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Abstract: Indoleamine dioxygenase (IDO), a rate limiting enzyme of the tryptophan catabolism
through the kynurenine pathway (KP), has been related with a lower survival and a poor patient
prognosis on several solid tumors, including gliomas. However, the use of IDO inhibitors as a
therapeutic strategy for tumor treatment remains controversial in clinical trials and the role of other
KP enzymes on tumor progression has remained poorly understood so far. Recently, different studies
on different types of cancer have pointed out the importance of KP enzymes downstream IDO.
Because of this, we conducted a bioinformatic analysis of the expression of different KP enzymes
and their correlation with the gene expression of molecules related to the hallmarks of cancer in
transcriptomic datasets from patients with different types of brain tumors including low grade
gliomas, glioblastoma multiforme, neuroblastoma, and paraganglioma and pheochromocytoma. We
found that KP enzymes that drive to NAD+ synthesis are overexpressed on different brain tumors
compared to brain cortex data. Moreover, these enzymes presented positive correlations with the
expression of genes related to immune response modulation, angiogenesis, Signal Transducer and
Activator of Transcription (STAT) signaling, and Rho GTPase expression. These correlations suggest
the relevance of the expression of the KP enzymes in brain tumor pathogenesis.

Keywords: tryptophan catabolism; glioma; immune response

1. Introduction

Astrocytomas are primary brain tumors originating from astrocytes [1]. Classically, as-
trocytomas had been classified according to their morphological characteristics and tumor
aggressiveness into four stages [1–4]. However, the most recent WHO classification of as-
trocytomas considers molecular characteristics that are representative within astrocytomas
and this new classification of astrocytomas separates these tumors according to the status
of enzyme isocitrate dehydrogenase (IDH): wildtype (IDHwt) or mutant (IDHmt) [2].

Glioblastoma (GBM) is the most frequent and aggressive of the primary brain tu-
mors [3]. Considering the current standard of care treatment for GBM, the median overall
survival is no longer than 18 months, while the five-year survival is less than 10%, thus
GBM is considered an incurable illness [3–5].

In the recent years, the study of cancer biology has been focused on a set of networking
characters that led malignant cells to adopt a niche and to transform a heterogeneous
landscape, such as that occurring during GBM formation; such characters are better known
as the “Hallmarks of cancer” [6,7]. Within these hallmarks, genomic instability, metabolic
reprogramming, and immune modulation are highly important. Genomic instability
processes are responsible for originating somatic mutations on the malignant cell genome
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that drive cell to death evasion, cell cycle alteration, and metabolic reprogramming [6–8]. In
this regard, according to mutational and transcriptional patterns, genomic subclassifications
for GBM have been proposed [9,10].

On the other hand, metabolic reprogramming includes modifications on the regulation
of several metabolic pathways that provide the malignant cells of biomolecules required to
satisfy their bioenergetic and proliferative demands [6,11]. It has been widely accepted that
the main metabolic transformation in GBM cells involves an exacerbated glycolytic activity
through the production of lactate even under normoxia conditions (Warburg effect) [12].
However, recent evidence proposes that oxygen and nutrient availability as well as the
stemness condition of the malignant cells produces a metabolic heterogeneity within the
tumor tissue, making possible the presence of malignant cell populations with different
metabolic signatures [13–18].

Furthermore, GBM cells elicit a set of processes that allow them to modulate the immune
response, shifting it from an anti-tumor profile to a tumor-associated response [19]. GBM cells
can produce anti-inflammatory cytokines such as transforming growth factor beta (TGB-β),
the vascular endothelial growth factor (VEGF), interleukin (IL) 6, and IL-10, as well as to
express cell surface inhibitory molecules like the cytotoxic T lymphocyte antigen-4 (CTLA-4)
and programmed cell death-1 (PD-1) [19]. These mechanisms provoke GBM tissue to become
highly infiltrated with tumor-associated macrophages (TAMs), myeloid-derived suppressor
cells (MDSCs), and regulatory T cells (Tregs) which support tumor growth and invasiveness
through the secretion of growth factors and matrix metalloproteinases [20,21]; while effector
immune populations such as natural killer cells (NK) and cytotoxic lymphocytes remain
anergic, unable to elicit anti-tumor responses [20,22]. Altogether, the immunomodulatory
mechanisms developed by GBM represent a barrier for GBM treatment success [22].

Some of the altered processes present on GBM may contribute to more than one of the
hallmarks of cancer, thus these shared processes could become promissory targets for the
development of new therapeutic strategies. One of such processes that is taking importance
is the tryptophan catabolism through the kynurenine pathway (KP). The KP is the main
source of tryptophan degradation on mammals [23,24]. The KP activity is mainly limited
by the enzymes tryptophan dioxygenase (TDO) and indoleamine dioxygenase (IDO); both
enzymes produce N-formylkynurenine from the cleavage of tryptophan in hepatic and
extrahepatic tissue, respectively [23,24]. N-formylkynurenine is rapidly converted into
kynurenine (KYN), which can be taken by kynurenine aminotransferase (KAT), kynureni-
nase (KYNU), and kynurenine monooxygenase (KMO) to produce kynurenic acid (KYNA),
anthranilic acid (ANA), and 3-hydroxykynurenine (3-HK), respectively [23,24]. Then,
3-hydroxyanthranilic acid (3-HANA) is produced and leads to a picolinic and quinolinic
acid formation [23,24]. Finally, quinolinic acid phosphoribosyl transferase (QPRT) produces
the coenzyme NAD+ de novo [24,25]. The KP intermediate metabolites have been shown
to produce deleterious effects on cytotoxic immune populations [26–28]. Moreover, IDO
and TDO overexpression have been associated with GBM immunosuppression and a poor
patient prognosis [29–31]. Furthermore, the expression of KMO on GBM and other solid
tumors such as melanoma, mammary, and colorectal cancer has been recently reported,
pointing to KMO as a promissory subject of study [32–35]. However, the role of KP enzymes
on tumor cell biology and their relationship with the hallmarks of cancer needs to be better
understood, which could help to locate the KP as a potential target for the development of
therapeutic strategies for GBM.

In this study, we compared the expression profiles of the KP enzymes among GBM
and low grade astrocytomas, according to the WHO classification and to the genomic
subclassification of GBM using tumor bulk transcriptional data from public databases.
We also searched for a correlation between the expression of KP enzymes and the gene
expression of molecules associated with the hallmarks of cancer.



Metabolites 2022, 12, 1054 3 of 16

2. Materials and Methods
2.1. Data Acquisition and Sample Selection

Gene expression RNAseq data (RSEM norm_count) from a combined cohort of
TCGA, TARGET, and GTEx samples available on the Xena platform [36]. From a total of
19,131 samples, only those corresponding to low-grade glioma (TCGA brain low grade
glioma, n = 523), glioblastoma multiforme (TCGA glioblastoma multiforme, n = 166), brain
cortex (GTEx brain cortex, n = 105; GTEx brain anterior cingulate cortex (Ba24), n = 83
and GTEx brain frontal cortex (Ba9), n = 95), pheochromocytomas and paragangliomas
(P&P, n = 185), and neuroblastoma (NB, n = 162) were considered. Then, the IDH-1 somatic
mutations were observed on low-grade glioma and glioblastoma multiforme samples; the
samples without the IDH-1 status information were removed (n = 36).

Their gene expression was studied in detail naïven three groups: TCGA brain low-
grade glioma with IDH-1 mutation (LLG IDH-m; n = 390), TCGA brain low-grade glioma
with IDH-1 wildtype (LLG IDH-w, n = 114), and TCGA glioblastoma multiforme with
IDH-1w (GBM, n = 142).

2.2. Selection of Gene Pools and Gene Expression Comparison

The first group of genes corresponds to the most important enzymes of KP: IDO1,
KMO, KYNU, HAAO, AADAT, and GOT2. Then, five more groups were made based on
some of the hallmarks of cancer and their representative genes: the immune response (HLA-
E, HLA-G, CD274, PDCD1LG2, CTLA4, TIGIT, HAVCR2, LAG3, IFNG, TNF, TGFB1, IL1B,
IL6, IL10, IL13, IL13RA2, and IL2RA), the angiogenesis (VEGFA, VEGFB, VEGFC, MMP2,
MMP9, FGF1, FGF2, FGFR1, HGF, EGFR, and PTEN), the STATs (STAT1, STAT2, STAT3,
and STAT4), the Rho GTPases (CDC42, RAC1, and RHOA), and the electron transport chain
complex 1 and 2 (MT-ND1, NDUFS1, SDHA, and SDHB) (Table 1).

Table 1. Genes of KP enzymes and cancer hallmarks.

Grouping Name Abbreviation

Neoplasias

Glioblastoma GBM
Low-grade gliomas LGG

Low-grade glioma with IDH-1 mutation LLG IDHm
Low-grade glioma with IDH-1 wildtype LLG IDHw

Glioblastoma multiforme with IDH-1 wildtype GBM IDHw
Glioblastoma multiforme with IDH-1 mutation GBM IDHm

Kynurenine pathway

Tryptophan dioxygenase TDO
Indoleamine dioxygenase IDO

Arylformamidase AFMID
Glutamic-oxaloacetic transaminase GOT2

Aminoadipate aminotransferase AADAT
Kynureninase KYNU

Kynurenine monooxygenase KMO
Quinolinic acid phosphoribosyl transferase QPRT

3-HANA dioxygenase HAAO
Aminocarboxymuconate semialdehyde decarboxylase ACMSD

Immune response

Human leukocyte antigen E HLA-E
Human leukocyte antigen G HLA-G

Programmed cell death 1 PD-1/CD274
Programmed cell death 1 ligand 2 PDCD1LG2
Cytotoxic T lymphocyte antigen 4 CTLA4

T cell immunoreceptor with Ig and ITIM domains TIGIT
Hepatitis A virus cellular receptor 2 HAVCR2

Lymphocyte activating 3 LAG3
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Table 1. Cont.

Grouping Name Abbreviation

Interferon gamma IFNG
Tumor necrosis factor TNF

Transforming growth factor beta 1 TGFB1
Interleukin 1 beta IL1B

Interleukin 6 IL6
Interleukin 10 IL10
Interleukin 13 IL13

Interleukin 13 receptor subunit alpha 2 IL13RA2
Interleukin 2 receptor subunit alpha IL2RA

Angiogenesis

Vascular endothelial growth factor VEGF
Vascular endothelial growth factor A VEGFA
Vascular endothelial growth factor B VEGFB
Vascular endothelial growth factor C VEGFC

Matrix metalloproteinase 2 MMP2
Matrix metalloproteinase 9 MMP9
Fibroblast growth factor 1 FGF1
Fibroblast growth factor 2 FGF2

Fibroblast growth factor receptor 1 FGFR1
Hepatocyte growth factor HGF

Epidermal growth factor receptor EGFR
Phosphatase and tensin homolog PTEN

Signal transducer and activator of
transcription (STAT)

Signal transducer and activator of transcription 1 STAT1
Signal transducer and activator of transcription 2 STAT2
Signal transducer and activator of transcription 3 STAT3
Signal transducer and activator of transcription 4 STAT4

Rho GTPases
Cell division control protein 42 homolog CDC42

Rac family small GTPase 1 RAC1
Ras homolog family member A RHOA

Electron transport chain: complexes I and II

Mitochondrially encoded NADH:ubiquinone
oxidoreductase core subunit 1 MT-ND1

NADH:ubiquinone oxidoreductase core subunit S1 NDUFS1
Succinate dehydrogenase complex flavoprotein subunit A SDHA
Succinate dehydrogenase complex iron sulfur subunit B SDHB

2.3. Statistical Analysis

For each of the gene expressions corresponding to the most important KP enzymes,
the comparison between the groups of samples were performed using the Kruskal–Wallis
test with Dunn’s test for multiple pairwise comparisons against non-tumor brain cortex
samples. p-values < 0.05 were considered statistically significant. For each group of samples,
the pairwise correlations among the expressions of each of the genes corresponding to the
most important enzymes of KP and each of the genes of the other five groups of genes
were assessed using the Spearman’s correlations with the Holm adjustment for multiple
tests. p-values < 0.05 were considered statistically significant. To assess the effect of the
KP enzymes in the survival probability, for each KP enzyme, a Cox proportional hazards
regression model with a stratification defined by the three groups of samples (LGG-IDHm,
LGG-IDHw, and GBM-IDHw), with one continuous covariate (the expression levels of the
enzyme), and including the interaction between this covariate and the groups of samples,
was adjusted. With this model, three tests were performed to assess the global effect of
the enzyme on the survival probabilities, that is, that there is an effect in at least one of the
groups of samples: the likelihood ratio test and Wald test and score (logrank) test. Then,
tests with adjustments for multiple comparisons were performed to identify the group of
samples where the effect is significant. The numerical results were obtained using R v4.0.2
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(Vienna, Austria) [37], mainly packages survival (v3.1-12) [38], multcomp (v1.4-15) [39],
and psych (v2.0.9) [40].

3. Results
3.1. KP Enzymes Distribution on Brain Tumors

First, the expression of the KP enzymes on different brain tumors was explored,
considering that LGG and GBM were separated according to their IDH mutational status.
Under these conditions, it was found that among the tryptophan degrading enzymes
(IDO1, IDO2, and TDO2), the IDO1 expression was significantly higher in all different types
of tumors compared to the brain cortex, except in IDHm GBM, although the exception
could be due to the sample size (Figure 1A). Unlike gliomas, both the paraganglioma and
pheochromocytoma and the neuroblastoma groups presented an increased expression of
IDO2 (Figure 1B), while IDHw GBM and neuroblastomas presented a higher expression
of TDO2 compared to the brain cortex. IDHw LGG and IDHm LGG and P&P presented a
decreased expression of TDO2 compared to the brain cortex (Figure 1C). On the other hand,
AFMID, the enzyme leading to the formation of KYN, showed a decreased expression in
all the different tumors compared to the brain cortex, except in neuroblastoma (Figure 1D).
Additionally, the AADAT and GOT2, the KAT’s enzymes that lead to a KYNA formation,
presented a decreased expression among the different tumors compared to the brain cortex,
except in the neuroblastoma group, in which the expression of AADAT is higher compared
to the brain cortex (Figure 1E,F).

KMO, the other enzyme that can take KYN as a substrate and produce 3-HK, showed
a decreased expression in all CNS tumors which were evaluated compared to the brain
cortex levels (Figure 1G). Contrastingly, the expression of the KP enzymes that lead to
NAD+ synthesis, KYNU, HAAO, ACMSD, and QPRT were significantly increased in brain
tumors compared to the brain cortex (Figure 1H–K). It is of note that there were differences
within IDHw LGG and GBM compared to their IDHm counterparts in IDO1, TDO2, KMO,
and QPRT expressions.

3.2. Correlation between KP Enzymes and Glioma Hallmarks

After describing the distributions of the KP enzymes on the CNS tumors, we looked
for a correlation between the KP enzymes and the gene expression of molecules associated
with the hallmarks of cancer (Figure 2). In this way, it was found that the gene set with
more correlations with KP enzymes was the ‘immune response’ set, being KYNU, IDO,
HAAO, and KMO, the enzymes which presented more positive correlations with immune
checkpoint molecules such as HLA-E, PDCD1LG2 (PD-L1), CTLA-4, HAVCR2 (TIM3),
and interleukins 6 and 10. It is of note that KYNU presented significant correlations with
genes from other hallmark sets like angiogenesis, STAT signaling, small Rho GTPases, and
mitochondrial genes.

Interestingly, AADAT expression presented negative correlations with the genes stud-
ied here, mainly the genes related with the immune response. GOT2 also shows negative
correlations but with fewer genes.

Regarding IDO2, TDO2, AFMID, ACSMD, and QPRT present only some correlations,
with a few genes of those of the different hallmark sets.

3.3. Impact of KP Enzymes on Survival Estimation

Finally, it was explored if the expression of KP enzymes impacts on the patient survival
among the two groups: IDHw/m LGG and IDHw GBM (Figure 3). We found that IDHw
GBM patient survival was not affected by the expression of the KP enzymes, except the
ACMSD (p = 0.0485). However, in IDHw LGG, the higher expression levels of IDO1
(p = 0.03), KMO (p = 0.02), and KYNU (p < 0.01) impacted negatively on patient survival,
while the lower expression levels of AADAT (p = 0.04) were associated with lower survival
rates. ACMSD (p = 0.02) was the only KP enzyme which presented a significant impact on
the survival of IDHm LGG patients.
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Figure 1. Differential gene expression of the KP enzymes among brain tumors. Low grade gliomas
(LGG) and glioblastoma (GBM) were separated according to their IDH wildtype (IDHw) or IDH
mutant (IDHm) status, then expression levels of the KP enzymes IDO1 (A), IDO2 (B), TDO2 (C),
AFMID (D), AADATnaïve (E), GOT2 (F), KMO (G), KYNU (H), HAAO (I), ACMSD (J), and QPRT (K)
were compared with non-tumor brain cortex samples (Ctx), pheochromocytomas and paragangliomas
(P & P), and neuroblastomas (NB). * p < 0.05 when considering the Dunn’s test for multiple pairwise
comparisons against Ctx.
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4. Discussion 

Figure 3. Survival area plots for patients diagnosed with IDHw low-grade glioma (LGG-IDHw),
IDHm low-grade glioma (LGG-IDHm), and glioblastoma (GBM-IDHw) according to the expression
levels of the kynurenine pathway enzymes. Survival probability of IDO1 (A), IDO2 (B), TDO2 (C),
AFMID (D), AADAT (E), GOT2 (F), KMO (G), KYNU (H), HAAO (I), ACMSD (J), QPRT (K). For
each KP enzyme, the associated Survival Probability curves are obtained from a Cox proportional
hazards regression model.

4. Discussion

In the CNS, the KP plays an important role due to the production of the neuroactive
and redox metabolites involved in the redox balance, cognitive process, and social behav-
ior [41–43]. However, it has been proposed that the KP metabolites could help malignant
cells to overcome systemic barriers such as anti-tumor immune responses on several cancer
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types, including those of the CNS [44,45]. In this regard, Trp degradation by IDO and TDO
had been the most extensively studied steps of the KP in cancer models, positioning the
IDO expression as an immune checkpoint enzyme that abrogates the tumoral immune
destruction [29,30,46]. This evidence drove the study of the IDO and TDO pharmacological
inhibitors as anti-tumor therapeutic strategies; however, the use of these inhibitors has not
been successful in clinical trials for GBM patients [47,48]. In recent years, the importance
of other components of the KP downstream IDO and TDO have been studied on different
cancer models including gliomas, where the expression of other enzymes such as KMO
has been reported [32–35]. Because of the immunomodulatory properties of the molecules
produced through the KP and bioenergetic relevance of this pathway as the source for
the de novo synthesis of NAD+, in this study we were focused on the expression of the
KP components and their relationship with the gene expressions related to the immune
suppression, energy production, angiogenesis, and cell cycle disruption considering mainly
three groups: LGG IDHw, LGG IDHm, and GBM. The classification depending on the
IDH state was considered since it has been demonstrated that the IDH mutation promotes
metabolic reprogramming that has been associated with a better prognosis [49]. In addition,
recently it was demonstrated that the metabolic shift due to the IDH mutation increased
the production of the oncometabolite D-2-hydroxyglutarate (D-2-HG), which inhibits the
NAD+ biosynthesis [50,51].

As it was mentioned before, IDO and TDO start the Trp degradation and generate KYN.
In recent years, a close relationship has been established between the expression of these
enzymes and immunosuppression, leading to the study of IDO and TDO inhibition [47,48].
Although the use of IDO/TDO inhibitors by themselves has not been conclusive in clinical
trials, their combination with immune checkpoint inhibitors has shown some effectiveness,
which demonstrates the relevance of this pathway in the modulation of the anti-tumor
immune system. Supporting previous studies, herein the IDO showed a high expression
in all the CNS tumors which were analyzed compared with the non-tumor brain tissue
independently of the IDH mutational status in gliomas. Several studies have described
that the overexpression of IDO is associated with immune suppression, suggesting that
the expression of this enzyme could modulate the expression of regulatory molecules
of the immune system through non-enzymatic effects. Consistent with this idea, our
data show a positive correlation between the IDO and inhibitory molecules of the innate
immune response (HLAE and HLAG), as well as with the expression of immune checkpoint
molecules (PD1 PDL1, CTLA4 y TIGIT). Additionally, the IDO expression was positively
correlated with anti-inflammatory cytokines, and also with INF-γ, which is a known
modulator of KP. The IL-2RA, a receptor constitutively expressed molecule in Treg, was
correlated with the IDO expression.

On the other hand, it has been described that gliomas are highly vascularized and that up
to 30% of these tumors are infiltrated with tumor-associated macrophages, which are known
to participate in angiogenesis and produce high levels of metalloproteases. In concordance,
the infiltrate as well as the metalloproteases MMP2 and MMP9 were positively correlated
with the IDO expression. Additionally, the IDO expression was positively correlated with the
signal transducer and activator of the transcription genes (STATs) [52]. The STATs are involved
in the cellular cycle regulation, cellular survival, and the immune response. Specifically,
STAT1 and STAT3, those which are IDO correlated, regulate the NK cells maturation, the
anti-tumoral activity, as well as modulate the signaling mediate by the interferons type 1
and 2 [53,54]. These STATs are regulated by the intratumoral redox state, and in this sense,
IDO1 was negatively correlated with the MTND1, NDUFS1, and SDHA expression, all genes
involved in the oxidative phosphorylation. Taking into consideration the correlations between
the IDO and gene set, it is possible to suggest that the IDO can favor or modulate molecules
that negatively impact the global survival of patients with glioma.

Regarding IDO2, there are few reports about the participation of this enzyme in
gliomas. It has been reported that this enzyme is apparently involved in the KYN-AhR-
AQP4 signaling route, however, the mechanism of its participation is still unclear [46]. In
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this study, the IDO2 expression showed no differences between the gliomas and cerebral
cortex and no significant associations were found with molecules related to the immune
system, angiogenesis, cell cycle, GTPasas, or electron transport, results that are according
to our findings.

Tryptophan 2,3-dioxygenase (TDO) was overexpressed in all the CNS tumors which
were evaluated, suggesting a rapid degradation of TRP to KYN that causes Trp starvation
in the tumor microenvironment and, consequently, the inhibition of the lymphocyte prolif-
eration [55]. Specifically, in GBM, TDO was positively correlated with the expression of
immunosuppressive molecules related with the evasion of innate immunity, checkpoint
inhibitors, the angiogenic expression of VEGF, and the protease migration-related protein
matrix metalloproteinase 9 (MMP9); TDO was negatively correlated with EGFR. The major
contribution of TDO has been related to the immunosuppressive effects of KYN. KYN is a
natural endogenous ligand of the human aryl hydrocarbon receptor (AHR) which activates
the KYN-AhR-AQP4 signaling pathway supporting tumor growth and glioma cell motil-
ity [46], as well as the agonistic activity in the AHR leading to the differentiation onaïveaive
to Treg lymphocytes [56]. In addition, the fact that KYN can be rapidly metabolized to
other KP metabolites could be associated with TDOs poor impact on patient survival, as
this study shows [31].

In addition to IDO and TDO, the AFMID is also involved in the KYN production.
This enzyme has been poorly studied in cancer, however, a recent report indicated that the
proto-oncogen MYC induces AFMID expression in colon cancer, and it is associated with
cell proliferation through an AhR modulation by KYN [57]. In our study, this enzyme is
down expressed in gliomas and P&P, while it is overexpressed in neuroblastoma. However,
AFMID was not associated with the gene sets evaluated here, nor was an impact was found
on the survival, suggesting that the principal KP enzymes involved in the KYN production
on gliomas could be attributed to IDO and TDO.

Besides this, it was shown that the AADAT and GOT2 enzymes that represent the
‘short branch’ of the KP leading to the KYNA formation presented expression levels below
non-tumor tissue. The AADAT and GOT2 expression favor competition for the substrate
KYN, promoting the KYNA production, which has been implicated on the differentiation of
Treg [58]. Interestingly, lower expression levels of AADAT corresponded to lower survival
times and even more AADAT was the KP enzyme which showed negative correlations
with the gene sets analyzed here. The low expression of this enzyme in tumor tissue could
promote the degradation of KYN by KMO and KYNU, thus producing the KP-derived
metabolites 3-HK and 3-HANA that have immunosuppressive functions [59]. KMO is the
rate limiting enzyme of the KP long branch that takes KYN as a substrate to produce 3-HK.
This enzyme is not expressed on healthy astrocytes; however, a recent report shows that
glioma cells can express it [35]. Recent studies showed that KMO has a prognostic value
on triple negative breast cancer, mainly on the recurrence and metastasis [32]. According
to these findings KMO in addition to its enzymatic activity can reduce the kinase activity
of GSK3β, which decreased the phosphorylation of β-catenin, making it susceptible to
ubiquitination and posterior degradation [32]. Herein, KMO shows positive correlations
with the immune response-related genes, and in the case of LGG-IDHw, a high expression
of KMO was correlated with a poor survival.

On the other hand, the expression of the KYNU, HAAO, ACSMD, and QPRT enzymes,
that constitute the ‘long branch’ of the KP and drives to NAD+ synthesis, were increased
in the LLG IDHw and GBM compared to the brain cortex, which could promote the
production of toxic molecules for anti-tumor immune populations [26,27] and support the
correlation of the KP enzymes with tumor malignancy. It is of note that survival curves
showed a worst prognostic for both IDHw and IDHm lower-grade gliomas when the KP
enzymes, specifically ACSMD and KYNU, are overexpressed, indicating that KP-derived
metabolites might be an effective marker of the outcome prediction in both lower- and
high-grade gliomas.
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Particularly, the KYNU expression showed positive correlations with the distinct
gene sets related with the immune modulation, induction of angiogenesis, and enhanced
proliferative signaling. The role of the KYNU on brain tumors remains poorly understood,
however, its importance in different types of cancer has been revealed. In this regard,
differences in the KYNU expression and activity within the triple negative and HER2-
enriched breast cancer samples have been reported and a predictive model for triple
negative and non-triple negative breast cancer diagnosis has been proposed based on
the KYNU activity markers measured on the patient serum [60]. An additional study
reported that the KYNU expression is negatively related with the HER2 and Ki67 levels
on the breast cancer samples and positively related with the breast cancer differentiation
stage [61]. In this way, the induced overexpression of KYNU on malignant cells suppressed
the proliferation and tumor growth [61]. Besides this, the KYNU upregulation due to
the constitutive activation of the redox regulator, the nuclear factor erythroid 2-related
factor (Nrf2) was associated with immunosuppressive phenotypes and a lower survival of
lung adenocarcinoma patients [62], while the KYNU knockdown decreased the malignant
cell proliferation and migration through the downregulation of PI3K/AKT signaling on
cutaneous squamous cell carcinoma [63].

In addition, the 3-HAAO and QPRT overexpression led gliomas to radiochemotherapy
endurance via a resistance to oxidative stress by the overproduction of NAD+ [64]. It is
important to note that the expression of these enzymes differs significantly (p < 0.0001)
between the LGG IDHw and LGG IDHm, with the first showing the highest values, but
it is of note that the estimation of the survival probability is completely inverse because
in LGG IDHw, an overexpression of HAAO and QPRT has a worse prognosis, where in
LGG IDHw, this has a better prognosis. This is in contrast to the fact that IDH mutation
lead to the reprogram of the cellular metabolism that lead to a slow-growing feature and a
high production of the oncometabolite D-2-HG that inhibits the biosynthesis of NAD+ by
the Preiss–Handler pathway [50]. In that line, we should expect that the low production of
NAD+ through the KP increase to be deleterious for glioma cells by the depletion of NAD+,
but we found that this is not entirely clear because the overexpression of “long-branch
enzymes” that lead to the NAD+ synthesis had a better prognosis in LGG IDHm, so more
studies are required to understand why this inversion occurs.

As for the genes of the “hallmarks”, we found that 3-HAO is the second enzyme with
more positive correlations in the gene set studies here, but it is of note that the lack of
this enzyme is reported to non-neoplastic astrocytes and glioma cells, being the microglia
of the principal cells where the 3-HAO is expressed to produce quinolinic acid, so then
the glioma cells with an expression of QPRT can convert quinolinic acid to NAD+ [64].
However, another possibility is that the expression of 3-HAO in the bulk mass could come
from tumor-infiltrating cells, like tumor-associated macrophages that have been reported
as the main cell type that infiltrate glioblastoma tumors [65,66].

Nowadays, bioinformatic analysis represents a powerful tool for supporting or even
for the propose of developing new research strategies among several life sciences disciplines.
In this sense, bioinformatics helps us to understand the genotypic and phenotypic profiles
and to design specific molecules that could be used as promising drugs. Particularly, in
this study it was possible to explore the complex interactions between the impact of the
KP enzymes and tumor microenvironment. Artificial intelligence, biotechnology, and
nanoengineering are potential devices to design innovative peptide materials that could
be used to design new drugs with a broad cellular penetration power to silencing KP
enzymes; an excellent option could be cell-penetrating peptide amphiphiles, molecules
with a capacity to form complexes with siRNAs, as an alternative for therapeutic delivery
in glioma cells [67].

It is important to take into account that the high intratumoral heterogeneity within
the tumor mass is very complex and that there are multiple factors involved in tumor
development which could affect the estimates made in this study, but also it is important to
keep in mind that the differences in the estimation could be dependent by the metabolic
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status of the sample at the time of the analysis. However, it is necessary to perform
additional studies to clarify the impact of KP-related enzymes beyond IDO1.

5. Conclusions

Based on this study, the participation of components of the kynurenine pathway down-
stream of IDO1/TDO is highlighted, since they may be potential therapeutic targets that
contribute to immunotherapy in cancer. Future studies should be focused on characterizing
the participation of VK metabolites in the modulation of the immune response in order to
understand their role in cancer.
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