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Abstract

Background: Gait symptoms and balance impairment are characteristic indicators for the progression in Parkinson’s
disease (PD). Current gait assessments mostly focus on straight strides with assumed constant velocity, while
acceleration/deceleration and turning strides are often ignored. This is either due to the set up of typical clinical
assessments or technical limitations in capture volume. Wearable inertial measurement units are a promising and
unobtrusive technology to overcome these limitations. Other gait phases such as initiation, termination, transitioning
(between straight walking and turning) and turning might be relevant as well for the evaluation of gait and balance
impairments in PD.

Method: In a cohort of 119 PD patients, we applied unsupervised algorithms to find different gait clusters which
potentially include the clinically relevant information from distinct gait phases in the standardized 4x10 m gait test. To
clinically validate our approach, we determined the discriminative power in each gait cluster to classify between
impaired and unimpaired PD patients and compared it to baseline (analyzing all straight strides).

Results: As a main result, analyzing only one of the gait clusters constant, non-constant or turning led in each case to
a better classification performance in comparison to the baseline (increase of area under the curve (AUC) up to 19%
relative to baseline). Furthermore, gait parameters (for turning, constant and non-constant gait) that best predict
motor impairment in PD were identified.

Conclusions: We conclude that a more detailed analysis in terms of different gait clusters of standardized gait tests
such as the 4x10 m walk may give more insights about the clinically relevant motor impairment in PD patients.

Keywords: Parkinson’s disease, Gait analysis, Inertial sensors, Gait cluster, Gait phases, Classification, Gyroscope,
Accelerometer

Background
Parkinson’s disease (PD) is a degenerative disorder of the
central nervous system which often affects the motor sys-
tem [1]. Gait symptoms and balance impairment aremajor
motor symptoms in PD patients [2]. These symptoms are
associated with falls and freezing of gait (FOG) in PD
which both have substantial impact on the patient’s qual-
ity of life [3]. Gait disorders and balance impairments in
PD are most commonly characterized by clinical experts
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using the Unified Parkinson Disease Rating Scale part III
(UPDRS-III) subitems “gait” and “postural stability” [4].
Clinical gait tests, often only focus on the middle part

of a gait bout to avoid “confounding” in gait param-
eters by acceleration/deceleration [5] and hence might
exclude potential clinically relevant gait phases. Also in
technical gait assessments often only straight strides with
assumed constant-velocity are considered, while accelera-
tion/deceleration and turning strides are ignored, due to
limitations in capture volume of commonly used systems
like instrumented mats and optical Motion Capture. To
overcome the technical limitations mentioned, a promis-
ing technology for objective and mobile gait analysis are

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12984-019-0548-2&domain=pdf
http://orcid.org/0000-0002-8759-7641
mailto: an.nguyen@fau.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Nguyen et al. Journal of NeuroEngineering and Rehabilitation           (2019) 16:77 Page 2 of 14

inertial measurement units (IMUs), since they are rel-
atively inexpensive and easy to integrate (e.g. in smart
shoes [6]) compared to the before mentioned systems.
Furthermore they offer the potential for home monitor-
ing. Extensive research has been conducted in the field
of sensor-based gait analysis including IMUs and other
unobtrusive sensor technologies such as pressure insoles
to enable mobile gait assessment for better disease moni-
toring [6–10].
Specifically, in home monitoring environments, the

ratio of straight, constant-velocity gait to other gait phases
(e.g. initiation, termination and turning) might decrease.
This could be due to walking inside rooms or from one
room to another typically requires turns and rarely allows
more than a few straight strides.
Clinical assessment of short walking bouts during stan-

dard examinations by experienced movement disorder
specialists includes all aspects of gait: gait initiation,
acceleration, constant speed at different paces, decel-
eration, turning and termination. However, the evalua-
tion is subjective and descriptive and lacks any stan-
dardization and comparability between raters. Especially,
clinicians describe impairments of different gait phases
as, e.g. slow gait (constant phase), prolonged initiation
phase, pusher who cannot stop, postural instability with
increased stride-to-stride variance of the constant and
potentially also of the other gait phases. The clinical
descriptive gait analysis is not represented by sensor-
based gait assessment as defined so far [7–12]. Objective
evaluation strategies e.g. gait speed or distance using stop
watches typically only include highly defined phases of the
selected gait test. Typically, the middle part of a short gait
bout with assumed constant speed is evaluated. Wearable
sensor technology such as inertial sensors allow to mon-
itor each gait phase during standardized 4x10 m walks,
however, only straight strides are typically included for
gait parameter computing [7, 11, 12]. Thus, from a techni-
cal perspective, even though turning strides are excluded,
still the first and last strides from a gait bout might
increase the variance of the constant part (e.g. to define
gait speed or stride length). From a clinical perspective,
especially the acceleration and deceleration phase of gait
bouts might be of even more relevance for certain aspects
of gait impairment (e.g. initiation, balance and postural
control).
In the following, gait and turning phases are defined:
Gait initiation is defined as the transition from motion-

less standing to steady-state gait and characterized by
anticipatory postural adjustment where the center of pres-
sure is shifted [13, 14]. In PD it is well-known that partic-
ularly problems with the initiation of gait can often cause
FOG [14, 15].
Gait termination is the transition from steady-state gait

to still standing after deceleration [16]. There exists very

little research studying gait termination in PD patients
[16]. Bishop et al. [17] found that PD patients have more
difficulties to generate sufficient braking impulse during
unplanned gait terminations.
Gait transitioning in the present study is defined as the

transition from straight walking to 180° turns and vice
versa. These gait phases require the ability to deceler-
ate and accelerate before and after turning 180°, which
demands complex adjustments in gait and posture. Mak et
al. [18] showed that PD patients have difficulties switch-
ing from straight walking to turning. Mariani et al. [19]
developed an algorithm to detect transition strides and
reported that PD patients took significantly more time
for gait transitioning during a timed up and go (TUG)
test. Schlachetzki et al. [11] stated that PD patients have
problems with walk to turn transitions due to disease-
characteristic gait impairment and deficits in postural
balance control.
Turning (changing directions) while walking is an

important component of mobility and requires control of
dynamic balance. During daily live activities 50% of strides
taken are turning strides [20]. Mancini et al. [21] showed
that turning can be a good indicator for FOG in PD. There
are several studies showing that PD patients have difficul-
ties in turning and that it might be a good indicator for
risk of falling [20–25].
Current research results in inertial sensor-based gait

analysis for PD patients focus on the evaluation of all
detected straight strides [7, 11, 12] which could bias
the resulting mean and coefficient of variance (CV) of
stride parameters by mixing steady state walking with
non-steady state walking strides. Hence the analysis and
comparison of clinically relevant information in differ-
ent phases of walking (constant, initiation, termination,
transitioning and turning) are of great interest.
The aim of this study was to define gait clusters that have

the potential to obtain the distinct gait parameters from
the different gait phases within a standardized 4x10 m
gait test (Fig. 2) performed at the movement disorder unit
(Point-of-Care visit) into gait clusters. These gait clusters
were defined by novel, unsupervised methods as: base-
line (including all straight strides), constant gait (straight
strides excluding acceleration and deceleration strides),
non-constant gait (which includes gait initiation, termina-
tion and transitioning) and turning (includes all turning
strides).
We hypothesize that different gait phases clustered by

different mathematical approaches provide more clini-
cally relevant information than the complete 10 m gait
bout, and that an automated clustering approach can
isolate this information.
To clinically validate this approach, we compared the

discriminative power in each gait cluster to classify
between impaired and unimpaired PD patients in terms
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of the established UPDRS-III subitems “gait” and “pos-
tural stability” [4]. As an evaluation measure commonly
used in medical decision making we calculated the area
under the curve (AUC) based on the receiver operating
characteristic (ROC) curve analysis [26, 27].

Materials andmethods
The overall approach used in this study is illustrated
in Fig. 1. The individual steps will be explained in the
following sections.

Database
Parkinson’s disease patients (n=119) were selected from a
larger stratified patient cohort visiting theMovement Dis-
orders Outpatient Clinic of the Department of Molecular
Neurology at the University Hospital Erlangen, Germany.
PD patients were selected based on two criteria: 1) all
required data (gait and clinical) for the analysis were
complete and 2) to balance the sample size between PD
patients with presence (impaired) and absence (unim-
paired) of motor impairments in terms of the UPDRS-III
subitems “gait” and “postural stability”. The study was
approved by the local ethics committee (IRB-approval-Re.
-No. 4208, 21.04.2010, IRB, Medical Faculty, Friedrich-
Alexander University Erlangen-Nuernberg, Germany)
and all participants gave written informed consent
according to the Declaration of Helsinki.
Sporadic PD was defined according to the Guidelines

of the German Association for Neurology (DGN), which

are similar to the UK PD Society Brain Bank criteria [28].
Inclusion criteria consisted of PD patients with Hoehn
and Yahr disease stage (H&Y) between I and III, and the
ability to walk independently without a walking aid. PD
patients were excluded if other neurological disorders,
severe cardiovascular or orthopedic conditions affected
the assessments.
All PD patients were clinically (UPDRS-III [4]) and

biomechanically (gait analysis) investigated in stable ON
medication without presence of clinically relevant motor-
fluctuations during the assessments.
For the UPDRS-III subitem “postural stability”, the

physician is instructed to invoke sudden displacements of
the patient by pulling his/her shoulders backwards and
scoring the patients response on a five level scale: 0 (nor-
mal recovery) – 1 (retropulsion with unaided recovery)
– 2 (would fall if unaided) – 3 (tendency to spontaneous
imbalance) – 4 (requires assistance to stand) [4].
For the UPDRS-III subitem “gait”, the patient is

instructed to walk at least 10 m away from and torwards
the examiner. The patients gait is then evaluated on a five
level scale: 0 (normal) – 1 (walks slowly, may shuffle with
short steps, no festination or propulsion ) – 2 (walks with
difficulty, little or no assistance, some festination, short
steps or propulsion ) – 3 (severe disturbance, frequent
assistance ) – 4 (cannot walk) [4].
For IMU-based gait assessment, all participants walked

freely at a comfortable, self-chosen speed in an obstacle-
free and flat environment for 4x10 m. After each 10

Fig. 1 Flowchart illustrating the different steps applied to compare the clinically relevant information about the motor impairment in PD patients in
different gait clusters
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m walk, participants were instructed to turn 180° [11].
Figure 2 illustrates the 4x10 m gait test including the gait
clusters defined for this work.
In order to clinically validate our clustering approaches,

we grouped PD patients based on the UPDRS subitems
“gait” and “postural stability” into the classes “impaired” if
the corresponding clinical score is nonzero (> 0) and to the
class “unimpaired” otherwise (= 0). These two subitems
were chosen since they are the most reflective ones for PD
gait. The distribution and characteristics of PD patients
analyzed in this study are shown in Table 1.

Measurement system
Gait data were recorded with an inertial measurement
system consisting of two Shimmer 2R/3 inertial measurement
units (Shimmer Sensing, Dublin, Ireland [29]) [11, 12].
Sensors were attached to the lateral side of each shoe
(Fig. 3). Each sensor consists of a three-axis accelerometer
(range (Shimmer 2R (3)): ± 6 g (± 8 g)) and a three-axis
gyroscope (range (Shimmer 2R (3)): ± 500°/ sec (± 1000°/
sec)). Data were recorded with a sampling rate of 102.4 Hz.
The x-axis was defined in posterior–anterior direction,

y-axis was in superior–inferior direction, and z-axis was in
medio-lateral direction. Figure 3 illustrates the measure-
ment system with axis definitions for the accelerometer

and gyroscope and an example signal of an exemplary
stride.

Semiautomatic stride segmentation
To ensure that all strides (including turning and transition
strides) were captured, semiautomatic stride segmenta-
tion was applied, since the goal of this study was to
compare the information decoded in different gait clus-
ters.
At first the Dynamic Time Warping (DTW) algorithm

presented in [30] only using the GZ axis was applied to
initially detect as many strides as possible. DTW is a
template-based approach to segment single strides within
a gait sequence [30]. After the automatic stride detec-
tion using DTW, wrongly (e.g. the stride boundaries are
not aligned with the minima of the GZ signal) segmented
strides were corrected and missing strides were added
manually based on minima in the GZ signal. Figure 4
shows an example for a semi-automatically annotated
sequence of a 4x10 m gait test including straight and
turning strides.

Turning isolation
In the case of a 4x10 m walking test we anticipated three
turning sequences which were to be isolated from the four

Fig. 2Model of transformation of clinically relevant gait phases into gait clusters within the 4x10 m test. The turning cluster (red) was determined
based on the algorithm described in Turning isolation. A set of parameters per subject was calculated for each of the defined gait clusters. The
constant (blue) and non-constant (gray) gait clusters were defined based on the corresponding clustering methods described in Clustering straight
walking bouts into constant and non-constant gait cluster. The baseline cluster consists of all straight strides and is thus the combination of all
constant (blue) and non-constant (gray) strides



Nguyen et al. Journal of NeuroEngineering and Rehabilitation           (2019) 16:77 Page 5 of 14

Table 1 Distribution and characteristics of PD patient cohort

“gait”

unimpaired (n=51) impaired (n=50/18)

(“gait” = 0) (“gait” = 1/2)

Age (years, mean ± std) 58.47 ± 12.42 60.23 ± 10.83

Height (cm, mean± std) 172.27 ± 9.08 172.99 ± 9.36

Weight (kg,mean± std) 76.73 ± 14 78.68 ± 14.37

“postural stability”

unimpaired (n=58) impaired (n=45/16)

(“postural stability” = 0) (“postural stability” = 1/2)

Age (years, mean± std) 57.22 ± 11.06 59.23 ± 11.32

Height (cm,mean± std) 173.07 ± 9.44 172.31 ± 9.05

Weight (kg,mean± std) 78.47 ± 14.88 77.25 ± 14.31

straight walking bouts. Therefore, the following unsuper-
vised algorithm was applied to each foot separately.
First of all, turning angles (TA) for each segmented

stride were calculated based on the algorithm described
in [19] from mid stance (MS) to MS. All strides with an
absolute TA larger than 20° were then classified as turn-
ing strides. The threshold was chosen based on a study of
Mariani et al. [31]. For all remaining strides, a gamma dis-
tribution was fitted based on the absolute value of the TA
and the upper 10% TA were classified as turning strides if
they were adjacent to one of the already assigned ones. A

gamma distribution was chosen because we only consid-
ered positive values (absolute value of TA) and expected a
single-tailed (large absolute values of TA) distribution.The
general approach is shown in Fig. 5 for an exemplary 4x10
m gait sequence and one foot.

Clustering straight walking bouts into constant and
non-constant gait cluster
After isolation of the turning phases from the 4x10 m
gait test sequence, the four straight 10 m walking bouts
were further analyzed. The goal was to cluster straight
strides into constant and non-constant gait (initiation, ter-
mination and transitioning) for each 10 m walking bout
separately. Detected phases of gait initiation, termination
and transitioning were summarized as the non-constant
gait cluster and hence the remaining part of a 10 m bout
as the constant gait cluster as illustrated in Fig. 2.
We used stride velocity and stride time as parame-

ters to cluster straight walking strides into constant and
non-constant gait clusters. The stride time was calcu-
lated based on the time difference of two consecutive heel
strike events as described in [32]. The stride velocity is
the ratio of stride length and stride time. Stride length
was computed through a double integration of the gravity
corrected accelerometer signal between two consecutive
MS events as described in [32]. It is reasonable to assume
that subjects will accelerate at the beginning and decel-
erate at the end of each 10 m walking bout. Figure 6
shows the mean ± standard deviation of the stride veloc-
ity and stride time over all subjects and all 10 m bouts.

Fig. 3 (Left) Accelerometer and gyroscope data (normalized by range) for one exemplary stride; (Right) Sensor (Shimmer 2R) placement on the
lateral side of each shoe and axes definition (AX, AY and AZ form three dimensions of accelerometer and GX, GY and GZ form three dimensions of
gyroscope)
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Fig. 4 Semi-automatic stride segmentation of a sequence of a 4x10 m gait test signal. (Top) Strides automatically segmented by the DTW algorithm
using only the GZ axis as a template (blue boxes). The minima in the GZ signal (red crosses) were used to define stride borders for missing or
wrongly segmented strides. (Bottom) Fully segmented sequence of a 4x10 m gait test signal. Missing or wrongly segmented strides were manually
added or corrected based on the minima in the GZ signal

The parameters for each subject were normalized by the
mean value over each 10 m bout. The stride velocity was
normalized by the body height of the patients in order to
control for height-dependent gait characteristics [33]. To
account for different numbers of strides per subject for a
10 m bout linear interpolation was applied over all 10 m
bouts of one subject to compute the mean over the four 10
m bouts. Finally, linear interpolation was applied over all
subjects and the 10 m bout has been normalized between
0 and 1.

Several unsupervised methods to cluster straight walk-
ing bouts into constant and non-constant strides were
developed and applied.
The first method and simple approach was to assign the

first and last N%,N ∈ {5, 10, 15, 20, 25} of strides of each
10m bout to the non-constant gait cluster and the remain-
ing to the constant gait cluster respectively. We will refer
to this method as N%crop.
More selective approaches were developed and imple-

mented to assign strides to the non-constant gait cluster

Fig. 5 Turning isolation algorithm for an exemplary 4x10 m gait sequence and one foot. (Left) Absolute value of the TA including: Strides with TA
larger than 20° (red circles), straight strides (blue circles), potential turning strides adjacent to already assigned turning strides (red triangles) and
potential turning strides not adjacent to already assigned turning strides (blue triangles). (Right) Gamma distribution fitted based on all strides with
TA smaller than 20°. The largest 10% are potential turning strides (triangles) and the remaining strides are straight strides (blue circles)
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Fig. 6 Stride velocity (left) and stride time (right) over a normalized 10 m bout. The mean and standard deviation was calculated over all subjects.
For each subject the mean over all four 10 m bouts was computed, while each parameter was normalized by the mean value over each 10 m bout

for each 10 m bout. Therefore we defined a lower and an
upper threshold for either the stride velocity or stride time
within which we assigned a stride as constant and outside
as non-constant. These two thresholds were determined
based on four different methods.
The first method was based on the median of the stride

velocity or stride time for each 10 m bout. The upper and
lower threshold were defined as 5% below and above this
value after normalization with the median. We will refer
to this method asmedian vel/t.
The second approach was to fit a normal distribution to

the stride velocity or stride time for each 10 m bout and
define the upper and lower threshold as the mean ± the
standard deviation. We will refer to this method as distr
vel/t.
The third method was based on the K-means clustering

method [34] with five random initiations of the mean. The
result within these five trials with the biggest separation
of clusters was chosen as the final result. The parameter
K was set to 3 because we anticipated for K = 3 that
there will be a mean for slow, medium and fast strides dur-
ing a 10 m bout defined by the algorithm. The means for
the slower and faster strides were then used as the lower
and upper thresholds. We will refer to this method as
3means vel/t.

The fourth and last method was based on percentiles.
The lower threshold was defined as the 25% and the upper
as the 75% percentile of the stride velocity or stride time
within each 10 m bout. We will refer to this method as
perc vel/t.
After all strides were classified as constant or non-

constant a post processing algorithm was applied to
ensure the order of gait acceleration, steady state gait
and gait declaration as consecutive periods of each 10
m walking bout. We assumed that gait acceleration and
deceleration can only take place within the first and last
25% of each 10 m walking bout. Within the first 25% we
assigned all strides until the last one assigned as non-
constant based on the thresholds as gait acceleration. The
same procedure was applied to assign strides as gait decel-
eration for the last 25% looking from the end to the begin-
ning of each 10 m bout. All remaining strides between the
last acceleration and first deceleration stride within the
25% bands were then assigned to the constant gait clus-
ter. The acceleration and deceleration strides were then
both assigned to the non-constant gait cluster for further
analysis. The 25% thresholds for the post processing were
chosen based on the work of Miller et al. [35] stating that
three strides are necessary to reach constant-velocity gait.
Perry et al. [36] mentioned that at least 3 m are needed at
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the end to measure enough constant strides in the middle
part of a 10 m walk bout. The algorithm with raw and post
processed gait cluster assignment is illustrated in Fig. 7.

Calculation of gait parameters
The following spatio-temporal parameters were calculated
for all straight strides: stride time, swing time, stance
time, stride length, stride velocity, heel strike angle, toe
off angle, maximal toe clearance, path length and turning
angle [19, 32, 37, 38]. Path length and stride length were
like stride velocity, also normalized by the body height of the
patients in order to control for height-dependent gait char-
acteristics [33]. The swing and stance time were both given
relative to the stride time. For each subject we calculated the
mean and CV over all constant and non-constant strides
(assigned based on algorithm described in Clustering
straight walking bouts into constant and non-constant
gait cluster section) from a 4x10 m gait test resulting
in one mean and one CV value per parameter for each
subject and gait cluster.
Parameters calculated per turn were: number of strides

and turning time. For each subject we calculated the mean
of each of the two parameters over all three turns. Further-
more we calculated the following parameters per turning
stride for all turns: stride length, stride time, stride veloc-
ity and path length [19, 32]. We then again computed the

mean and CV over all turning strides per subject over all
turns.
We finally had a set of parameters per subject for each of

the defined gait clusters: baseline, constant, non-constant
and turning. The defined gait clusters in terms of the 4x10
m gait test are illustrated in Fig. 2.

Assessing clinical information in each cluster
In order to compare the discriminative power in each
gait cluster we applied a state of the art machine learning
methodology pipeline for each gait cluster and clustering
method. This pipeline was applied for binary classifica-
tion to distinguish between impaired and unimpaired PD
patients based on the UPDRS-III subitems “gait” and “pos-
tural stability”. Note that the clustering methods described
above are independent of the class labels and hence can be
seen as a preprocessing step.

Evaluation procedure
Patients were assigned to the class impaired gait/posture
if the corresponding clinical score is nonzero (> 0) and
to the class unimpaired gait/posture otherwise (= 0). The
complete data set was randomly partitioned into 60% for
training and 40% for testing. Furthermore, the training
data set was then balanced based on both groups impaired
and unimpaired [27] and Table 2 shows the resulting

Fig. 7 Illustration of the algorithm for clustering an exemplary 10 m bout into constant and non-constant gait clusters. The example is based on the
method distribution vel and shows the raw (left) and the postprocessed (right) cluster assignment
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Table 2 Distribution of training and test data used for classification

Training set Test set

unimpaired impaired unimpaired impaired

UPDRS-III item “gait”

(item “gait” = 0) (item “gait” = 1/2) (item “gait” = 0) (item “gait” = 1/2)

n=31 n =20/11 n=20 n=20/7

UPDRS-III item “postural stability” (“pi”)

(item “pi” = 0) (item “pi” = 1/2) (item “pi” = 0) (item “pi” = 1/2)

n=35 n =20/15 n=23 n=18/6

distribution of samples for the “gait” and item “postural
stability”.
We applied a receiver operator characteristics (ROC)

analysis and calculated the area under the curve (AUC)
as our primary evaluation measure [26, 27]. The major
advantage of this measure is that it evaluates the clas-
sification performance for different configurations of a
classifier and is as such more general then e.g. the classifi-
cation accuracy. Therefore, these evaluation measures are
a common choice in the machine learning community and
for medical decision making [27].
For each of the defined gait clusters, gait parameters

were extracted as already outlined in “Calculation of gait
parameters” section. For each classification task the top
five parameters were selected based on the fisher score on
the training set [39]. The fisher score is a measure for the
discriminative power of a parameter and is calculated as
the squared difference of class means weighted by the sum
of the class variances.
We applied a support vector machine (SVM) algo-

rithm as a classification algorithm with linear and radial
basis function (RBF) kernel [40]. Boosting and bag-
ging algorithms were applied in preliminary experiments
but did perform inferior in comparison to SVM. The
SVM parameters C and γ were found in the inner
5-fold cross validation with a grid search over C =
{0.01, 0.05, 0.1, 0.5, 1, 5, 10, 20, 30, 40, 50, 100} and γ =
{0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 20, 40, 50, 100}. Note that a
selection of γ = 0 would coincide with selection of a lin-
ear kernel while other choices result in an RBF kernel.
The optimal model parameters were selected based on the
maximum AUC and then used to train a model on the
whole training set.
We finally evaluated the optimal classification model

selected on the unseen test data. The AUC based on the
ROC curve [26] was then calculated for the evaluation.

Results
Classification results (AUC values) distinguishing
impaired and unimpaired PD patients based on the
UPDRS-III subitems “gait” and “postural stability” were

calculated for different gait clusters and clustering meth-
ods as the clinical validation of the clustering approaches.
In Figs. 8 and 9 results are presented for the UPDRS-III
subitems “gait” and “postural stability” respectively com-
paring different, previously defined gait clusters. Since in
inertial sensor-based gait analysis often all straight strides
are included when computing gait parameters (baseline),
the results highlight the comparison of AUC values
derived from different gait clusters, which potentially
decode the different gait phases, to baseline for the two
analyzed UPDRS-III subitems.
For the UPDRS-III subitem “gait” (Fig. 8) the AUC value

for the baseline cluster is 0.74. All clustering methods
yielding to a better classification for the gait cluster “con-
stant” compared to baseline. The AUC value increases up
to around 11% (AUC= 0.82) relative to baseline for multi-
ple clustering methods (20%crop, 25%crop,median t, distr
t and 3means vel and perc vel).
In the gait cluster “non-constant” the AUC values

increase for all clustering methods (except 5%crop and
median t) up to 13% (AUC = 0.84) (clustering method
10%crop). For the turning cluster there is an increase of 8%
(AUC = 0.80) compared to baseline.
Looking at the results for the UPDRS-III subitem “pos-

tural stability” (Fig. 9), the baseline AUC value is 0.75.
Again, the gait cluster “constant” gives for all clustering
methods a better classification performance compared to
baseline. The AUC value increases up to 12% (AUC =
0.84) for several clustering methods and up to 16% (AUC
= 0.87) for the 3means vel method.
Considering the gait cluster “non-constant”, the classifi-

cation improves for all methods except 5%crop. The AUC
increases up to 19% (AUC = 0.89) (clustering method
median t). For the turning cluster there is an increase of
8% (AUC = 0.81) compared to baseline.
To sum up, for both UPDRS-III subitems, each of the

defined gait clusters yields a higher AUC value compared
to analyzing all straight strides (baseline).
Different gait parameters were selected based on the

methodology described in “Assessing clinical information
in each cluster” section. Table 3 shows the parameters
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Fig. 8 Classification results for distinguishing impaired and unimpaired PD patients based on the UPDRS-III item “gait” for the constant (top) and
non-constant (bottom) gait clusters. The dashed line indicates the corresponding baseline result including all straight strides. “turning” is based on
parameters extracted from the turning cluster. The methods are corresponding to the definitions in “Clustering straight walking bouts into constant
and non-constant gait cluster” section

selected for the UPDRS-III subitems “gait” and “postural
stability” and different gait clusters. Note that for the con-
stant and non-constant gait clusters more than 5 parame-
ters could be reported since different clustering methods
might lead to a different set of selected parameters.

Discussion
The aim of this study was to define gait clusters, which
potentially include the clinically relevant information
from distinct gait phases in the standardized 4x10 m
gait test. We hypothesized that the clustering approaches
could isolate the information from different gait phases
and hence provide more clinically relevant information
than the complete 10 m bout (baseline). To clinically vali-
date this approach, we compared the discriminative power
(classification of impaired and unimpaired PD patients
based on UPDRS-III subitems “gait” and “postural stabil-
ity”) in the mathematically defined gait clusters compared
to analyzing all strides.
The results for the constant gait cluster (top plots in

Figs. 8 and 9) show that all clustering methods described
in Clustering straight walking bouts into constant and
non-constant gait cluster were giving better classification
results than baseline for both the UPDRS-III subitems

“gait” and “postural stability”. This confirms the hypothe-
sis that clustering constant strides improves the classifica-
tion of impaired and unimpaired PD patients compared to
baseline (analyzing all straight strides). A possible expla-
nation for this result might be that combining all straight
strides includes gait initiation, termination and transi-
tioning could bias the calculated mean and CV param-
eters. Using constant strides, the clustering methods
20%crop, 25%crop, median t, distr t, 3means vel and perc
vel were giving (in terms of the UPDRS-III item “gait”)
substantially larger AUC’s (all AUC = 0.82) compared to
the baseline cluster (AUC = 0.74). For the UPDRS-III item
“postural stability” the method 3means vel gave a substan-
tially higher AUC value (AUC = 0.87) in comparison to
baseline (AUC = 0.75). Other methods like e.g. N%crop,
median vel, dist vel also showing superior results (AUC =
0.83-0.84) compared to baseline (AUC = 0.75) as well.
Interestingly, almost all clustering methods except the

5%crop and mediant (gait) approach were giving superior
results for the non-constant gait cluster in comparison to
baseline for the UPDRS-III subitems “gait” and “postural
stability” as presented in Figs. 8 and 9 on the bottom. This
confirms the hypothesis that non-constant gait cluster
yields a better classification of impaired and unimpaired



Nguyen et al. Journal of NeuroEngineering and Rehabilitation           (2019) 16:77 Page 11 of 14

Fig. 9 Classification results for distinguishing impaired and unimpaired PD patients based on the UPDRS-III item “postural stability” for the constant
(top) and non-constant (bottom) gait clusters. The dashed line indicates the corresponding baseline result including all straight strides. “turning” is
based on parameters extracted from the turning cluster. The methods are corresponding to the definitions in “Clustering straight walking bouts into
constant and non-constant gait cluster” section

PD patients compared to all straight strides. Higher AUC
values for the non-constant cluster in the item “postural
stability” indicate that balance deficits are more reflected
by gait alterations in gait initiation, acceleration and decel-
eration than differences in straight walking [14, 15].
The overall clinical gait assessment rather focuses on

quantitative gait characteristics as stride length and gait
velocity, which is mostly reflected in the constant gait
cluster. All constant clusters show superior associations
to clinically relevant gait symptoms compared to baseline.
This indicates that parameters generated from initiation,
acceleration and deceleration strides negatively influence
the evaluation of gait symptoms in PD. More similar
results in comparison to the clinician’s ratings are pre-
sented by constant strides. This could be explained by a)
that the computed mean and CV parameters are biased
in the baseline cluster as mentioned above and b) that
gait initiation, termination and transitioning are especially
impaired in PD patients [14–18, 41] which is decoded in
the non-constant gait cluster. The method 5%crop was
inferior to baseline because some patients may not take
enough strides (less than 10) per 10 m bout leading to
very few strides to be analyzed. Worth mentioning on the
other hand is that only analyzing the first and last 10%
of strides in each 10 m bout gave even better or similar

results compared to the constant gait cluster and hence
baseline for the UPDRS-III subitems “gait” and “postural
stability” (AUC = 0.84 and AUC = 0.87).
Another interesting observation is that the simple

N%crop methods were performing similarly well in com-
parison to themore selective clustering approaches for the
constant and non-constant gait clusters and both UPDRS-
III items. Hence there was best clustering method identi-
fied. Since the major goal of this study was to compare the
classification performance in each gait cluster compared
to analyzing all straight strides.
The turning cluster led also for both the UPDRS-

III subitems “gait” and “postural stability” (AUC = 0.80
and AUC = 0.81) to superior results compared to base-
line (AUC = 0.74 and AUC = 0.75), which confirms the
hypothesis that the turning cluster yields better classifica-
tion of impaired and unimpaired PD patients compared
to baseline. This also coincides with results from several
studies showing that PD patients have severe problems
performing turning tasks [20–25].
In Table 3 the selected parameters are listed for the clas-

sification tasks. Slow gait, small steps and shuffling are
reflecting bradykinesia in PD patients. Schlachetzki et al.
[11] pointed out that for PD patients typically slow gait is
reflected by stride velocity, small steps by the stride length
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Table 3 All selected parameters for each gait cluster and
UPDRS-III subitem

Gait cluster UPDRS-III item “gait” UPDRS-III item “postural stability”

baseline toe off angle (mean), stride velocity (CV),

stride velocity (CV), stride velocity (mean),

heel strike angle (CV), path length (mean),

stride velocity (mean), stride time (CV),

swing time (CV) swing time (CV)

constant toe off angle (mean), stride time (CV),

stride velocity (mean), stride velocity (mean),

stride time (CV), path length (mean),

path length (mean), stride velocity (CV),

heel strike angle (CV), toe off angle (mean),

toe off angle (CV) stride length (mean)

non-constant toe off angle (mean), stride velocity (CV),

stride velocity (mean), stride velocity (mean),

heel strike angle (CV), path length (mean),

path length (mean), stride length (mean),

stride length (mean) toe off angle (mean)

turning path length (mean), stride length (mean),

stride length (mean), number of strides,

stride velocity (mean), path length (mean),

number of strides, stride velocity (mean),

turning time turning time

Note that for the gait clusters constant and non-constant more than 5 parameters
could be listed since different clustering methods might lead to different parameter
choices

(and hence path length) and shuffling by toe off and heel
strike angles. The selected parameters were reported to
indicate disease staging in PD in [11]. Parameters selected
for the turning cluster are confirming that PD patients
with motor impairment have more difficulties with turn-
ings reflected in more time taken, more, smaller and
slower steps [11, 20–25].
One limitation of this work is that semi-automatic seg-

mentation of strides was applied, especially to include
turning and transition strides. Hence this approach can-
not be fully automated and requires some manual work
for labeling.
Another limitation is that the method for turning isola-

tion is not validated since the definition of turning is still
an open research topic. The same holds for the defini-
tion of constant and non-constant strides. In this study, we
focused on the clinical validation of the clustering meth-
ods. The clinical validation has the limitation that scores
of 1 and 2 were merged together into one group. This was
done as a proof of concept of the clustering approaches in
this study. By analyzing the UPDRS-III subitems “gait” and

“postural stability” it is not possible to distinguish between
different domains of balance impairments.
Furthermore, only data from the 4x10 m test were con-

sidered for this study. The limited number of strides
within a 4x10 m gait test led to the approach to combine
gait initiation, termination and transitioning into one gait
cluster, namely non-constant as illustrated in Fig. 2. Due to
the limited amount of consecutive straight strides the CV
parameters should be interpreted with caution. In the lit-
erature, different values for the number of strides needed
for robust measure of gait variability ranging from at least
15 to 300 are reported [42]. For the non-constant gait clus-
ter, the CV is calculated from fewer strides and thus more
sensitive to “outliers”. Therefore, the CVmight contain the
clinically relevant information, meaning that “abnormal
stride” - especially in the non-constant cluster are highly
relevant in the sense that they contain clinically relevant
information leading to “clinical decision support”.

Conclusion and future work
A novel set of methods was developed and applied to
identify different gait clusters (constant, non-constant and
turning) within the standardized 4x10m gait test. Classifi-
cation experiments with a cohort of 119 PD patients were
performed to compare the clinically relevant information
(presence and absence of motor impairments in terms
of the UPDRS-III subitems “gait” and “postural stabil-
ity”) in the defined gait clusters to baseline (analyzing all
straight strides). The results of this study suggest that: 1)
isolation of constant gait or conversely exclusion of non-
constant gait (initiation, termination, transitioning) from
a straight walking bout, 2) only analyzing non-constant
strides and 3) only analyzing turning strides separately,
could include superior clinical information to distinguish
impaired from unimpaired PD patients compared to ana-
lyzing all straight strides in the standardized 4x10 m gait
test. The information extracted from gait initiation, termi-
nation, transition and turnings have the potential to give
important insights about the impairment of gait and pos-
tural stability in PD patients. These findings are especially
interesting for home monitoring applications where the
ratio of straight, steady state walking to more dynamic
motor tasks such as turning, gait initiation, gait termi-
nation and transitioning decreases due to the nature of
available walking paths. We recommend clustering con-
stant gait when analyzing straight strides. Furthermore
it is worth analyzing non-constant strides and turning
strides separately if possible.
Our analysis suggests that the most relevant parameters

for straight walking (baseline, constant and non-constant
gait clusters) to distinguish between impaired and unim-
paired PD patients seem to be stride velocity, stride and
path length, stride time and swing time, as well as toe
off and heel strike angle. For the turning cluster we
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would recommend focusing on the number of strides and
turning time in addition to stride and path length and
stride velocity. It would be interesting to investigate fur-
ther parameters derived from the defined gait clusters to see
if they improve the classification. For example, could an
additional sensor at the posterior trunk at L5 potentially
improve the turning detection algorithm and provide fur-
ther parameters associated to trunkmovements and center
of mass [43] to eventually improve classification. Since it is
possible to calculate stride times with a sensor positioned
at L5 as described in [43], the stride time-based cluster-
ing methods (see “Clustering straight walking bouts into
constant and non-constant gait cluster” section) could
potentially be applied for such sensor setup as well.
Future work and applications could include the develop-

ment of a stride segmentation algorithm which can detect
and segment strides from all gait clusters defined in this
study automatically.
The analysis of different gait clusters in e.g. the 2 min

walk test [44] which includes more and longer straight
walking bouts might be interesting to further confirm the
findings of this study. The larger amount of strides in a 2
min test enables more force of expression when dividing
strides in the non-constant gait clusters. Finally, it would
be interesting to investigate how the findings of this study
could be transferred to supervised and non-supervised
at-home data.
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