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Background: In combined with neurofeedback, Motor Imagery (MI) based Brain-
Computer Interface (BCI) has been an effective long-term treatment therapy for motor
dysfunction caused by neurological injury in the brain (e.g., post-stroke hemiplegia).
However, individual neurological differences have led to variability in the single sessions
of rehabilitation training. Research on the impact of short training sessions on
brain functioning patterns can help evaluate and standardize the short duration of
rehabilitation training. In this paper, we use the electroencephalogram (EEG) signals to
explore the brain patterns’ changes after a short-term rehabilitation training.

Materials and Methods: Using an EEG-BCI system, we analyzed the changes in
short-term (about 1-h) MI training data with and without visual feedback, respectively.
We first examined the EEG signal’s Mu band power’s attenuation caused by Event-
Related Desynchronization (ERD). Then we use the EEG’s Event-Related Potentials
(ERP) features to construct brain networks and evaluate the training from multiple
perspectives: small-scale based on single nodes, medium-scale based on hemispheres,
and large-scale based on all-brain.

Results: Results showed no significant difference in the ERD power attenuation
estimation in both groups. But the neurofeedback group’s ERP brain network
parameters had substantial changes and trend properties compared to the group
without feedback. The neurofeedback group’s Mu band power’s attenuation increased
but not significantly (fitting line slope = 0.2, t-test value p > 0.05) after the short-term
MI training, while the non-feedback group occurred an insignificant decrease (fitting line
slope = −0.4, t-test value p > 0.05). In the ERP-based brain network analysis, the
neurofeedback group’s network parameters were attenuated in all scales significantly (t-
test value: p < 0.01); while the non-feedback group’s most network parameters didn’t
change significantly (t-test value: p > 0.05).
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Conclusion: The MI-BCI training’s short-term effects does not show up in the ERD
analysis significantly but can be detected by ERP-based network analysis significantly.
Results inspire the efficient evaluation of short-term rehabilitation training and provide a
useful reference for subsequent studies.

Keywords: brain-computer interface, electroencephalogram, motor imagery, neurofeedback-rehabilitation,
short-term training, event-related potentials, brain-network analysis

INTRODUCTION

Electroencephalograph (EEG)-based BCI systems is often applied
in combination with motor imagery (MI) paradigm (Alkadhi
et al., 2005) for neurorehabilitation training (Kumar et al., 2016;
Baig et al., 2017; Oikonomou et al., 2017; Cheng et al., 2018),
especially for enhancing motor recovery from brain injuries
such as stroke hemiplegia (Buch et al., 2008; Zimmermann-
Schlatter et al., 2008; Daly et al., 2009; Langhorne et al., 2009;
Barclay et al., 2020). Neurofeedback (NF) is also commonly
applied in the BCI system. Thus cortical movement intention
can be transferred to physical activity or stimulation that feeds
back to the patient as a consequent response, forming a closed-
loop neural circuit (Yu et al., 2015; Zich et al., 2015; Sitaram
et al., 2017). Clinical studies have shown improvement in
neurorehabilitation using MI-BCI system with NF (Prasad et al.,
2009; Caria et al., 2011; Shindo et al., 2011; Ramos-Murguialday
et al., 2013; Mukaino et al., 2014), and results are supported
by the underlying mechanisms of neural plasticity and brain
reorganization (Rozelle and Budzynski, 1995; Ang et al., 2014).

Neurorehabilitation assessment is essential for both patients
as well as BCI system evaluation. Clinical assessments of physical
function restoration such as functional upper extremity test
(FMA), wolf motor function test (WMFT) are used as typical
methods (Rozelle and Budzynski, 1995; Mihara et al., 2013; Ang
et al., 2014; Li et al., 2014; Kim et al., 2016; Leeb et al., 2016).
However, most physical assessments are only applicable after
substantial functional recovery with a long training period and
are the indirect measure of brain injury recovery. Researchers
have been studying brain imaging techniques such as functional
Magnetic Resonance Imaging (fMRI) (Song et al., 2014; Young
et al., 2014), EEG (Daly and Wolpaw, 2008; Ono et al., 2015),
and electromyogram (EMG) (Rozelle and Budzynski, 1995;
Daly and Wolpaw, 2008). The goal is to find new assessment
methods to analyze the brain directly and observe subtle changes
in neural reorganization. For BCI rehabilitation, the challenge
is to establish an EEG quantitative standard to evaluate the
rehabilitation effect. MI as a typical BCI rehabilitation paradigm
varies in its performance when applying different feedback
strategies (Ahn and Jun, 2015; Marzbani et al., 2016; Renton et al.,
2017). There are other factors such as induction paradigm or
training engagement, may affect potential brain recovery, thus
make it more important to find direct and rapid measurements
for BCI rehabilitation using EEG.

For BCI EEG analysis, sensorimotor rhythm (SMR) of
neurophysiological oscillations and event-related potentials
(ERPs) are commonly used as neurophysiological features. As a
particular example of SMR, desynchronization/synchronization

(ERD/ERS) modulation during MI or movement execution
(Pfurtscheller and Da Silva, 1999; Graimann et al., 2009; Nicolas-
Alonso and Gomez-Gil, 2012) is proportional to the motor
function’s impaired level of patients (Matsumoto et al., 2010;
Rossiter et al., 2014; Naros and Gharabaghi, 2015; Soekadar et al.,
2015). And it was found to be improved in the prolonged MI-
BCI rehabilitation (Rozelle and Budzynski, 1995; Pfurtscheller
and Da Silva, 1999; Yoshida et al., 2016). The ERPs as EEG
averages are direct amplitude changes in response to exhibited
events (Kok, 1997). Both signals characterize as potential
recovery measures, given that they may carry information about
underlying mechanisms of brain recovery. What’s more, the
functional connectivity of brain networks is another strategy to
reveal changes in neural activity. For example, brain network
analysis based on fMRI has been used in clinical-pathological
studies (Van Den Heuvel and Pol, 2010). Compared to the
fMRI, the convenience and high temporal resolution of the
EEG signal has led to an increasing number of scholars
using it to analyze the brain networks (Varela et al., 2001;
Wang et al., 2010; Faith et al., 2011; Sakkalis, 2011; Carter
et al., 2012; Stam and Van Straaten, 2012; Belardinelli et al.,
2017). Further studies use the EEG to apply graph theory
on the cortical network (Bullmore and Sporns, 2009; Fallani
et al., 2013; Cheng et al., 2015) to measure brain changes by
rehabilitation training (Brown, 1970; de Vico Fallani et al., 2014;
Philips et al., 2017).

Studies mentioned above show that neural functional changes
reflected by EEG signals are reliably correlated with changes
in physical function. Still, the results are observed only after
prolonged training, which may not be comprehensive enough.
Thus, we consider the short-term effects of BCI on brain
activity. BCI training with feedback could alternately enhance
and suppress spontaneous rhythmic activity for short periods
(Nowlis and Kamiya, 1970; Beatty et al., 1974; Sterman, 1974)
and leads to sustained changes in neural activity (Kaplan, 1975;
Wyler et al., 1976). Lin et al. found that short-term training
leading to significant neural activity changes in brain network
by using functional connectivity of fMRI (Lin et al., 2017).
In neurorehabilitation, Tsuchimoto et al. (2019) found that
BCI training with neurofeedback can effect on patients’ EEG
synchrony in the short term. We can infer that the short-term
MI-BCI rehabilitation training variations based on EEG signals
may also have the ability to interpret the rehabilitation process.
Evaluating those variations can help to portray the recovery
process more accurately. Yet, the variations are still unclear, and
an efficient and rapid recovery assessment method of short-term
MI-BCI rehabilitation training has not been proposed. Using the
EEG to study the state of neural signal expression in a short
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time may provide a new approach to measuring the effects of
rehabilitation training.

Our study investigated how the short-term MI-BCI training
affects the human brain and uses EEG signals to evaluate it. We
used EEG’s Mu band power attenuation to analyze the impact of
short-term rehabilitation training and use network methods to
analyze the effectiveness of exercise on various network scales. In
section II, the experimental data are presented, and the analysis
methods are described. Section III presents the experimental
results of the short-term ERD modulation and the ERP-based
cortical network, respectively. Discussion and conclusions are
presented at the end.

MATERIALS AND METHODS

Data Acquisition
We used left- and right-handed motor imagery data from a
publicly available dataset (Kaya et al., 2018). All 5 subjects
underwent 3 days of MI-BCI training were selected, of which
four subjects with no visual feedback and one subject with
visual feedback. In all experiments, an EEG distribution with 19
electrodes in the International Standard 10–20 system was used.
Data was acquired using a medical-grade EEG-1200 recording
system with a JE-921A acquisition cassette (Nihon Kohden,
Japan) and band-filtered at 0.53∼70 Hz at the recording phase.
Participants were seated in a chair and observed a computer
screen about 200 cm in front of the BCI system. A typical
rehabilitation training of left/right hand MI was applied as
the experiment paradigm. Two formats of experiments were
conducted, a “non-feedback” mode as well as a “feedback” mode,
introduced as follows.

Non-feedback Data
The whole process lasted 51.5 min, assembled from three 15-min
sessions, with a 2.5-min break to initialize the system before the
session start, followed by a 2-min break between the two sessions
for the subject to relax (Figure 1C). Each session contained 300
trials in total, each consisting of pause and action phases. The

pause phase had a duration of 1.5–2.5 s randomly, with an average
of 2 s. During the action phase, the screen showed a GUI interface
with a red square, to instruct the participant to perform the
corresponding task for 1 s (Figure 1A). The red square upon the
left- or right-handed cartoon image indicated the grasping MI
task, and upon the middle circle indicated a “hold” task with no
imagery (Figure 1A). The experiment was carried out on 3 days
at irregular intervals. The four subjects of non-feedback paradigm
were labeled as A, C, D, E in this article.

Feedback Data
The feedback paradigm had the same overall steps as the non-
feedback paradigm, however subjects were asked to control
actions of a 3D virtual robotic arm. During the action phase,
the screen showed a virtual robotic-arm bellow the task
icons. Depending on the real-time decoding analysis of Mu-
suppression, robotic arm appeared to move left/right or stay
“hold” (Figure 1B). The robotic-arm moved as the feedback of an
imagery success. The first session followed the same steps as in the
non-feedback paradigm. In second and third sessions, subject’s
imagery was actively performed, and the movement of the virtual
robotic arm was determined by subjects themselves initially. It
was then set as specific task sequences, e.g., to “move two units
to the left” or to “move 1 unit to the left and then three units
to the right.” We labeled the feedback subject as subject B later
in the article. We arranged EEG data of 3 days in parallel for
statistical analysis for each subject. In each day, left- or right-hand
imagery task trials were used with all “hold” trials removed for
EEG analysis in this article.

Mu Suppression Score
ERD/ERS in MI task is calculated by the power spectral
density(PSD) of EEG signals in the personalized frequency range,
typically at 8–13 Hz known as the Mu band (Kuhlman, 1978;
Pfurtscheller and Da Silva, 1999). In the ERD phenomenon,
the corresponding region of primary motor cortex (M1) in
the hemisphere contralateral to the movement is attenuated.
In this study, the C3 and C4 electrode positions from the 10

FIGURE 1 | Experimental Paradigm. (A) The experimental paradigm of the data is divided into three 15-min sessions, each containing 300 BCI trials, with an average
duration of 3 s per trial, including about 2 s of pause and 1 s of the action. (B) Icons seen by the subjects during the non-feedback experiment. Subjects follow the
instructions in the red box for the MI task. (C) Computer instructions for Feedback experiment. Subject are able to move the robotic-arms as feedback in the MI-task.
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to 20 international system are located close to the M1 region.
Therefore, for the right-hand MI, we used the C3 channel as the
contralateral side, and its symmetric electrode C4 as the ipsilateral
side. The same applies to the left-hand MI.

The quantification of ERD/ERS can be calculated using the
classical approach called Mu-suppression. The obtained EEG
signal is first converted to the frequency domain by Fourier
transform. Then, we used multi-taper method (Thomson, 1982)
to calculate the PSD, selected frequency range with Mu-
suppression for individual experiment to derive the band power.
Change of contralateral Mu-band energy between the task state
and the resting state was evaluated, using the most recent 1-s
before task initiation representing resting state (Thomson, 1982;
Oberman et al., 2008; Braadbaart et al., 2013). The following
formula gives the Mu-suppression score (MuSC):

MuSC = −
MuPbo −MuPnbo

MuPnbo
∗ 100 (1)

where MuPbo is the band power of the task state, and MuPnbo is
the band power of the resting state.

As human brain is characterized by inter-individual variability
and rapid dynamic changes, we applied a sliding frequency
window with a size of 3 Hz (0.67 overlaps) to precisely
select the subject-specific Mu-band boundaries. The most
suppressed window comparing the MI state (0∼1 s) against
the corresponding resting state (−1∼0 s) was chosen as MI-
related EEG oscillations for each subject each day. The screening
results for subject-specific Mu-band boundaries are presented in
Supplementary Table 1.

Network Analysis
Functional Connectivity Estimation
Neuronal oscillations are implicit in the underlying coordination
mechanisms of the brain (Singer, 1999; Varela et al., 2001). The
channels with EEG signal contain a collection of oscillations
of regional neurons. The synchronization of oscillations
between channels may indicate that the brain has information
flow between regions (Womelsdorf et al., 2007). Functional
Connectivity is a method for assessing the synchronization of
oscillating signals from channel to channel. The degree between
channels indicates how much information is exchanged.

ERPs is any stereotyped electrophysiological response to a
stimulus, which have excellent temporal resolution. Considering
the immediacy of the short-term changes targeted in this study,
we chose ERPs as the basis for brain network calculations.
In the scenario of MI, ERPs are generally obtained by trial
averaging. Band-pass filtering is commonly used in some EEG
studies for data preprocessing and to investigate the extraction
and amplification of signals of interest by different band-
pass filter bands, such as Movement-related cortical potentials
(MRCP,0.05–6 Hz). In this study, We made preliminary band-
pass pre-process for different frequency bands that may be
triggered by MI, then the EEG signal was averaged over every
20 trials as “trial-block” to obtain a pronounced ERP curve.
Pearson’s correlation coefficient was used for the functional
connectivity estimation, directly expressing the correlation of

amplitude characteristics. The Pearson correlation coefficient was
calculated as follows:

ρ =
E[(X − µX)(Y − µY)]

σXσY

=
E[(X − µX)(Y − µY)]√∑n

i=1(Xi − µX)2
√∑n

i=1(Yi − µY)2
(2)

where X and Y represent the calculated signal values for trial-
block ERPs of two channels. µX and µY represent the mean of
X and Y. σX and σY represent the standard deviation of X and
Y. The formula calculates the covariance ratio between the two
channels to the product of two standard deviations.

Network Indicators
Graph theory plays a crucial role in network analysis. Each EEG
channel represents a single node in graph. Degrees derived from
Functional Connectivity estimates between nodes then form a
graph. Since MI-action focuses on C3 and C4 nodes’ expression,
we consider the direct calculation of the change in C3 and C4
nodes’ degree as the task proceeds.

Ei(G) =
∑
j6=i∈G

dij (3)

where i is the node of interest, G is the whole brain connectivity
map. J is other nodes and Ei(G) is the sum of the connection
weights of the node of the claim. All other nodes within the region
were calculated. We also performed the same calculation to O1
and P1 nodes’ degrees far away from the M1 region, used as a
comparison study. Also, the summation of degrees for all nodes
in the region provides a complete picture of the corresponding
brain regions’ overall neural activity:

Eregion(R) =
∑
j 6=i∈R

dij (4)

Where Eregion refers to the region of interest, which can be the
left or right hemisphere. R is the set of nodes within the brain
hemisphere, and j is the other nodes. This equation calculates
the sum of the weights of all weighted edges in the region.
This calculation allows us to estimate the overall activity of the
nodes in the region.

The clustering coefficient (Gonzalez-Lima and Mclntosh,
1994; Latora and Marchiori, 2001) is used in this analysis, aiming
to explore the whole brain’s variation. Clustering coefficients
are divided into three calculation methods: global, local, and
average. The global clustering coefficient is used to explore the
variation of the whole brain. The clustering coefficient calculation
requires that the graph be binary and coherent. Thresholds
should be properly chosen to binarize the calculated connectivity
in the brain network analysis. To ensure the connectivity of the
graph, we use the threshold value of 0.6 in this experiment. The
coefficient is obtained by dividing the number of closed-loop
ternary groups by the number of all ternary groups in the graph,
calculated as follows:

Ctotal(G) =
3× G1

3× G1 + G3
(5)

Frontiers in Human Neuroscience | www.frontiersin.org 4 June 2021 | Volume 15 | Article 627100

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-627100 June 30, 2021 Time: 16:23 # 5

Wang et al. Short-Term BCI Rehabilitation Study

where G1 represents the number of closed-loop triads in the
graph (three nodes connected), and G∧ means that there are
only two edges with weight one between the three nodes. In this
experiment, we calculate the changes of the clustering coefficients
of the whole brain and the hemispheres overtime to get a
global picture of the brain network’s changes in the short-term
for the MI task.

RESULTS

Change of ERD MuSC
We applied Mu-band boundary selection for each individual and
results were within alpha and lower-beta band (5–20 Hz, filtering
results listed in the Supplementary Material for reference).
MuSC was calculated from the 636 non-feedback subject A and
616 feedback subject B trials then averaged for each consecutive
20 trials constructing “trial blocks” results. The MuSC of the non-
feedback subject A tends to be downwards with the fitting line
slope of −0.4 (Figure 2A), by contrast, the feedback B’s MuSC
rises with the fitting line slope of 0.2 (Figure 2B), similar to the
result in previous studies (Shindo et al., 2011; Yoshida et al.,
2016). However, there is no significant difference between the two
experiments due to the large variance. Changes in ERD’s MuSC
can be observed in short-term MI experiments with feedback, but
the trend of the data is subtle and difficult to use to measure the
effect of short-term training. Four non-feedback subjects showed
consistent result of ERD/ERS, thus we took non-feedback subject
A as the typical subject to show the comparisons and analysis
in the following.

Change of ERP Network
We used different frequency bands (0.53–4 Hz, 3–6 Hz, 5–
10 Hz, 8–16 Hz, and 15–30 Hz) to apply an initial inspection
of degree-of-nodes for four non-feedback subjects (A,C,D,E)
and 3-day data separately of the feedback subject B. This

was to design an appropriate EEG preprocessing filter before
construction the ERP functional network. We study the three
sequential sessions with MI training of both paradigms and
label the first to third sessions in the experimental sequence
as super-trial 1–3, respectively. Results showed that both the
2nd and 3rd super-trial of the 3-day data of the feedback
group in 3–6 Hz had significant decrease compared to the
1st super-trial (p = 2e-3, 7e-3 for day 1 respectively, p = 2e-
3, for day 2, p = 6.5e-4, 5e-5 for day 3, respectivley) (see
Table 1). Some other frequency band above 5 Hz also showed
a partially significant trend. However, signal in the 0.53∼4
Hz band of the low frequency component did not show
differences during on-going training sessions. In contrast,
non-feedback subjects showed subtle increase at 0.53∼4 Hz,
while no trend showing in other frequency ranges. Results
indicated a consistent change along the short-term training for
the feedback group.

To investigate the detailed dynamic change along the short-
term training, we compared 1st and 3rd super-trial ERPs of
the feedback subject B, at both 0.3–30 Hz and 3–30 Hz
frequency bands. In the case of 0.3–30 Hz filtering (Figure 3A),
the ERP dynamic processes did not show significant changes,
with topographic maps appearing similarly patterns at the MI
task. However, ERP dynamic changes were revealed under
the 3–30 Hz filtering (Figure 3B), such as a strengthening
of the negative potential at 0.35 s, of the following positive
potential at 0.55 s, and the negative potential at 0.65 s. ERP
features at 3∼30 Hz presented strengthened deflections from
the beginning of the training session to the end. By combining
results in Table 1, result indicated the EEG low frequency
component containing MI brain activities, as consistent with
(Ramos-Murguialday and Birbaumer, 2015; Schwarz et al., 2019),
and it contained information of short-term variations at the
feedback paradigm. We choose a 3∼30 Hz band-pass filter to
capture EEG characteristics as interested before average and
further analysis.

FIGURE 2 | The MuSC of subject A and B. (A) the MuSC for non-feedback subject A (3-day experimental data are synchronized and averaged according to a set of
20 trials). The red line is a linear fit, where the slope of line A is negative (slope = −0.4). (B) the MuSC for Subject B, the slope of line B is positive (slope = 0.2).
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As event-related responses apart from Mu-suppression, we
analyzed ERPs of left or right MI task for non-feedback subject
A and feedback subject B. It was derived from averaging 20
trials at −0.5∼1 s filtered at 3–30 Hz for of all EEG channels.
The ERP responses initiated after the start of the MI task. The
overall ERP performance of the feedback (Figure 4A) and non-
feedback subject (Figure 4B) were stable for left- and right-
handed MI, with slightly different ERP performance for different
side-channels for left- and right-handed MI.

Degree of Nodes
Single node degrees were analyzed for non-feedback subject
A and feedback subject B, respectively. Figure 5A shows the
analyzed nodes. The contralateral analysis target nodes for left-
handed motion include C4, O2, Fp2, and right-handed C3, O1,
Fp1, and the opposite nodes for ipsilateral motion. The subject
experiments were divided into three groups according to the
order in which the sessions were performed. The trials for MI
task execution were selected from each group, averaging the
20 original trials to containing ERP features to calculate the
network’s connectivity. In Figure 5B, the connectivity histogram
of subject A’s ipsilateral and contralateral sides Fp node’s
contralateral side is significantly different (t-test value p = 0.01)
between the first and third super-trials, while the other nodes
not significantly different. In Figure 5C for subject B, the second
and third super-trials of the C and Fp nodes are significantly
different from the first in both ipsilateral and contralateral (t-
test value p = 2.3e-5, 1.2e-5 for C; p = 2.1e-5,3.7e-6for Fp in
contralateral and p = 1.5e-8, 2.5e-6 for C; p = 3.2e-6,1.2e-6 for Fp
in ipsilateral); in addition, the O nodes’ contralateral experiments
were significantly different between the first and third super-trials
(t-test value p = 0.6e-2 and 0.3e-3 in contralateral and ipsilateral).
Different significant downward trends can be observed in subject
A and subject B. Thus, we hypothesize that feedback BCI training
leads to decreased node degrees in the ERP brain network.

Degree of Region
In this part, we calculated the sum of the connectivity in the left
and right hemispheres as LnL and LnR, and connectivity between
two sides (excluding the medial node) as EX (Figure 6A). Then
used linear regression to fit a straight line of scatter. In Figure 6B
for subject A, The slopes of the three fitted lines all approach 0 in
both left-handed and right-handed MI. In Subject B’s feedback
experiment (Figure 6C), the slopes of all fitted lines were
negative, indicating a decrease in regional connectivity. During
left-handed MI, the slope of LnR on the opposite side was smaller
than that of LnL on the same side (Ex fitting line slope = −0.67,
Lnl fitting line slope = −0.32, LnR fitting line slope = −0.66),
whereas this phenomenon does not appear, the fitted lines for
right-handed MI are (Ex fitting line slope = −0.53, Lnl fitting
line slope = −0.31, LnR fitting line slope = −0.42). Figure 5
gives a clear contrast between the regional degree summation.
The feedback experiments will have an overall downward trend,
and its contralateral downward trend is more pronounced in left
MI. The slopes of LnR in their leftMI are smaller than LnL both in
subjects A and B, which is presumed to be related to the ERD/ERS
features of the EEG.
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FIGURE 3 | ERP and topographic comparisons between the 1st and 3rd super-trials of the short-term BCI training process. This comparison was for feedback
subject B. Each super-trials containing consecutive 100 non-hold trials. (A) Filter with 0.3–30 Hz. No significant change between the 1st and 3rd super-trials. Some
drift changes were present in the prefrontal channels. (B) Filter with 3–30 Hz. The 1st and 3rd topographic maps show dynamic differences. N-potential attenuation
at 0.35 s, P-potential enhanced at 0.55 s, then N-potential enhanced at 0.65 s.

FIGURE 4 | The overall ERP performance of the feedback and non-feedback subject. (A) Non-feedback subject A, the potential graph of each channel during left-
and right- handed MI training (−0.5∼1 s). (B) Feedback subject B, the potential graph of each channel during left- and right- handed MI training (−0.5∼1 s). Both
subjects present clear ERP curves, and the ERP curves of the left channels and the right channels show slight differences at different MI task.
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FIGURE 5 | (A) A schematic representation of the one-node degree analysis. (B) Single node degree after averaging the three non-feedback trials of subject A, the
effect tends to be smooth, where the contralateral Fp node degree shows a significant change of 1–2 super-trial (t-test value p < 0.05). (C) The single node degree
of subject B, both the ipsilateral and contralateral single nodes have a decrease relative to the initial value (t-test value C’s ipsilateral:s = 5.60, p < 0.01; s = 2.97,
p < 0.01, C’s contralateral: s = 10.40, p < 0.01, s = 3.13, p < 0.01, Fp’s ipsilateral: s = 5.69, p < 0.01, s = −7.09, p < 0.01, Fp’s contralateral: s = 6.85, p < 0.01,
s = −8.08, p < 0.01). The symbols * and ** represent the mark of significant and very significant changed data.

FIGURE 6 | (A) A schematic representation of the nodes included in the three computational methods, from top to bottom, Ex, LnL, and LnR. (B) Scatter plot of the
brain network indicators in the MI task state of Subject A and calculates the linear regression fitted straight lines for the three scatter types. Among them, B-figure left
EX,LNL,LNR; (C) Scatter plots of network indicators in subject B’s feedback experimental data, and the slopes of all straight lines fitted are negative, (B,C) indicate
the gradients of LnR in their leftMI are all less than LnL.
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Clustering of Network
Clustering coefficients were calculated for the whole brain, left
hemisphere, and right hemisphere. The differences between
the task and resting states were calculated separately. Among
the three calculations of subject A (Figure 7A), there was a
downward trend and significant difference (t-test value p = 0.04)
between the 1–3 super-trials of left-handed MI in the right
hemisphere. Figure 7B for Subject B shows a significant
downward trend for left-handed MI’s both all-brain and right
hemisphere (p = 1.3e-3 and 0.2e-3 for all-brain), and the
left hemisphere was significantly different only in first-to-third
experimental comparisons (t-test value p = 0.04); in right-
handed MI, all-brain, left and right hemisphere had significant
decreases (all:t-test value p = 4.3e-3, 6.9e-3, left: t-test value
p = 0.04,right:p = 4.3e-3) while there are no significant changes
in the rest state. The results show that feedback experiments
altered the task-state clustering coefficient to decay and more
extensive in the contralateral sides. Training did not affect the
resting state significantly.

DISCUSSION

In the present study, we focused on using EEG signals to
investigate what impact MI-BCI training can have on the brain
in short-term. We applied controlled research using MI-BCI
training with/without visual feedback.

Firstly we analyzed the Mu band’s energy attenuation on
the contralateral side. The result showed ERD changed with an
increasing trend at the feedback group. This was consistent with
studies of rehabilitation in Shindo et al. (2011) and Yoshida
et al. (2016), suggesting ERD strengthened for successful BCI
training. On the other hand, the non-feedback group presented
little change, and the change from 1-h feedback training was
of no statistical significance, which was different from the
long-term rehabilitation training. Therefore, characteristics of
cortical motor activities need to be further investigated, to
introduce new assessment tools to quantify changes with MI-BCI
training of short-terms.

We then studied ERPs of MI tasks in this study. In the
MI analysis of ERP, MRCP is often used. the ERP analyzed
in this paper intersects with MRCP but is not identical in
definition. The low frequency (below 6 Hz or so) negative shifts
in the EEG signal representing brain activity changes related
to movement. In our investigation, the negative deflection of
MRCP appeared relatively obvious only after filtering above
3 Hz. The corresponding ERP dynamic presented visible
changes along the MI training process as well. The EEG
signal band-pass filtered at 3–6 Hz contains information of
significant changes in relation to short-term training. On
the other hand, signals below 3 Hz had relatively large
amplitude but the response was dynamically consistent during
the training process. This may obscure functional changes
of great interest to us. Previous studies have mentioned

FIGURE 7 | (A) Clustering coefficients histograms of non-feedback subject A, left, middle and right plots were calculated for left-handed MI, right-handed MI, and
rest condition, a significant decrease in the right hemispheric region value in 1–2 trials during left-handed MI (t-test value p < 0.05), rest condition The all-brain
indicator was also significantly different (t-test value p < 0.05); (B) clustering coefficients of feedback subject B, there was an extremely significant downward trend in
the left-handed MI for both the all-brain and right hemisphere indicators 1–2, 1–3 (t-test value p < 0.01), left hemisphere had an extremely significant difference only
between 1 and 3 experimental comparisons (t-test value p < 0.05). In rightMI, all-brain had a significant decrease between 1 and 2, 1 and 3 super-trials (p < 0.01).
Left hemisphere and right hemisphere indicators have significant changed between 1 and 3 super-trials (p < 0.05) and 1–2 super-trials (p < 0.01), respectively. The
symbols * and ** represent the mark of significant and very significant changed data.
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that there are discriminable information for MI decoding in
Bands at 1∼6 Hz of ERP (Ramos-Murguialday and Birbaumer,
2015; Korik et al., 2018; Schwarz et al., 2019). For example,
Ramos et al. used filtering in the 3∼45 Hz for a BCI
motor task analysis. Korik et al. studied ERP at 4∼8 Hz for
decoding imagined 3D hand movement in EEG (Korik et al.,
2018). Marshall et al. investigated ERP with 3 Hz high-pass
filter for infants’ auditory (Marshall et al., 2009). Thus we
applied preprocess filtering with low cut-off frequency at 3
Hz to satisfy our analysis requirements. As we choose 3–30
Hz of EEG containing MI brain activities for investigation
functional changes during short-term training, it contains
ERD range as well.

Different behavioral patterns have different brain network
activations (Gonzalez-Lima and Mclntosh, 1994; Büchel and
Friston, 1997; Büchel and Friston, 2000; Horwitz et al., 2000;
Taylor et al., 2000). Functional connectivity has been defined
as ’neural context’ (McIntosh, 1999, 2000; McIntosh et al.,
2001). By calculating functional connectivity, we can further
apply graph theory to analyze brain networks. Graph theory,
which describes the brain as a single interconnected network
(Bullmore and Sporns, 2009; Fallani et al., 2013; Cheng et al.,
2015), provides a theoretical framework with the potential
ability to characterize the behavior of complex brain systems
and can reveal important information about the local and
global organization of functional brain networks. Applying the
methodology described above, this paper validates the changes
in brain networks brought about by short-term MI training
of these two neural contexts with and without feedback and
their differences. For example, in Figure 5, we see that the
feedback experimental set of individual nodes of this brain
network (i.e., with visual feedback) shows a significant downward
trend in degree summation. We speculate that this trend stems
from the fact that MI training with visual feedback leads to
decreased connectivity of the blocks represented by the nodes
due to stronger inhibitory action generation, mentioned in
previous literature (Waldvogel et al., 2000; Attwell and Iadecola,
2002). In Figure 7, we analyzed network connectivity changes
from the perspective of the cerebral hemispheres’ internal and
external interactions. We speculated that the decreasing trend
of the feedback group might be caused by the concentration
of neural clusters in the brain area and the concentration of
ERP changes in specific relevant areas, which led to a decrease
in the overall correlation within the region. The reduction in
the contralateral MI of the left hand indicated certain ERD
characteristics. Feedback MI training more significantly affects
brain networks in the task state than in the resting state. In
conclusion, this ERP-based constructed network change showed
a significant decrease in the short-time task state, contralateral
effectiveness, etc., intuitively reflecting the immediate effect of
short-term BCI training on the brain.

In the current research on BCI rehabilitation training, we
see that many studies have been devoted to finding indicators
of long-term rehabilitation. In contrast, the indicators proposed
in this paper found that brain network activity changes over
a short period. Feedback training results are more significant
than those of no-feedback training indicators, which are expected

to be applied to short-term training value assessment. Unlike
other classical brain network analysis methods such as fMRI
(Van Den Heuvel and Pol, 2010), EEG signals have unique
advantages—high temporal and spatial resolution, which can be
analyzed more quickly and easily. It makes a good pavement
for the short-term MI-BCI rehabilitation assessment. This paper
differs from the conventional brain network construction of
EEG (Friston, 2011). It adopts an EEG signal combination
processing method with ERP characteristics, which can reduce
EEG signals’ instability and reflect signals’ event characteristics
more effectively.

However, there are many limitations for improvement in this
study. For example, the experimental sample data is insufficient.
The ERP construction method used for network construction has
not been tried in non-MI rehabilitation training. The present
analysis is based on the visual feedback training of healthy
subjects. The sample data can be improved in many aspects: for
example, changing healthy subjects to patients or using different
feedback methods; it is also possible to make a comparison
between short-term training and long-term training indicators
and integrate the processes of existing indicators proposed in this
paper to form a perfect evaluation method to quantify the goals
of rehabilitation training better.

CONCLUSION

In summary, this paper is a preliminary attempt in the field of
EEG brain network-based rehabilitation assessment. We applied
Mu band power’s attenuation and ERP-based brain network to
analyze the EEG changes during short-term MI task. We found
significant changes in brain connectivity, that the functional
network topology coefficients of feedback subject showed a
significant decrease after about 1 h of MI-BCI training, while
the non-feedback group’s most network parameters didn’t change
significantly. The experimental results showed the necessity
of neurofeedback. This study has laid a good foundation for
subsequent BCI closed-loop neurological rehabilitation studies.
The analytical approach for measuring the effectiveness of short-
term rehabilitation training proposed in this study is expected to
facilitate the establishment of a more personalized rehabilitation
assessment system, which, when correlated with long-term
clinical indicators, can lead to more credible and regulated
individual treatment schedules and help patients to undergo
more efficient rehabilitation.

The next step of the study is to collect more data or try
to apply generative methods to deal with the data scarcity.
Furthermore, we also consider different feedback strategies
to link the short-term indicators to the specific neurological
mechanisms, so as to provide a more underlying and reliable basis
for experimental results.
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