controls the fate, migration and expansion of cell populations
June 2022 | Volume 13 | Article 930963
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in the developing thymus. The main genetic regulatory network
is composed of the TBX1-HOXA3-PAX9 and EYA1-SIX1
cascades that are regulated by a set of signaling molecules
secreted by the neural crest and mesoderm cells, such as
retinoic acid (RA), proteins of the Wingless-int (WNT) family,
bone morphogenetic proteins (BMP), fibroblast growth factors
(FGF) and sonic hedgehog (SHH) proteins (Figure 2).

These factors, which are secreted by the mesoderm core and
the neural crests in addition to the endoderm, guide the
development of the thymic primordium. RA is a small non-
peptidic vitamin A derivative that plays a key role throughout the
embryonic development (89, 90). Gradients of RA have been
shown to regulate the posterior pouch formation in several
species (91–93). Disrupting RA activity during the
development results in the absence of formation of posterior
pharyngeal pouches (91, 93, 94). Moreover, RA was shown to be
a key player in the early formation of pharyngeal pouches by
regulating the expression of genes of central importance in their
development, such as TBX1, HOXA3, PAX1 and PAX9 (85, 87,
89, 90, 95) (Figure 2). Proteins of the WNT family, including
WNT4b and WNT5a (96–98), are expressed in the pharyngeal
Frontiers in Immunology | www.frontiersin.org 5
pouches and lead to the upregulation of FOXN1 by activating the
canonical WNT/beta catenin pathway (96). Thus, modulation of
the WNT signaling is critical to the formation of the thymic
primordium and the maintenance of the thymic postnatal
epithelium (97, 99, 100). Several studies have shown that genes
of the WNT family are down-regulated in aged involuted
thymuses (101–103) and are expressed in TECs under FOXN1
positive regulation (86, 100). However, a strong WNT signaling
is detrimental to the thymic development (104) highlighting the
importance of a proper modulation of WNT signals in TEC
physiology. In mice, modulation of the Bmp pathway through a
Bmp4-Noggin gradient in the thymic and parathyroid
primordia, is responsible for a correct organ separation and
thymic capsule formation (105, 106). Bmp4 has been shown to
directly upregulate Foxn1 and FgfrIII (107). BMP signaling is
thus closely integrated into FGF pathways that have been shown
to play a crucial role in 3PP and thymic development (108, 109).
Indeed, mutant mice for Fgf8 (110) and Fgfr2-IIIb, a receptor of
Fgf7 and Fgf10 (87) show an impaired thymus development and
arrest of TEC maturation. In zebrafish, the secretion of FGF8 in
closeby mesoderm directs 3PP formation. However, later FGF
FIGURE 2 | Genetic and molecular networks regulating the thymus organogenesis. The thymus is a definitive endoderm derivative. The main steps of organogenesis
of the pharyngeal apparatus and thymus formation are described, with time scales in mouse and human, key markers genes and signalling molecules. First,
gradients of cytokines and small molecules pattern the endoderm, resulting in an anterior domain between D24-D26 in human. Further patterning results in formation
of the pharyngeal domain and its segmentation in pharyngeal arches at 6 weeks. The 3PP forms under singling involving retinoic acid (RA), Hedgehog (SHH),
NOTCH and fibroblast growth factors (FGF). 3PP gives rise to the thymic primordium expressing FOXN1 by week 7. By week 8, the thymic primordium migrates
under TGFb signaling to its final position and TEC mature in cTEC and mTEC.
June 2022 | Volume 13 | Article 930963
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signal inhibition through Spry is also necessary for thymic
primordium migration and TEC proliferation (111). Similarly
to the above molecules, Hedgehog plays multiple regulatory roles
in the thymus. During the later steps of TEC maturation, SHH
negatively impacts TEC proliferation but stimulates MHCII
expression (112). SHH expression is restricted to the
anteriormost pharyngeal apparatus, both in the endoderm and
mesoderm, and plays a role in pharyngeal pouch patterning
(113). At E10.5 SHH endorses a dorsalizing role, contrasting with
the ventral thymic fate instructed by BMP4. These clues, added
to the fact that SHH endodermal expression represses FOXN1,
indicate that SHH signal inhibition is necessary to promote a
thymic over parathyroid fate (114, 115). Overall, all these factors
are involved in an integrated regulatory network orchestrating
the specification, maturation and migration of the pharyngeal
pouch derivatives.

Axis Patterning of the Definitive Endoderm
and Emergence of the Foregut
Since the 3PP is a structure of the pharyngeal domain that is the
anterior-most segment of the foregut endoderm, the
identification of the molecular signals that sustain definitive
endoderm patterning is a prerequisite for the control of the
first steps of iPSc differentiation towards TECs. In mice,
definitive endoderm specification is initiated during the
gastrulation at E6.25, after which morphogenetic processes
occur leading to the formation of the tubular gut structure by
E8.0 (116) (Figure 2). Most of the pathways involved in
pharyngeal pouch formation have also been shown to
orchestrate the antero-posterior patterning of the gut tube.
Indeed, it is now well established that the Bmp-Wnt-Fgf
signaling has a posteriorizing effect on endoderm development
and that its inhibition is required for the acquisition of foregut
identity (117–119). In addition, the TGFß/Nodal inhibition and
the RA signaling are also involved in the anteriorization of the
endoderm (117). Recently, scRNA-seq datasets of foregut
endoderm have been generated in mice between E3.5 and
E12.5 (116, 120–122), including foregut mesoderm (116) and
pharyngeal endoderm (122) lineages, thereby constituting atlases
of endodermal and mesodermal cell populations involved in
pharyngeal development. Hence, sets of genes specific to
different stages of pharyngeal development could be identified,
such as Pax9 and the Eya1-Six1 cascade for pharyngeal
endoderm at E9.5 (Figure 2). More generally, these studies
provide a model of pharyngeal endoderm development of
unprecedented precision. In the case of the thymus, an early
ventral foregut endoderm population expressing Nkx2-3 and 2-5
at E8.5 gives rise to the ventral pharynx expressing Bmp4 at E9.5
(116). It appeared that the key pathways involved at this stage of
differentiation include FGF, NOTCH and RA signals arising
from the surrounding mesoderm, as well as BMP autocrine
ligands. Among the previously unrecognized pathways
involved in anterior foregut development are those driven by
HIPPO (121), EGF and NGF (120). At E10.5, the 3PP undergoes
its formation upon activation of Eya1 and Six1. This cell
population further differentiates into progenitors of
Frontiers in Immunology | www.frontiersin.org 6
parathyroid, ultimobranchial bodies and TEPs that begin to
express Foxn1 at E11.5 and eventually give rise to early cTEC
and mTEC populations at E12.5 (122).

Comfortingly, the same populations and signaling pathways
are found in comparative studies with human embryos,
validating that foregut endoderm organogenesis is conserved
between mice and humans (77, 120). Finally, these studies
provide key insights into which signaling pathways need to be
modulated to direct differentiation of pluripotent human cells
into TECs, even if most of the results presented above need to be
confirmed by proper in vivo knock-out or lineage tracing studies.
DIFFERENTIATION OF PLURIPOTENT
STEM CELLS INTO THE THYMIC LINEAGE

Thanks to the growing understanding of signals driving the
formation of the thymus, considerable progress has been made in
the differentiation of pluripotent stem cells into the thymic
epithelial lineage. We hereby review the different approaches,
their achievements and limitations. A pioneer work was carried
out by Lai & Jin, who successfully differentiated mouse
embryonic stem cells (mESc) into cells showing a TEP
phenotype (123) (Figure 3). Using a combination of FGFs,
EGF and BMP4, they obtained a 24% proportion of EPCAM-
positive cells after 10 days in a monolayer culture system. Despite
this low proportion, EPCAM+ cells showed the expression of the
TEP markers Pax1, Pax9 and Foxn1. These induced TEPs were
able to successfully reconstitute a cortical and medullary
compartment 6 weeks after engraftment under the kidney
capsule, confirming their nature of bipotent progenitors. This
regenerated thymus contained TCRaß+ CD3+ thymocytes
expressing CD4 and CD8 in similar proportions than in
native thymus.

Further advances were made by Inami et al. one year later
(124). Using human iPSc and by adding RANK ligand (RANKL)
to an optimized cytokine cocktail at day 12, they not only
reproduce the differentiation into TEP with protein expression
of their markers Pax1, Krt5, and Notch ligands DLL4 and DLL1,
but for the first time they detected low levels of AIRE expression
indicating further maturation of TEPs into mature mTECs.
However, the functionality of this mTEC-enriched differentiated
population was not addressed in this study, nor its heterogeneity
which is an important parameter to control since a significant
proportion of unwanted cell lineages are expected to arise from
this differentiation and hinder inter-experimental reproducibility.
In addition, the poor understanding of late TEC development and
the lack of specific markers were major obstacles for a thorough
analysis of the differentiated cells. To identify a combination of cell
surface markers that are specific to TEPs, Soh et al. designed hESc
reporter lines with a GFP cassette inserted into the exon 2 of the
FOXN1 gene locus (125). Surprisingly, the differentiation of these
hESc was successfully performed using a simple protocol
consisting of exposure to Activin A for the first 4 days and
supplementation of FGF7 from day 14 in embryoid bodies
(Figure 3). Depending on the cell line, this protocol resulted in
June 2022 | Volume 13 | Article 930963
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a strong proportion of GFP-positive cells (27-37%) after 35 days.
Consistent with engagement in the thymic epithelial lineage, this
GFP+ population was positive for TEC-specific markers such as
KRT5, KRT14 and Notch ligands JAG2 and DLL4. However,
characterization of the differentiated cells has not been performed
further, leaving unanswered their maturation stage as well as their
cortical and medullary identity. In addition, these cells were not
able to support thymopoiesis since coculture with CD34+CD7+
proT cells failed to result in thymocyte differentiation.

Most of the progress made on the differentiation of pluripotent
stem cells into TECs came from the studies of Parent et al. and Sun
et al. that sought to optimize the differentiation protocol by
monitoring the expression of markers of the intermediate foregut
and pharyngeal pouch endoderm stages after cultivating hESc with
different combinations of factors (126, 127) (Figure 3). These two
studies showed that RA is needed for anteriorization of definitive
endoderm, as well as BMP4 and WNT3 for acquisition of TEP
identity. In addition, inhibition of WNT by IWR1, of TGFß by
LY364947 at day 5, andHedgehog byCyclopamin (CPM) fromday
7 today11was shown tobe required to increase FOXN1expression.
However, absence of unbiased experimental design did not allowan
Frontiers in Immunology | www.frontiersin.org 7
unambiguous and accurate identification of the effect of each factor
on thymic differentiation, likely resulting in suboptimal results.
Both protocols resulted in a significant upregulation of markers of
thymic identity. However, no markers of TEC maturation were
detectable. The induced TEPs were reaggregated and transplanted
into nude mice to maturate further as described by Lai & Jin. The
graft matured and was able to support thymopoiesis and
reconstitute peripheral blood T cell compartments (127).
Spectratype analysis of the TCR repertoire showed increased TCR
Vß rearrangement diversity in mice engrafted with hESc-derived
TEPs compared with controls (127). CD4+CD25+FOXP3+ Treg
were also detected in engrafted mice (127). Importantly, the T cells
generated in engrafted nude mice were functional showing IL2
secretion and proliferation after stimulation. They were also able to
reject skin grafts. Since this model relies on cross-species reactivity,
the same experiments were carried out in humanized mice with
human hematopoietic progenitors. Similar results were obtained,
therefore confirming the ability of thymic grafts to induce humanT
cell generation.

Additional approaches based on different strategies than
directed differentiation, showed that the key factor FOXN1 was
FIGURE 3 | A synthesis of pluripotent stem cells thymic differentiation strategies. A decade of advances in thymic differentiation resulted in perfected protocols
allowing production of mature mTEC by mimicking the thymic organogenesis in vitro. For each reference, cell type used, pathway-modulating molecules timings and
concentrations are indicated, as well as results in terms of nature of the obtained cells and their ability to induce T cell maturation. ActivinA (ActA), Fibroblast growth
factors 7,8,10 (FGF7-8-10), Bone Morphogenetic Protein 4 (BMP4), LiCl (Lithium Chloride), Retinoic acid (RA), Cyclopamine (CPM, hedgehog inhibitor), Sonic
Hedgehog (SHH), LY364947 (TGFb inhibitor), SB43 (TGFb inhibitor), Wingless family member 3 (WNT3), IWR1 (WNT inhibitor), Epidermal Growth Factor (EGF),
CHIR99 (WNT3 agonist), LDN19 (BMP inhibitor), Noggin (NOG), SANT1 (Hedgehog inhibitor), Smoothened Agonist (SAG, Hedgehog agonist).
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sufficient to induce TEC differentiation. First clues came from
the study of Su et al., showing that culturing hESc with
recombinant HOXA3 and FOXN1 resulted in significantly
increased TEP yield (128). Additional evidence came from the
reprogramming of fibroblasts by FOXN1 over-expression (86)
showing that it is sufficient to drive differentiation towards the
thymic epithelium fate with large, polygonal cells resembling
TECs and expressing factors that sustain thymocyte
development such as DLL4 and CCL25. These induced TECs
(iTECs) were also able to mature ETPs into CD4+ and CD8+ SP
T cells, both in vitro after 12 days of coculture and in vivo after
engraftment in mice. In these mice, T cell functionality was
confirmed with increased IL2 secretion in response to CD3/
CD28 stimulation. These findings revealed that TECs can be
generated from fibroblasts through the sole overexpression of
FOXN1 thus highlighting a key role of this transcription factor in
driving the TEC fate program. Together with the advancement of
the delineation of the regulatory cascade inducing thymic fate,
these results confirm that FOXN1 is necessary and sufficient for
the induction of the TEC program, even if it does not induce
thymic fate by itself. However, the reliability of the
reprogramming approach to reconst i tute the TEC
compartment with its full heterogeneity needs to be evaluated
and compared to the directed differentiation of iPSc that mimics
thymus organogenesis. Several other studies have replicated
these results, through directed differentiation alone (129) or in
conjugation with Foxn1 overexpression (130, 131) and raised the
question of induction of immune tolerance. As expected, Foxn1
overexpression in mouse iPSc significatively enhances the
differentiation into TEPs, resulting in cells that express TEP
markers Pax9, Dll4 and Foxn1 (129, 130) and undergo a proper
TEC maturation after engraftment in mice. The effect of these
iPSc-derived thymic grafts on immune tolerance has been
studied by grafting skin biopsies from the same donor mouse
strain from which the iPSc were generated in a recipient of
another mouse strain after immune depletion by irradiation and
anti-T antibody treatment (130) or directly in nude mice (129).
Interestingly, recipient mice with a B6-derived thymic graft
showed increased B6 skin graft survival. However, the cellular
mechanisms leading to the induction of self-tolerance after iPSc-
derived thymic graft needed to be more thoroughly examined.

More recently, comprehensive studies came out and pushed
this topic further. Indeed, Ramos et al. and Gras-peña et al.
optimized the differentiation protocols, notably by modulating
temporal Hedgehog signaling (132, 133) (Figure 3).
Interestingly, both protocols include Hedgehog activation
during the step of pharyngeal endoderm induction, contrary to
what was done in a previous report (126). Hence, the fine
temporal modulation of the Hedgehog-specific pathways may
be key to trigger a proper differentiation towards pharyngeal
endoderm. Other examples of temporal modulations are also
observed with the inhibition of BMP through Noggin between
day 15 to day 21 followed by a more classical activation of BMP4
from day 21, resulting in a significant 10-fold increase of PAX9
expression (133). Another key insight from this study was the
addition of FGF8b during endoderm anteriorization at day 4.5
Frontiers in Immunology | www.frontiersin.org 8
which results in a 5-fold increase of FOXN1 expression.
Remarkably, TECs derived from hESc following this protocol
could be maintained for up to 30 days in classical 2D culture and
they expressed the thymic markers FOXN1, PAX9, EYA1, SIX1
and AIRE at similar levels than in the human fetal thymus.
Another crucial aim is the characterization of the induced TECs
at the single-cell level. After a directed differentiation protocol
yielding 46% of TEPs (EPCAM+ CD205+) at day 14, Ramos
et al. reaggregated the cells and perform their engraftment in
nude mice. After 14 to 19 weeks, the thymic grafts were analyzed
by bulk and scRNA-seq. Confirmation of further maturation in
TECs was provided by high levels of expression of HLA-DRA
and DLL4. Remarkably, the scRNA-seq data of these grafts
showed a common clustering of TECs derived from iPSc with
primary TECs from postnatal thymuses. However, subclustering
of the TEC population revealed a distinct separation between the
two types of samples, with induced TECs mainly composed of
TEPs and differentiating TECs, while cells from the more mature
cTEC and mTEChi clusters were originating from the
primary samples.

These data shed a new light on the mechanisms leading to
TEP differentiation, notably in pointing out the roles of Activin A
and the Notch pathway detected by the expression of INHBA and
DLK1 in the TEP cluster. This direct differentiation protocol
allows precise differentiation of iPSc into TEPs that mature into
functional TECs in vivo with a transcriptomic profile close to
primary TECs. Further application of scRNA-seq techniques to
TEC differentiation could lead to a deeper understanding of the
mechanisms driving the generation of the diverse TEC
populations and leverage this new knowledge to differentiate
specific TEC subpopulations.

Together, TEC differentiation from pluripotent stem cells has
shown significant improvement in recent years with a continuous
improvement of the protocols giving rise to TEPs, with greater
yield and purity. Conversely, less progress was achieved in the
approaches aiming to obtain mature TECs from TEPs. Regarding
this stage of maturation, important clues came from the study of
the thymic crosstalk with the finding that the interactions
between TECs and developing thymocytes are necessary to the
maturation of TECs. It was also shown that the thymic crosstalk
could be mimicked in vitro using cytokines including but not
restricted to RANKL. At a functional level, these induced TECs
(iTEC) can support the maturation of thymocytes and
reconstitute the T cell compartment in vivo. T cells cocultured
with iTEC proliferate and secrete cytokines after stimulation.
They are also able to improve skin graft rejection, thus showing
evidence of functionality. Interestingly, nTreg can also be
generated by iTEC grafts and induce immune tolerance to
syngeneic skin grafts.

Although all the above protocols succeeded in generating
TEPs with various efficiency, considerable obstacles still need to
be addressed to obtain a functional thymic organoid in vitro.
This highlights the fact that our current level of control over
thymic iPSc differentiation is still incomplete and that most of
the modulated pathways in these protocols may not be necessary
nor sufficient.
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Heterogeneity of the directed differentiation products is also a
crucial stake for clinical applications since undifferentiated iPSc
can lead to teratoma formation after transplantation. Purification
strategies and treatment by selective anti-iPSc molecules such as
YM155 (133) are promising approaches to mitigate this risk.
This differentiation heterogeneity could also counter-intuitively
positively affect the generation of iPSc-derived TECs. As
described above, multiple cell types collaborate for thymic
functionality. Thus, a differentiation strategy yielding not only
isolated TECs but also thymic fibroblast or even T progenitors
and dendritic cells would improve TEC differentiation.

Finally, a long-term culture system accurately reproducing in
vivo thymic microenvironment still needs to be developed.
Although TECs derived from iPSc can be maintained in
classical 2D culture for up to 30 days (133), a culture system
closer to the 3D sponge-like structure of the thymic stroma could
significantly improve TEC differentiation and viability.
3D CULTURE AND ORGANOIDS

In classical 2D culture, primary TECs show a progressive loss of
AIRE and FOXN1 expression (134) and of their ability to express
the full set of TRA genes (135). Since the 3D structure is an
important factor for TEC maintenance (136), recapitulating such
an organization in culture systems for thymic differentiation
could improve yields and viability of iTECs. Several 3D models
have been developed and tested on primary TECs. One of them
relies on the coculture of mTECs with dermal fibroblasts
Frontiers in Immunology | www.frontiersin.org 9
embedded in a fibrin hydrogel, allowing proliferation,
phenotype conservation, and further maturation of these cells
(135). In comparison to simpler 2D culture systems, this
organotypic 3D culture allows mTECs to keep their primary
ability to express TRA genes. Other synthetic hydrogels have
been developed to reconstitute the thymic microenvironment,
such as a self-assembling synthetic hydrogel formed by EAK16-
II/EAKII-H6 peptides (137). This gel was shown to induce the
organization of primary TECs in 3D clusters and maintain the
expression of FOXN1 and EPCAM. After transplantation in nude
mice, these hydrogel-embedded TECs supported the generation
of T cell populations that were able to induce self-tolerance, as
assessed by mixed leukocyte reactions. However, no cortico-
medullary TEC segregation was observed in the reconstituted
thymus, and the generated T cells were considerably biased
toward CD8+ SP T cells. Additional systems were also
generated to support the 3D culture of TECs, such as those
based on fibronectin functionalized fibrous meshes (138), gelatin
spheric microgels (139) or type I collagen hydrogel (140).
Despite the various protein compositions of their matrices,
these systems supported an enhanced proliferation, spreading
and maintenance of the main TEC populations. However, the
collagen hydrogel seeded with mice TEC did not seem to support
thymopoiesis in vivo (140). Although synthetic hydrogels are a
promising tool to culture TECs, more thorough research and
opt imizat ion are needed to accurate ly mimic the
thymic microenvironment.

An alternative approach to these synthetic systems is to
directly use the primary thymus matrix to benefit from the
A B

FIGURE 4 | Potential cellular therapy strategies for treating APECED with induced TECs to restore thymic functionality. (A) Fibroblasts from the patient can be
reprogrammed to iPSc and the defective gene corrected with gene editing tools. Differentiation of these iPSc into thymic epithelial cells, in combination with T cell
progenitors differentiated from the same iPSc or directly purified from patient blood, would allow generation of artificial thymic organoids. These organoids could be
either directly transplanted or used to generate competent T cells ex vivo to reconstitute the patient immune system. In this scenario T cell progenitors could be
purified from patient blood or differentiated from patient iPSc. (B) Gene editing of a deficient gene from a patient can rely on CRISPR/Cas9 and be combined with
reprogramming steps for the obtention of iPSc.
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native diversity of its constituting proteins and 3D structure.
Decellularization of primary thymic lobes results in scaffolds that
conserve the microstructure and the protein composition of the
thymic microenvironment (141–143). These scaffolds support
TEC growth and differentiation with the conservation of FOXN1
expression and the reformation of distinct medullary and cortical
compartments. Moreover, after engraftment, the reconstituted
thymuses can support the generation of functional T cells that
can induce donor-specific tolerance in a skin graft model (141,
143). However, these approaches are dependent on a primary
source of mouse or human thymuses, thus hindering clinical use.

Lastly, beside TEC differentiation, recent studies aiming to
obtain functional T cells from hematopoietic progenitors or iPSc
have also highlighted the importance of 3D culture systems to
leverage obstacles in order to generate TEC organoids.
Development of artificial thymic organoids (ATO) (144–146)
has been achieved through reaggregation of a bone marrow
stromal cell line engineered to express the Notch ligand Dll4
with either hematopoietic stem cells or mesodermal progenitors
derived from iPSc. The cocultured cells formed a 3D structure
cultured in an air-liquid interface. Using bone marrow stem cells
from mice of three different backgrounds, the ATO system was
able to consistently reproduce thymopoiesis, and generate
mature single-positive CD4 and CD8 cells (145, 146).
Remarkably, this system resulted in comparable results when
using mesodermal progenitors derived from hESc and human
iPSc (145). Thus, thymic organoids can recapitulate T cell
differentiation in vitro, therefore showing the importance of
3D structure in comparison to less efficient 2D cocultures
(147). However, CD4 single-positive T cell frequency was
lower than expected, probably because of the absence of TECs
in this system, resulting in an impaired MHCII signaling.
Another crucial drawback is the conservation of numerous
clones naturally eliminated in the thymus, illustrating the
absence of negative selection in the ATOs.
CLINICAL APPLICATIONS TO APECED
AND PERSPECTIVES

Congenital pathologies affecting TEC development and function
lead to severe conditions of autoimmunity or lymphopenia.
APECED is caused by loss-of-function mutations in the AIRE
gene resulting in a general autoimmune syndrome. Patients
receive a personalized combination of treatments targeting the
symptoms and leading to clinical improvements. However, no
curative strategy is available yet, and APECED patients still risk
premature death. Remarkably, the recent breakthroughs in TEC
generation from iPSc lead to new perspectives for treatment of
APECED (Figure 4A). Reprogramming patient cells and
correcting the AIRE mutations through gene editing techniques
would produce iPSc that could be used to regenerate 3D thymic
tissues. Transplantation of these autologous engineered thymic
tissues would restore thymic function and limit the risk of
autoimmunity. Indeed, the transplanted tissues would be
syngeneic and T cells generated would be educated to the
Frontiers in Immunology | www.frontiersin.org 10
patient’s autoantigen repertoire, reconstituting its immune
system (Figure 4A).

Reprogramming of somatic cells from APECED patients has
been shown feasible despite the role that AIRE plays in the
regulation of ESc pluripotency and in their self-renewal (148,
149). Indeed iPSc have recently been generated from APECED
patient cells (150), showing that the AIRE R257X mutation does
not impair cell reprogramming, iPSc proliferation and
pluripotency. In this study, PBMCs from 2 female APECED
patients were transduced by a Sendai virus vector, yielding 10
iPSc clones in which the AIRE mutation was confirmed. These
iPSc show similar proliferation and expression of pluripotency
markers than iPSc with functional AIRE, therefore validating the
use of iPSc-based approaches in APECED. If AIRE has not been
reportedly corrected in iPSc, this approach has been
demonstrated in several models of monogenic pathologies,
affecting diverse organs such as retina, kidney and liver (151–
153). In these studies, the mutated genes RPGR, IFT140 and
LDLR causing Retinitis pigmentosa, nephronophthisis and
homozygous familial hypercholesterolemia, respectively, were
corrected in iPSc from patient cells. The corrected iPSc were
then differentiated into retinal organoids, kidney organoids or
hepatocyte-like cells, all of them showing a rescued phenotype
and functionality (151–153). The CRISPR/Cas9 system was used
for gene edition in these 3 studies, delivering plasmids and Cas9
to the iPSc by electroporation (152, 153), or in a one-step
protocol during reprogramming (151). In the latter, patient
dermal fibroblasts are electroporated by two pulses at 1,400 V
for 20 ms with a cocktail of plasmids coding for the
reprogramming factors, a guide RNA for the target gene, its
corrected sequence, and a spCas9-gem. This specific Cas9
variants have been developed for gene editing iPSc (154). Thus,
given those converging clues, using CRISPR/Cas9 to edit AIRE in
iPSc derived from APECED patients could be a valid curative
strategy (Figure 4B).

BeyondAPECED, other pathologies affecting the thymus are also
caused by genetic defects. DiGeorges syndrome is caused by a
microdeletion of the TBX1-containing chromosome region
22q11.2, nude SCID by mutations in the FOXN1 gene and
Otofaciocervical Syndrome type 2 in the PAX1 gene (155). These
conditions lead to partial or total athymia and life-threatening
lymphopenia. Curative treatments of these diseases could also rely
on transplantation of autologous engineered thymic tissues to restore
thymic function while limiting the risk of autoimmunity.
Nonetheless, a crucial limitation is the long lapse of time needed to
reprogram iPSc and to differentiate them into functional thymic
tissue. Applied to APECED, early diagnosis would be crucial, since
this approach cannot cure the damage already caused by
autoimmunity, even though promising immunotherapies are
emerging to treat autoimmune manifestations (156). For
pathologies causing lymphopenia, early diagnosis would also be
vital to limit the risk of potentially lethal infections during the time
needed to generate the engineered thymic tissues. To envision the use
of such therapies, additional challengeswouldneed tobemetwith the
need todevelop clinical-grade differentiationprotocols not relying on
any xenogenous reactives and based on well-accepted synthetic
hydrogels for 3D culture. Finally, the risk of transplanting iSPc-
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derived TECs should be carefully assessed to limit teratoma
formation, with purification of differentiated cells and anti-
pluripotency treatment.

Because of the complex interactions between cell populations in
the thymus, the crucial importance of its 3D organization and the
still-improving understanding of TEC biology, generation of in vitro
culture systems closely reproducing the thymus is a major challenge.
In recent years, great advances have beenmade in the understanding
of thymus organogenesis, the generation of TECs from pluripotent
stem cells and 3D culture systems. These complementary progress
will very likely result in preclinical applications for the treatment of
pathologies affecting T cell development in the thymus.
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