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Abstract: Ceramic matrix composites (CMCs) based on silicon carbide (SiC) are used for high-
temperature applications such as the hot section in turbines. For such applications, the mechanical
properties at a high temperature are essential for lifetime prediction and reliability design of SiC-
based CMC components. We developed an interatomic potential function based on the artificial
neural network (ANN) model for silicon-carbon systems aiming at investigation of high-temperature
mechanical properties of SiC materials. We confirmed that the developed ANN potential func-
tion reproduces typical material properties of the single crystals of SiC, Si, and C consistent with
first-principles calculations. We also validated applicability of the developed ANN potential to a
simulation of an amorphous SiC through the analysis of the radial distribution function. The de-
veloped ANN potential was applied to a series of creep test for an amorphous SiC model, focusing
on the amorphous phase, which is expected to be formed in the SiC-based composites. As a result,
we observed two types of creep behavior due to different atomistic mechanisms depending on the
strain rate. The evaluated activation energies are lower than the experimental values in literature.
This result indicates that an amorphous region can play an important role in the creep process in
SiC composites.

Keywords: silicon carbide; ceramic matrix composites; creep properties; high-temperature strength;
molecular dynamics; artificial neural network

1. Introduction

From the viewpoint of structural materials, silicon carbide (SiC) is used as the ma-
trices and reinforcing fibers in the ceramics matrix composites (CMCs). The CMC whose
matrix and fiber consist of SiC is called SiC/SiC. The SiC/SiC composite has prominent
mechanical properties such as light weight, high elastic modulus, high strength, and high
fracture toughness [1,2], and these features makes the SiC/SiC composites applicable to
the hot section in turbines [3,4]. For such application of SiC-based structural materials,
the mechanical properties at high temperature are of crucial importance and have been
investigated by experiments (e.g., the temperature dependence of tensile strength and
creep properties for a SiC fiber [5,6], and high-temperature fatigue behavior of a SiC/SiC
composite [7]). Since such experiments require a lot of time and special experimental
equipment, assistance by numerical simulation approaches is necessary for evaluation
and analysis of the mechanical properties. The molecular dynamics (MD) simulation can
be a powerful tool to investigate the essential mechanisms of deformation and fracture,
if a suitable interatomic potential function is available. Moreover, ideally, the material
properties obtained by the MD simulations can be used as the material parameters for
larger-scale simulations; e.g., the activation energies of creep and diffusion are applied to
the phase field simulations, the finite element method (FEM) analysis, etc.

The reliability of MD simulation is mainly dependent on the quality of the applied
potential function, and thus the potential function should be chosen (or developed) properly
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according to the purpose of the simulation. Thus far many potential functions have been
developed for the Si-C system based on various physical models such as the bond-order
model [8,9], the modified embedded atom model [10], the ionic model [11,12], and the
charge-transfer model [13]. Nevertheless, there are still some non-trivial difficulties in
development of an interatomic potential function for the high-temperature analysis of SiC,
as follows:

1. In SiC fibers and matrices, the ratio of Si and C atoms is not necessarily stoichiometric
but may be varied. For example, Hi-Nicalon, a typical SiC fiber, consists of Si and C
of 39 at% and 60.4 at%, respectively [6]. Therefore, a constant-charge model, such as
Vashishta et al. [11] and Kubo et al. [12], is not applicable any longer.

2. Unlike a low-temperature condition, the local atomic structure can easily change at a
high temperature via, e.g., creep and diffusion processes. In such situation, the bond-
order type potential functions may cause qualitative and quantitative errors, because
in general such potential functions tend to overestimate the bonding energy or critical
force of bond breaking.

3. It is also unclear what interactions are dominant on the mechanical properties of SiC
at high temperature. In SiC, both ionic and covalent interactions are competitive and
thus play an important role in deformation and fracture in SiC. That is true even in
the case of a perfect crystal of SiC at 0 K, where cleavage, slip, and phase transition
were observed with a slight difference in the loading condition in a first-principles
(FP) analysis [14]. This complex feature of the interaction in SiC requires a highly
flexible and versatile formulation in the potential model.

4. The practical SiC materials include other types of atoms (e.g., B, O, N, Al, etc.) as
impurities and/or dopants [15,16] (Relatedly, ceramic fibers consisting of Si, B, N,
and C also have been produced [17]). Therefore, the potential function for the Si-C
systems should be extendable to a many-species system for further investigation.
The existence of such impurities and/or dopants also requires a flexible formulation
of the potential model because the additional atoms can be metallic, covalent, or ionic.

In short, MD simulations of the high-temperature mechanics of SiC require the inter-
atomic potential model to be highly transferable, flexible and extendable. It is difficult to
address all these problems by means of conventional interatomic potential models (Even
if possible, it may be accompanied by a substantial modification of the function forms).
In contrast, the interatomic potential models based on machine-learning approaches can be
a suitable solution to overcome these problems because of their systematic formulations.
Several types of machine-learning potentials have been thus far proposed [18], e.g., the ar-
tificial neural network (ANN) model [19,20], the Gaussian approximation potential [21],
the gradient-domain machine learning [22], and other approaches [23]. Especially the
artificial neural network (ANN) potential models have been widely applied because of
its flexibility. In a mathematical sense, an ANN can mimic any function with a given
accuracy [24–26]. In a physical sense, an ANN has no physical background and thus can
be applied to any type of materials including metals [27,28], metal oxides [20,29], carbon
polymorphs [30,31], and organic molecules and complexes [32]. In addition, application of
the ANN models to atomistic analyses is not limited to use as a potential function. Very re-
cently, several ANN applications have been reported, where ANNs are used for prediction
of electronic properties in the atomic systems [33–35]. Thanks to a lack of the physical
background in ANN models, a framework of the ANN potential function is applicable
to other objects, e.g., a prediction of the electronic density of state, without any special
modification in the ANN architecture itself, as was demonstrated by Umeno and Kubo [33].

In this study, we develop an ANN potential function for the Si-C systems, for the
purpose of investigation of high-temperature mechanical properties in the SiC structural
materials. While real SiC-based ceramics contain other atomic species, we omit such
impurity or dopant atoms and focus on pure Si-C systems for simplicity. Some mechan-
ical properties are evaluated for SiC single crystals for the purpose of validation of the
ANN potential. After that, the ANN potential function is applied to high-temperature
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deformation analyses. On performing MD simulations, it is required to set a reasonable
simulation model of atomic structure because a whole CMC system cannot be exam-
ined by molecular simulations owing to the limitation of the length scale. According
to experimental observations, the grain boundary region plays an important role in the
high-temperature mechanical behavior such as creep in ceramics [6,36]. Thus, we mainly
examine the amorphous-phase structures to mimic the non-crystalline grain boundary
regions instead of directly investigating a CMC structure or a polycrystal model for sim-
plicity and efficiency of simulation; i.e., we regard the amorphous model as the limit of
small-grain. The effect of oxygen atoms, which is a major cause of forming the amorphous
phase, is also omitted for simplicity. The creep properties of amorphous SiC is evaluated as
a relationship among the strain rate, stress, and temperature. The mechanisms of creep in
the amorphous SiC are discussed by analyzing the structural change during deformation.

This study is organized as follows. In Section 2, we introduce the potential function
based on the ANN model and explain the procedure of parametrization. In Section 3,
the developed ANN potential is validated through several simple MD simulations. Typical
material properties such as the lattice constant are compared with the FP calculations and
experiments in literature. In Section 4, we apply the ANN potential to practical analyses
to evaluate the high-temperature mechanical properties, especially the creep properties
under a variety of loading conditions. Lastly, in Section 5, we summarize the results and
make the concluding remarks.

2. Construction of Artificial Neural Network Potential Model
2.1. Formulation

We adopted the framework of the ANN potential model proposed by Behler and
Parrinello [19], where the potential energy for each atom is evaluated as a function of the
local atomic structure within the cutoff radius. The ANN architecture is schematically
shown in Figure 1. An ANN model is composed by the input layer (layer 0), internal layers
(layers 1, ..., N − 1) and the output layer (layer N). Each layer consists of nodes, whose
state is expressed by a real number. The state of the nodes in the input layer is determined
from local atomic structure by the basis functions. The output layer has a single node and,
its state is returned as the potential energy. The state of the α-th node in the n-th layer, xn

α

(n > 0), is determined with the nodes in the previous layer n−1 as follows:

xn
α = f n

a

(
Mn−1

∑
β=1

wn
αβxn−1

β + wn
α0

)
, (1)

where wn
αβ denotes the weight parameter, and wn

α0 is the bias weight parameter indepen-
dent of the state of the previous layer. Those weight parameters are to be optimized
through machine learning. The function f n

a is the activation function for the n-th layer.
The controllable architectural parameters in this model are the number of the internal
layers N, the number and types of the basis functions, and the number of nodes in each
layer Mn for n = 1, ..., N − 1 (the number of nodes in the input layer, M0, is equal to the
number of the basis functions). In addition, also the type of the activation function f n

a (n =
1, ..., N − 1) can be changed.

While the original Behler-Parrinello model applies an exponential-type basis function
set, we adopted the basis function set formulated by Artrith et al. [32] This basis set includes
the two-body interaction ϕµ(r) and the three-body interaction ψµ(θ):

φµ(r) = Tµ

(
2r
rc
− 1
)

, (2)

ψµ(θ) = Tµ(cos θ), (3)
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where the series of Tµ(x) (x∈[−1, 1], µ = 0, 1, 2, ...) is the Chebyshev polynomials of the
first kind defined recursively as

T0(x) = 1,
T1(x) = x,

Tµ+1(x) = 2xTµ(x)− Tµ−1(x).
(4)Materials 2021, 14, x FOR PEER REVIEW 4 of 23 
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Figure 1. Schematic illustration of ANN potential model. This figure shows an exemplified network
model with two internal layers (layers 1 and 2) and three nodes each in the input and internal layers.

Using these basis sets, the state of the nodes in the input layer, x0
α, is determined

as follows:
x0 (pair)

α = ∑
j

φα−1(rij) fc(rij), (5)

x0 (angle)
α = ∑

j,k
ψα−1(θjik) fc(rij) fc(rik), (6)

where f c is the cutoff function to truncate the basis functions at the cutoff radius rc. In this
formulation, each of two-body and three-body basis functions has only two empirical
parameters, i.e., the number of terms for expansion, N2 and N3, and the cutoff radius rc.
This simple feature enables a systematic expansion of the basis function.

The activation function f n
a is given as

f n
a (x) =

{
1.7159tanh

( 2x
3
)
+ 0.1x (n = 1, . . . , N − 1)

x (n = N)
. (7)

While the cutoff function f c is given by a cosine function in the original model [32],
we modified the cutoff function to the following form:

fc(r) =

{
1
2

[
1 + sin

(
π
2 cos

(
πr
rc

))]
(r ≤ rc)

0 (r > rc)
. (8)

The main purpose of this modification is to make the basis functions smoother at the
cutoff radius rc.

An individual ANN model is assigned for each atomic species, i.e., Si and C, with the
identical architecture. The architectural parameters of the basis functions are summarized
in Table 1. The number of nodes in the input layer is equal to the number of terms of
basis functions, i.e., 44 (16 terms for two pair types and 4 terms for three triplet types).
Each ANN possesses two internal layers with 20 nodes each. Therefore, each ANN model
has 1341 parameters (wn

αβ and wn
α0) to be optimized.
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Table 1. Architectural parameters of basis function set. X in the combination type indicates the
atomic species of centering atom (X = Si, C).

2-Body 3-Body

Combination type X-Si, X-C Si-X-Si, Si-X-C, C-X-C
Number of terms per combination 16 4

Cutoff radius rc [Å] 8.0 6.5

2.2. Optimization Procedure and Reference Data

The internal parameters in the ANN potential were optimized in order that the ANN
model can reproduce the relationship between the atomic structure and the potential energy
in the target material system. We refer to this relationship or mapping as the reference
data, and the atomic structures for the reference data are called the reference structures.
We obtained the reference data by the FP calculation based on the density functional theory
(DFT) [37], which can reproduce the basic material properties such as the lattice constants
and elastic constants for the Si-C systems [12,14] and deal with relatively large number of
atoms compared with other FP approaches.

The optimization was carried out in the following way: Firstly, the initial reference
data set was obtained for basic atomic structures. We conducted DFT calculations for
the stable atomic structures of SiC (2H, 3C), Si (diamond), and C (diamond, graphene).
In addition, we collected the reference data for other typical structures of high symmetry
(e.g., bcc, fcc, etc.) and the strained structures, where affine deformation is applied up to
20% in typical modes. The structures and deformation modes are shown in Appendix A.

Secondly, the ANN parameters were optimized to develop a provisional ANN poten-
tial function. Here, the architecture of the ANN model (the number of layers, the number
of nodes, etc.) was not changed during optimization. We chose 90% of the reference data at
random and used them as the training data. The remaining 10% was left as the test data
for validation.

Thirdly, several MD simulations were performed using the provisional ANN potential
to confirm its validity in qualitative and quantitative aspects. If the ANN potential can
reproduce all the material properties of interest, the optimization process is over. However,
an atomic structure often falls into an unrealistic structure during MD simulation, especially
at an early stage of the optimization cycle. If impermissible errors or unphysical behavior
(e.g., unrealistic phase transition) are found in the ANN results, the atomic structures
with such a disagreement are added to the reference data set, and the ANN potential
is optimized again with the additional reference data. This series of development cycle
(addition of reference data, optimization, and validation) was repeated until the resultant
ANN potential reaches an acceptable level of quality. This method can selectively detect
atomic structures for which the ANN returns an erroneous result, and thus enables an
efficient optimization of the potential function [12,38]. For this purpose, we also examined
untypical atomic structures that are obtained from the MD simulations under ultimate
conditions, such as clusters consisting of a small number of atoms, structures fused at an
extremely high temperature, etc. These data can enhance the transferability of the resultant
ANN potential. Exemplified atomic structures obtained via this process are shown in
Figure 2.

Note that the potential energy tends to be underestimated in the atomic structures
obtained by the MD simulation with a provisional ANN potential. That is simply because
an atomic structure is unlikely to appear during MD simulation if its potential energy is
overestimated. This trend inevitably causes a bias in the reference structures and indicates
a limitation of the abovementioned approach (this problem is not peculiar to the ANN po-
tential model or other machine-learning potentials but common to any type of the potential
models). To address this problem, we also collected the reference structures in another
way. We picked up several atomic structures resulting from the MD simulations, and those
structures were relaxed by the DFT calculation. The fully relaxed structure and transient
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structures during relaxation were used as the reference structures, and the potential energy
of those structures is likely to be overestimated by the provisionally developed ANN
potential. Since this approach requires more computational cost for relaxation by DFT
calculation, relatively fewer reference data were generated by this method.
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All the DFT calculations were conducted by Vienna Ab-initio Simulation Package
(VASP) [39,40] with the generalized gradient approximation (GGA) by Perdew et al. [41]
The core electrons were dealt with by the projector augmented wave (PAW) method [42].
The ANN potential was developed by the Atomic Energy Network (ænet) package [20]
with the limited-memory Broyden-Fletcher-Goldfarb-Shanno method [43]. The MD sim-
ulations were carried out by the LAMMPS code [44,45] on which the ænet library was
implemented by Mori [46]. The numbers of the reference structures for training and testing
were 18,571 and 2063 in total, respectively.

3. Validation of ANN Potential Function
3.1. Result of Optimization

Figure 3 shows the comparison of the potential energies of the reference structures
calculated by the DFT calculation and the developed ANN potential. Each data point
corresponds to one reference structure. If the potential energy of a reference structure is
consistent with the ANN and DFT calculations, the corresponding data point locates near
the diagonal line, y = x. Almost all the data points in Figure 3 are found to locate near the
diagonal line, and thus the developed ANN potential is expected to be able to reproduce
the DFT results for various atomic structures. The ANN potential overestimates the
potential energy of some reference structures, which are amorphous structures composed
by carbon. Thus, the ANN potential may cause not a little error for the simulations with
such structures. Although this issue should be addressed eventually, such error is still
acceptable for the present purpose, because (i) the amorphous phases of pure carbon is
out of our scope and not close to our target, and (ii) overestimation of the potential energy
is much less likely to cause a fatal problem than underestimation, which can induce an
unrealistic phase transition.
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3.2. Material Properties at Equilibrium States

Table 2 lists the lattice constants, potential energies, and elastic constants at equilibrium
state of the typical crystal structures of SiC, Si, and C obtained by the ANN potential and
DFT calculation.

Table 2. Lattice constants (a, c), potential energy (E), and elastic constants (Cij) at equilibrium state of typical structures of
SiC, Si, and C. Parameter d for C-graphene indicates the bond length. The column of “Exp.” and “MM” indicates the values
obtained by experiments [47–51] and molecular mechanics simulation with conventional potential models (Tersoff (T94) [8],
Erhart and Albe (EA) [9]), respectively.

ANN DFT Exp. MM
T94 a/EA

SiC

3C
(zincblende)

a [Å] 4.371 4.379 4.3596 b 4.280/4.359
E [eV/atom] −7.540 −7.532 - −6.434/−6.340

C11 [GPa] 425 384 390 b 447/382
C12 [GPa] 189 127 142 b 138/145
C44 [GPa] 190 233 256 b 293/240

2H
(wurtzite)

a [Å] 3.082 3.091 3.076 c -
c [Å] 5.103 5.073 5.048 c -

E [eV/atom] −7.539 −7.530 - -
C11 [GPa] 593 498 - -
C33 [GPa] 592 537 - -
C12 [GPa] 226 98 - -
C13 [GPa] 94 49 - -
C44 [GPa] 183 153 - -

4H
a [Å] 3.085 - 3.080 d -
c [Å] 10.196 - 10.081 d -

6H
a [Å] 3.088 - 3.080 d -
c [Å] 15.294 - 15.098 d -

Si diamond

a [Å] 5.486 5.469 5.429 e 5.432/5.429
E [eV/atom] −5.418 −5.424 - −4.63/−4.63

C11 [GPa] 137 154 168 e 143/167
C12 [GPa] 66 57 65 e 75/65
C44 [GPa] 135 74 80 e 119/60
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Table 2. Cont.

ANN DFT Exp. MM
T94 a/EA

C
diamond

a [Å] 3.572 3.572 3.567 f 3.556/3.566
E [eV/atom] −9.127 −9.096 - −7.473/−7.373

C11 [GPa] 1336 1052 1081 f 1010/1082
C12 [GPa] 663 126 125 f 169/127
C44 [GPa] 785 551 579 f 545/635

graphene d [Å] 1.436 1.424 1.42 f 1.555/1.475
E [eV/atom] −9.261 −9.230 - −5.314/−7.374

a Calculated by Halicioglu [52]. b Lambrecht et al. [47]. c Merz and Adamsky [48]. d Lundqvist [49]. e Ref. [50]: Properties-Of-Silicon.
f Ref. [51]: Numerical-Data.

It is found that the ANN potential can evaluate the lattice constants and the potential
energy of typical crystal structures in a good agreement with the DFT calculation. Remark-
ably, the ANN potential can successfully reproduce the small energy gaps between the
3C and 2H structures of SiC, and the diamond and graphene structures of C. This result
indicates that the developed ANN potential is applicable to a variety of atomic environ-
ment. On the other hand, the elastic constants are found to have relatively large error
from the DFT results. This is mainly because the elastic constants are related to the second
derivative of the potential energy surface, which is not directly taken into account in the
target function of machine learning. Note that such a large error in the elastic constants
is also found in the analytic potential models (For example, Erhart and Albe compared
the elastic constants of SiC, Si, and C obtained by various analytic potential models [9]).
The accuracy of the elastic constants may be improved by including physical quantities
related to the derivative of the potential energy in the reference data, e.g., as is adopted
in the force-matching method [53]. Note that the ANN potential still has an advantage,
even if the conventional potential functions can reproduce the structural and mechanical
properties with a comparable accuracy. This is because ANN potentials are much more
flexible and extendable than the flamework of the conventional potential models. For ex-
ample, one can easily extend ANN potentials for Si-C systems to multi-species systems
(e.g., Si-C-Al-B) without any special care or consideration, while conventional models
are expected to require a substantial effort to determine a suitable function form for such
multi-species systems.

3.3. Phase Stability of Crystalline SiC

We examined the phase stability of crystalline SiC by conducting a melting test.
A crystalline SiC model with 3C structure consisting of 512 atoms was prepared and heated
at various heating rate dT/dt from 20 K/ps to 200 K/ps, where the cell size was adjusted
in order that the thermal stress on the simulation cell was relaxed. Figure 4 shows the
relationship between temperature and the potential energy per atom at 20 and 200 K/ps.
It is found that the potential energy exhibits a discontinuous increase at certain temperature
range (T ≈ 3500–4000 K), which is interpreted as the melting point Tm. Note that Tm is
dependent on the heating rate, i.e., Tm = Tm(dT/dt), because of high heating rates in the
MD simulation. Therefore, the real Tm should be evaluated by extrapolating as dT/dt→ 0.
By approximating the Tm-dT/dt relationship with a quadratic function (See Appendix B),
we estimated Tm→≈3500 K. This value is in a fairly good agreement with the experimental
decomposition temperature (≈3000 K) [54].
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3.4. Structural Property of Amorphous SiC

To confirm the applicability of the ANN potential to the analysis of amorphous SiC,
we prepared for an amorphous SiC structure model by the MD simulation of the melt-
quench process. A 3C-SiC model with 512 atoms was fused at 4500 K and cooled to 300 K
at the cooling rate dT/dt = 4.2 K/ps. Figure 5 shows the radial distribution function (RDF)
of the amorphous SiC structure model at 300 K obtained by the melt-quench simulation.
The profile of RDF is in a qualitatively good agreement with experiments [55,56], and typical
peak profiles are well reproduced. Note that we observed partial recrystallization during
the cooling process, and thus the RDF is dependent on the condition of the heating and
cooling processes (e.g., an annealing process promotes recrystallization [55]).
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4. Temperature-Dependence of Creep Properties of Amorphous SiC
4.1. Preparation of Simulation Cells

The amorphous structures for the creep tests were prepared for each target tempera-
ture. We set the target temperatures of T = 1000–3000 K, but the creep tests were actually
examined only at T = 1000 K and 1500 K for the reason explained at the end of this sub-
section. While the real amorphization process is expected to be involved with the oxygen
atoms, here we created the amorphous structures by the melt-and-quench method for
simplicity. The structures were made in the following procedure (schematically shown in
Figure 6): (i) A 3C-SiC supercell was prepared with 4 unit cells in each direction (512 atoms
in total); (ii) The simulation cell was heated from 10 K to 5000 K (>Tm) at a constant heating
rate, dT/dt = 499 K/ps; (iii) The atomic structure was fully shuffled at 5000 K for 10 ps;
(iv) The cell was quenched at a constant cooling rate, dT/dt = 499 K/ps, to the target
temperature; (v) The cells were relaxed for 500 ps at the target temperature. During this
process, isotropic stress was controlled to zero by adjusting the cell size. Note that the
obtained structures are not completely amorphous because the structure is recrystallized
during the quenching and relaxation processes to some extent. Especially, most part of
the simulation cell was recrystallized during the relaxation process at 2000 K and 2500 K.
Figure 7 shows the relationship between the potential energy of the relaxed structures and
the temperature. From these results, we set the temperature range for the creep tests to
T = 1000–1500 K, where the amorphous phase is likely to be kept.
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4.2. Deformation Condition

We evaluate the creep properties of amorphous SiC, especially, the relationship be-
tween the stress and the strain rate. We considered two types of deformation conditions,
i.e., constant-strain-rate and constant-stress conditions (hereafter dε/dt- and σ-constant
conditions, respectively). While most experimental creep tests were conducted under a
tensile loading condition, we applied compressive strain or stress to avoid void nucleation
and brittle fracture. For the dε/dt-constant condition, true compressive strain was applied
up to ε = 0.5 at constant true strain rates with the range of 2 × 10−3–5 × 10−1 ps−1. We con-
ducted three sets of creep test along three different loading directions (i.e., x, y, and z)
for each condition. For the σ-constant condition, we applied the compressive stress of
5–8 GPa at 1000 K and 4–7 GPa at 1500 K for 10 ps. As well as the case of the dε/dt-constant
condition, we conducted the simulations three times along different loading directions for
each condition. For both conditions, the normal stress components perpendicular to the
loading direction were fully relaxed.

4.3. Results and Discussion

Figure 8 show the stress-strain relationship obtained under the dε/dt-constant con-
ditions at T = 1000 K and 1500 K. For all the cases, the stress-strain relationship consists
of two regions, i.e., the nearly elastic region at small strain and the steady-state region at
large strain, and yielding occurs between those regions at ε ≈ 0.1. Relatively large fluctu-
ation of stress in the steady-state region is attributed to the limitation of the simulation
cell size. Figure 9 shows the atomic structure before and after deformation, obtained at
T = 1500 K and dε/dt = 2 × 10−3 ps−1. This result indicates that the atomic structure is
kept amorphous during the deformation test, which will be also confirmed by the RDFs
later in this section. We evaluated the steady-state stress as the average value of stress
over this region ε = 0.2–0.5. Figure 10 shows the relationship between stress and strain rate
at the steady state. It is found that there are two regions at the low and high strain rates.
The trend in both the regions follows the power law, which is qualitatively consistent with
the experiments and thus supports the validity of the developed ANN potential. Hereafter
we refer to the regions of low strain rates (dε/dt = 2 × 10−3–2 × 10−2 ps−1) and high strain
rates (dε/dt = 5 × 10−2–5 × 10−1 ps−1) as Regions I and II, respectively.
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Figure 11 shows typical temporal developments of strain under the σ-constant condi-
tions. Creep deformation was observed in all the cases, and we calculated the creep strain
rates dε/dt from the ε-t relationship for 20–100 ps for each stress and temperature. Figure 12
shows the relationship between the stress and the strain rate at the steady state (the data of
dε/dt-constant conditions are also shown for comparison and clarity). The results of the
σ-constant condition are basically consistent with the dε/dt-constant results and found to
belong to Region I. This result also shows that the σ-dε/dt relationship satisfies the power
law in a wide range of dε/dt.

The creep behaviors at Regions I and II are expected to be based on different atomistic
mechanisms. To reveal those mechanisms, we characterized the trend of change in the
atomistic structures under deformation through the mean-square displacement (MSD)
and the radial distribution function (RDF), which are related to the diffusion of atoms
and local structural change, respectively. Figure 13 shows the temporal development of
MSD and creep strain at Region I under the σ-constant condition, and Figure 14 shows the
RDFs obtained under the dε/dt-constant conditions at Regions I and II before and after
deformation. A clear correspondence between the trends in the MSD and the creep strain is
found (Figure 13), while the RDFs at Region I remain nearly unchanged after deformation
(Figure 14a). Therefore, the creep mechanism at Region I is attributed to diffusion of atoms
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in the amorphous structure. Figure 15 shows the temporal development of the individual
MSDs for Si and C (decomposed from the MSD in Figure 13), which indicates that both
the Si and C atoms are equally involved with the creep process. At Region II, in contrast,
the profiles of the RDFs are partly affected by deformation (Figure 14b); especially, the peak
at r = 3 Å of the Si-Si pair is significantly broadened after deformation (See Appendix C in
detail). This result reveals that at Region II the deformation is faster than (or comparable to)
relaxation of the local structure, and thus the creep behavior at Region II is characterized by
the relaxation process in the local atomic structure. This type of deformation only occurs
at a very high strain rate and thus is presumably negligible under a realistic condition.
Note that the atomic structures are kept amorphous at both Regions I and II through the
examination, as indicated by RDF profiles before and after deformation (Figure 14).
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According to the experiments, the relationship between the stress and the strain rate
at the steady state is described by a nonlinear viscoelastic model as follows [6,36]:

dε

dt
= Aσn exp

(
−Q
RT

)
, (9)

where A is a material parameter. The parameters n and Q are the stress exponent and the
activation energy, respectively. The constant R is the gas constant (R = 8.314 (J/mol)/K).
The parameters n and Q are to be obtained via the present simulations. The σ-dε/dt-T
relationship was fitted with this equation for each region from the data of the dε/dt-
condition (Note that the data of the σ-condition were not used for approximation because
of a relatively large deviation). The resultant fitting parameters are listed in Table 3 for each
region, compared with the experimental results [5,6]. The stress exponents n are relatively
large (especially at Region I) compared with the experimental values (typically n = 1–6 [36])
but within a reasonable range. The evaluated activation energies Q are significantly
small compared with an experimental evaluation for a SiC fiber (Hi-Nicalon) [6] and the
known elementary processes in SiC such as self-diffusion and grain-boundary diffusion [5].
The activation energy of creep in the SiC fiber is an apparent (nominal) value affected
by various type of factors and elementary processes, and the diffusion in the amorphous
phase can play an important role in those processes owing to its low activation energy.
Note that the creep mechanism in the SiC fiber cannot be explained only via the known
elementary processes mentioned above (i.e., self-diffusion and grain-boundary diffusion)
because the activation energies of those processes are considerably higher than that of
the SiC fiber, while those processes are presumably major factors. Thus, it is implied that
the existence of a creep mechanism with a quite low activation energy, and the diffusion
process in the amorphous phase is a possible cause of such low activation energy. It is a
likely scenario that stress concentration at amorphous regions near the grain boundary
results in a considerable creep deformation, owing to a quite large stress exponent n.

Table 3. The fitted parameters for the relationship of the stress and the strain rate.

A [GPan·ps−1] a n Q [kJ/mol]

This work Reg. I 7.7 × 10−7 7.5 50
- Reg. II 2.7 × 10−4 3.2 13

Exp. [6] Hi-Nicalon - 2–3 193–423

Exp. [5] self-diffusion (Si) - - 912
- GB-diffusion (Si/C) - - 564/841

a The unit depends on the parameter n.

5. Conclusions

We developed an interatomic potential function based on the ANN model for the
purpose of evaluating the high-temperature mechanical properties of Si-C system. The in-
ternal parameters in the model were optimized in order to reproduce the first principles
results. It was confirmed by a series of verification simulations that the developed potential
function can reproduce basic material properties such as the lattice constants and the stabil-
ity of typical atomic structures. The elastic properties have a relatively large discrepancy,
which should be improved in the future work by adopting advanced fitting approaches
such as the force-matching method. The potential function was applied to the creep test of
amorphous SiC under various loading conditions. As a result, it was found that there exist
two regimes with different behaviors according to the strain rate. The mechanisms of creep
deformation at the slow and fast deformation regions were attributed to atomic diffusion
in the amorphous phase and relaxation of the local atomic structure, respectively. The ac-
tivation energy of creep obtained from the present simulation is significantly lower than
those of self-diffusion and grain-boundary diffusion. This result indicates the importance
of diffusion in the amorphous phase.
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While we dealt with a pure Si-C binary system, practical SiC/SiC composites include
other various atomic species. To take them into account, it is necessary to develop a
potential function for the multi-species system, based on the present ANN potential.
In addition, a SiC/SiC component requires the environmental barrier coating system,
which prevents SiC from chemical reaction with high-temperature vapor. Thus, it is also
needed to investigate the mechanical properties of the interface between the SiC/SiC
component and the coating layer, because a stress concentration and/or a thermal stress
can be exerted near such a dissimilar interface. The MD results (material properties and/or
deformation mechanisms) can be used for the larger-scale simulations, such as the phase-
field and finite element analyses. Those subjects are left as future works.
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Appendix A. Typical Reference Crystal Structures

The typical reference crystal structures are listed in Table A1 (several non-crystal
molecules are also included, e.g., dimer, trimer, etc.). The x, y, and z axes in “Deformation
Mode” indicate the [100], [010], and [001] directions for the cubic structures, and the

[
2110

]
,[

0110
]

and [0001] directions for the hexagonal structures, respectively. The deformation
mode “XY” indicates that the X component is deformed in the Y direction (thus, the case
of X = Y means a normal strain, and otherwise shear strain). The combination of XX and
YY indicates the coupling of two deformation modes. The mode “iso” is the isotropic
deformation, i.e., xx + yy + zz. The deformation modes with the notation of “d = A–B
Å” indicate that the interatomic distance from the first neighbors was varied instead of
changing the strain (mainly applied to non-crystal systems). The atomic structures that are
not typical or that we defined are visualized in Figure A1.
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Table A1. Typical crystal structures and deformation modes considered as reference data. The struc-
tures with an asterisk (“*”) are visualized in Figure A1.

System Structure Deformation Mode

SiC zincblende (3C) iso, xx, xx + yy, xx − yy, xy
wurtzite (2H) iso, xx, yy, zz, xx + yy, xx − yy, zx, zy

rock salt iso, xx, xx + yy, xx − yy, xy
cesium chloride iso, xx, xx + yy, xx − yy, xy

hexagonal boron nitride * iso, xx, yy, zz, xx + yy, xx − yy, zx, zy
monolayer boron nitride * d = 0.80–3.00 Å

fluorite (SiC2, CSi2) iso, xx, xx + yy, xx − yy, xy
tungsten carbide * iso, xx, yy, zz, xx + yy, xx − yy, zx, zy

dimer d = 0.80–4.00 Å

Si diamond iso, xx, xx + yy, xx − yy, xy
graphene d = 0.80–3.00 Å

bcc iso, xx, xx + yy, xx − yy, xy
fcc iso, xx, xx + yy, xx − yy, xy
sc iso, xx, xx + yy, xx − yy, xy

simple hexagonal * iso, xx, yy, zz, xx + yy, xx − yy, zx, zy
octahedra * iso, xx, xx + yy, xx − yy, xy
2D-square * d = 0.90–3.00 Å
2D-triangle * d = 0.90–3.00 Å

chain (straight) * d = 0.90–4.00 Å
dimer d = 1.00–4.00 Å

C graphene d = 0.80–3.00 Å
graphite (α, β) iso, xx, yy, zz, xx + yy, xx − yy, zx, zy

diamond iso, xx, xx + yy, xx − yy, xy
lonsdaleite * iso, xx, yy, zz, xx + yy, xx − yy, zx, zy

bcc iso, xx, xx + yy, xx − yy, xy
fcc iso, xx, xx + yy, xx − yy, xy
hcp iso, xx, yy, zz, xx + yy, xx − yy, zx, zy
sc iso, xx, xx + yy, xx − yy, xy

simple hexagonal * iso, xx, yy, zz, xx + yy, xx − yy, zx, zy
octahedra * iso, xx, xx + yy, xx − yy, xy
2D-square * d = 0.80–3.00 Å
2D-triangle * d = 0.80–3.00 Å

chain (straight) * d = 0.80–4.00 Å
chain (triangle) * d = 0.80–3.00 Å

dimer d = 0.80–4.00 Å
3-mer (triangle) * d = 0.80–3.00 Å

4-mer (tetrahedron) * d = 0.80–3.00 Å
6-mer (octahedron) * d = 0.80–3.00 Å

8-mer (cube) * d = 0.80–3.00 Å
8-mer (fcc-like) * d = 0.80–3.00 Å
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Appendix B. Approximation of Melting Point

Figure A2 shows the melting point Tm as a function of temperature rate dT/dt for 3C SiC.
The data points were fitted with a quadratic function, i.e., Tm = A·(dT/dt)2 + B·(dT/dt) + C.
Then the fitting parameter C is equal to Tm at dT/dt→ 0.
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Appendix C. Radial Distribution Function during Deformation

Figure A3 shows the RDFs obtained under the dε/dt-constant conditions at Regions
I and II before and after deformation for each atomic pair (decomposed from Figure 14).
The distribution of the Si-Si pair is affected by deformation at the high strain rate (Reg. II;
Figure A3(a-ii)), while all the distributions are nearly unchanged at the low strain rate
(Reg. I; Figure A3(a-i)–(c-i)). This result implies relaxation of the local structure as a major
contributor of creep deformation at Reg. II (see main text).
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