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Abstract: For making full use of aquatic by-products to produce high value-added products, Siberian
sturgeon (Acipenser baerii) cartilages were degreased, mineralized, and separately hydrolyzed by five
kinds of proteases. The collagen hydrolysate (SCH) generated by Alcalase showed the strongest
2,2-diphenyl-1-picrylhydrazyl radical (DPPH·) and hydroxide radical (HO·) scavenging activity.
Subsequently, thirteen antioxidant peptides (SCP1-SCP3) were isolated from SCH, and they were
identified as GPTGED, GEPGEQ, GPEGPAG, VPPQD, GLEDHA, GDRGAEG, PRGFRGPV, GEYGFE,
GFIGFNG, PSVSLT, IELFPGLP, LRGEAGL, and RGEPGL with molecular weights of 574.55, 615.60,
583.60, 554.60, 640.64, 660.64, 885.04, 700.70, 710.79, 602.67, 942.12, 714.82, and 627.70 Da, respectively.
GEYGFE, PSVSLT, and IELFPGLP showed the highest scavenging activity on DPPH· (EC50: 1.27, 1.05,
and 1.38 mg/mL, respectively) and HO· (EC50: 1.16, 0.97, and 1.63 mg/mL, respectively), inhibiting
capability of lipid peroxidation, and protective functions on H2O2-damaged plasmid DNA. More
importantly, GEYGFE, PSVSLT, and IELFPGLP displayed significant cytoprotection on HUVECs
against H2O2 injury by regulating the endogenous antioxidant enzymes of superoxide dismutase
(SOD) and glutathione peroxidase (GSH-Px) to decrease the contents of reactive oxygen species
(ROS) and malondialdehyde (MDA). Therefore, the research provided better technical assistance for a
higher-value utilization of Siberian sturgeon cartilages and the thirteen isolated peptides—especially
GEYGFE, PSVSLT, and IELFPGLP—which may serve as antioxidant additives for generating health-
prone products to treat chronic diseases caused by oxidative stress.

Keywords: Siberian sturgeon (Acipenser baerii); cartilage; collagen peptide; antioxidant
activity; cytoprotection

1. Introduction

The balanced relationship between the endogenous antioxidant defense system and
reactive oxygen species (ROS) will be broken under the toxic environment in the cells [1–3].
Excessive ROS can cause DNA mutation, enzyme inactivation, and membrane phospholipid
oxidation, which further lead to oxidative stress, inducing cell necrosis or apoptosis, tissue
injury, and pathologic transformations of the human body [4–6]. Such oxidative damage
significantly increases the incidence of chronic diseases, including arthritis, hypertension,
Alzheimer’s disease, diabetes, and cardiovascular disease [7–10]. Many antioxidant chemi-
cal compounds can play highly effective functions to prevent and to cure those diseases and
to clear away excessive ROS in the human body [11,12]. However, synthetic antioxidants
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have shown a potential toxicity risk and their applications are strictly regulated [13,14].
Therefore, researchers are focusing their research interests on natural active molecules
and their derivatives, such as flavonoids, triterpenoid, quinones, and alkaloids [12,15–17].
Remarkably, antioxidant peptide (AP) originated from food proteins, which captured world-
wide interest because of their advantages in environmental protection and in sustainability,
and their small molecular weight (MW) and low toxic side effects [1,9,12].

Collagen and its derivatives, including gelatin, hydrolysate, and peptide, are tradi-
tionally produced from animal bones and skins, and they have served as multifunctional
ingredients applied in food, cosmetics, photographic, and pharmaceuticals products. The
global market volume of gelatin/collagen is expected to exceed 650 kilo-tones, which is
approximately 4 billion US dollars by 2024 [18–21]. However, those products generated
from mammalian resources have aroused the wide concern of customers because of the
increasing number of infectious diseases and dietary restriction in Islam, Judaism and Hin-
duism [22,23]. Therefore, collagen and its derivatives from fish by-products are considered
to be ideal substitutes due to good bioactivity, high nutrition, weak antigenicity, excellent
moisture retention, and good biocompatibility properties [18,24–26].

Recently, collagen peptides from aquatic organism drew great interest from the food,
medicine, and cosmetics industries because of their multiple functions, including free
radical scavenging activity, lipid peroxidation inhibition ability, cytoprotection, and ul-
traviolet damage protection [21,24,27,28]. For example, bioactive peptides from collagen
hydrolysates of giant croaker swim bladders [29], sea cucumber [30], and redlip croaker
scales [11] could significantly accelerate the proliferation of HUVECs, RAW264.7, and
HepG2 cells, and protect them against the oxidative damage of H2O2 by increasing the ac-
tivities of superoxide dismutase (SOD) catalase (CAT) and glutathione peroxidase (GSH-Px)
and reducing the levels of ROS and malondialdehyde (MDA). Gelatin peptides from Pacific
cod had a significant protective effect on ultraviolet-A (UVA) damaged cells and skins by
up-regulating the levels of SOD, CAT, and GSH-Px [31–33]. Similarly, collagen peptides
from silver carp skins showed a stronger beneficial effect than casein derived peptides
and tea poly-phenols on alleviating the UV-caused unusual lesions of skin compositions
and antioxidant indices in the serum and in the skins [34]. In addition, collagen peptides
from the croceine croaker swim bladders showed a favorable anti-fatigue function in mice
by increasing antioxidase activities to reduce ROS damage, enhancing the lactic dehydro-
genase activity to get rid of excessive lactic acid to further alleviate the development of
physical fatigue [35].

Sturgeon, belonging to the family Acipenseridae, is the common name of 27 kinds
of cartilaginous fish, and its farmed production in China is approximately 4.4 million
tons accounting for nearly 80% of world production [36,37]. In the receiving process of
sturgeon eggs, cartilage, which accounts for 10% of the sturgeon’s weight, becomes a by-
product. Therefore, active substances in sturgeon cartilage, such as chondroitin sulfate [38],
collagen [39,40], and anti-inflammatory peptides [41], were studied constantly to replace
shark cartilage, which is used in health and functional products. The Siberian sturgeon,
Acipenser baerii Brandt, inhabits large Siberian rivers from the Ob to the Kolyma and Lake
Baikal, and it is one of the important breeding varieties in China. In this experiment,
antioxidant collagen peptides from the cartilage of the Siberian sturgeon (A. baerii) were
prepared and identified. Moreover, their protective function on H2O2 injured HUVECs
was evaluated.

2. Results and Discussion
2.1. Preparation of Collagen Hydrolysate of Siberian Sturgeon Cartilage (SCH)

The effects of five kinds of proteases on the DPPH· and HO· scavenging rates of colla-
gen hydrolysates of Siberian sturgeon cartilage are presented in Figure 1. At 10.0 mg/mL,
the DPPH· and HO· scavenging rates of collagen hydrolysate generated by Alcalase were
47.43 ± 1.86% and 72.22 ± 2.11%, which were observably stronger than the rates of colla-
gen hydrolysates produced using papain, flavorzyme, trypsin, and pepsin, respectively
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(p < 0.05). Compared with microbial fermentation, chemical degradation, and solvent
extraction, enzymatic hydrolysis is one of the most popular and useful ways to generate
bioactive hydrolysates from protein resources due to its easy manipulation, high efficiency,
and eco-friendly features [1,42,43]. In addition, the specificity of protease is the very key
property determining the MW, amino acid sequence, and bioactivity of the prepared hy-
drolysates because of their different cleavage sites [1,11]. In addition, multiple endonuclease
enzymes, exonuclease enzymes, and their combinations are generally selected to degrade
different proteins to generate active hydrolysates [1,9]. The present results supported the
previous reports that the selectivity of enzymes significantly affected the peptide compo-
nent and the bioactivities of prepared hydrolysates [1,14]. In consequence, the collagen
hydrolysate of Siberian sturgeon cartilage prepared using Alcalase was named SCH and
selected for further experimentation.
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Figure 1. Effects of Alcalase, papain, pepsin, flavorzyme, and trypsin on radical scavenging activity
of collagen hydrolysates from Siberian sturgeon (Acipenser baerii) cartilages. (A) 2,2-diphenyl-1-
picrylhydrazyl radical (DPPH·) scavenging activity; (B) hydroxide radical (HO·) scavenging activity.
All data are presented as the mean ± SD of triplicate results. a–d Values with different letters indicate
significant difference (p < 0.05).

2.2. Purification of APs from SCH
2.2.1. Fractionation of SCH by Ultrafiltration

Using 3.0 kDa ultrafiltration membranes, SCH was fractionated into two peptide
components (SCH-1 and SCH-2) and their radical scavenging rates are shown in Figure 2.
At 5.0 mg/mL, the DPPH· and HO· scavenging rates of SCH-1 were 38.52 ± 1.69% and
45.37 ± 1.97%, which were significantly stronger than those activities of SCH and SCH-2
(p < 0.05). The changes of amino acid composition and MW could significantly modulate
the bioactivity of peptides, and their average MWs could adversely affect the antioxidant
capability of enzymatic hydrolysates [44,45]. The current result agreed well with the previ-
ous finding that peptide components with smaller MWs from skipjack roe [46–48], skate
cartilage [49], Bacillus amyloliquefaciens [50], Tolithes ruber [51], croceine croaker muscle [13],
and Tilapia skin [31] possessed the highest antioxidant activity. Then, SCH-1 was chosen
for further purification.
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2.2.2. Gel Filtration Chromatography (GFC)

Figure 3A showed that three peptide subfracitons (SCH-1a, SCH-1b, and SCH-1c)
were isolated from SCH-1 based on their MWs. At 5.0 mg/mL, the DPPH· and HO·
scavenging rates of SCH-1b were 56.64± 2.69% and 66.79± 2.65%, which were significantly
higher than those of SCH, SCH-1, and other subfracitons (p < 0.05) (Figure 3B). As a kind
of size exclusion chromatography, GFC is generally applied to either fractionate active
ingredients or to remove an impurity with a particular size range from a complex mixture
of components [1,9,52]. Therefore, GFC is frequently employed to isolate peptides with
different MWs from marine protein hydrolysates [1,47,53]. In the experiment, the MW of
SCH-1b was bigger than that of SCH-1c, but its radical scavenging rates were significantly
higher than those of SCH-1c (p < 0.05), which suggested that the bioactivities of APs are
not only influenced by MW but also amino acid composition and sequence [1,42].
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presented as the mean ± SD of triplicate results. a–e Values with different letters indicate significant
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2.2.3. RP-HPLC Separation of SCH-1b

SCH-1 with high radical scavenging activity was further purified by RP-HPLC and
its chromatogram is shown in Figure 4. On the chromatographic peaks of SCH-1, thirteen
peptide peaks with retention times of 4.58 min (SCP1), 8.98 min (SCP2), 10.73 min (SCP3),
13.01 min (SCP4), 18.03 min (SCP5), 21.02 min (SCP6), 21.75 min (SCP7), 24.81 min (SCP8),
33.85 min (SCP9), 39.79 min (SCP10), 42.52 min (SCP11), 44.18 min (SCP12), and 45.62 min
(SCP13), respectively, were purified from SCH-1b (Table 1). Based on the hydrophobic
and the hydrophilic properties, RP-HPLC employing an ODSC18 column can effectively
isolate APs with high purity from different protein hydrolysates of aquatic resources, such
as croaker (Otolithes ruber) [51], tuna [46,54], red stingray [55], Pacific Cod [32,33], shortclub
cuttlefish [56], Euphausia superba [57], and mackerel (Scomber japonicus) [58]. Then, thirteen
peptides (SCP1 to SCP13) were corrected and lyophilized for further structure identification.
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Table 1. Retention time, amino acid sequences, and molecular mass of thirteen APs (SCP1- SCP13)
from collagen hydrolysate of Siberian sturgeon cartilage.

Retention Time (min) Amino Acid Sequence Determined Mass/Theoretical
Mass (Da)

SCP1 4.58 GPTGED 574.55/574.54
SCP2 8.98 GEPGEQ 615.60/615.59
SCP3 10.73 GPEGPAG 583.60/583.59
SCP4 13.01 VPPQD 554.60/554.59
SCP5 18.03 GLEDHA 640.64/640.65
SCP6 21.02 GDRGAEG 660.64/660.63
SCP7 21.75 PRGFRGPV 885.04/885.02
SCP8 24.81 GEYGFE 700.70/700.69
SCP9 33.85 GFIGFNG 710.79/710.78
SCP10 39.79 PSVSLT 602.67/602.68
SCP11 42.52 GIELFPGLP 942.12/942.11
SCP12 44.18 LRGEAGL 714.82/714.81
SCP13 45.62 RGEPGL 627.70/627.69
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2.3. Determination of Amino Acid Sequences of Thirteen Isolated APs (SCP1 to SCP13)

Using a Protein Sequencer and an ESI/MS, the amino acid sequences and the MWs
of thirteen isolated APs (SCP1 to SCP13) were determined and the results are shown in
Table 1. The sequences of SCP1 to SCP13 were identified as Gly-Pro-Thr-Gly-Glu-Asp
(GPTGED, SCP1), Gly-Glu-Pro-Gly-Glu-Gln (GEPGEQ, SCP2), Gly-Pro-Glu-Gly-Pro-Ala-
Gly (GPEGPAG, SCP3), Val-Pro-Pro-Gln-Asp (VPPQD, SCP4), Gly-Leu-Glu-Asp-His-Ala
(GLEDHA, SCP5), Gly-Asp-Arg-Gly-Ala-Glu-Gly (GDRGAEG, SCP6), Pro-Arg-Gly-Phe-
Arg-Gly-Pro-Val (PRGFRGPV, SCP7), Gly-Glu-Tyr-Gly-Phe-Glu (GEYGFE, SCP8), Gly-
Phe-Ile-Gly-Phe-Asn-Gly (GFIGFNG, SCP9), Pro-Ser-Val-Ser-Leu-Thr (PSVSLT, SCP10),
Gly-Ile-Glu-Leu-Phe-Pro-Gly-Leu-Pro (GIELFPGLP, SCP11), Leu-Arg-Gly-Glu-Ala-Gly-
Leu (LRGEAGL, SCP12), and Arg-Gly-Glu-Pro-Gly-Leu (RGEPGL, SCP13) with MWs of
574.55, 615.60, 583.60, 554.60, 640.64, 660.64, 885.04, 700.70, 710.79, 602.67, 942.12, 714.82,
and 627.70 Da, respectively, and their determined MWs were well consistent with their
theoretical mass (Table 1).

2.4. Antioxidant Activity of Thirteen Isolated APs (SCP1 to SCP13)
2.4.1. Radical Scavenging Activity of Thirteen Isolated APs (SCP1 to SCP13)

Figure 5A shows that the DPPH· scavenging rates of SCP8, SCP10, and SCP11 were
77.03 ± 2.08%, 80.09 ± 2.15%, and 71.1 ± 2.14%, respectively, which were significantly
higher than those of ten other isolated collagen APs but still lower than that (95.37 ± 3.25%)
of ascorbic acid. In addition, the half clearance concentrations (EC50 values) of SCP8,
SCP10, and SCP11 were 1.27, 1.05, and 1.38 mg/mL, respectively, which were signifi-
cantly less than those of APs from skipjack tuna milt (GRVPRV: 4.13 mg/mL; AQRPR
1.80 mg/mL) [59], loach (PSYV: 17.0 mg/mL) [60], Antarctic krill (NVPDM: 4.88 mg/mL;
NGPDPRPSQQ: 7.05 mg/mL; TFPIYDPQ: 2.15 mg/mL) [61], and hairtail muscle (QNDER:
4.95 mg/mL) [62].
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Figure 5B showed that the HO· scavenging rates of SCP8, SCP10, and SCP11 were
81.94 ± 1.05%, 84.11± 1.82%, and 76.78± 1.92%, respectively, which were significantly higher
than those of ten other isolated collagen APs but still lower than that (94.84 ± 2.79%) of ascor-
bic acid. The EC50 values of SCP8, SCP10, and SCP11 on HO·were 1.16, 0.97, and 1.63 mg/mL,
respectively, which were significantly less than those of APs from skipjack tuna milts (GRVPRV:
5.78 mg/mL; AQRPR 2.80 mg/mL) [59] and roes (SGE: 2.76 mg/mL; QAEP: 2.10 mg/mL) [48],
miiuy croaker muscle (NFWWP: 2.39 mg/mL; YFLWP: 2.47 mg/mL) [63], Antarctic krill
(NVPDM: 1.84 mg/mL; NWDDMRIVAV: 2.61 mg/mL) [61], Misgurnus anguillicaudatus (PSYV:
2.64 mg/mL) [60], and grass carp skin (VGGRP: 2.06 mg/mL; PYSFK: 2.28 mg/mL) [64].
The present results suggested that SCP8, SCP10, and SCP11 could effectively scavenge
excess HO· to inhibit the oxidative stress in cells and biological tissues.

MW can significantly affect the antioxidant abilities of APs because a smaller size is
beneficial to them in getting into cells or into tissues and playing their roles [50,65,66]. In
the study, thirteen isolated APs (SCP1 to SCP13) range from pentapeptides to nonapeptides
and their MWs range from 554.60 to 942.12 Da, respectively, which are very helpful for
them to approach and to effectively scavenge excess free radicals.

Hydrophobic and aromatic amino acids, such as Leu, Ile, Tyr, Pro, and Phe, play
key roles in the activity of APs. These two kinds of amino acids are able to improve the
peptides’ solubility in lipids, which further facilitate the combination between APs and free
radicals and promote the antioxidant capabilities of APs [1,9,50]. Leu, Thr, Ala, Ile, and Val
were reported to play key roles in the antioxidant capabilities of HFGBPFH, ILGATIDNSK,
GADIVA, and GAEGFIF, respectively [61,67,68]. Aromatic amino acids could restrain the
extension of the radical-mediated peroxide domino effect by changing free radicals into
more stable phenoxy radicals [63,69]. Pro residue in sequences of LDEPDPL and PHH was
beneficial to their antioxidant activity because Pro residue could improve the flexibility of
peptides and directly scavenge singlet oxygen by its pyrrolidine ring [59,70,71]. Therefore,
Tyr and Phe in SCP8, Phe and Ile in SCP10, and Ile, Leu, Phe, and Pro in SCP11 should play
key roles for their antioxidant activities.

Hydrophilic amino acids are the key factor for the scavenging abilities of APs on
mental ions and hydroxide radicals [48]. Glu/Gln, Asp/Asn, and Lys residues had strong
positive impacts on the antioxidant activities of QDHKA, AEHNH, LDEPDPLI, AEDKKLIQ,
and NTDGSTDYGILQINSR [48,72,73]. Gly residue in WMGPY, EMGPA, GADIVA, and
GAEGFIF could increase the flexibility of peptide skeleton and directly neutralize ROS by
acting as a single hydrogen donor [25,74]. Therefore, Gly and Glu in SCP8, Gly and Asn in
SCP10, and Gly and Glu in SCP11 were important to their antioxidant capabilities.

2.4.2. Lipid Peroxidation Inhibition Ability

Compared with the blank control group, the absorbance values of the SCP8, SCP10,
and SCP11 groups at 500 nm were significantly decreased when the temperature was kept
at 40 ◦C for 7 days in the linoleic acid system (Figure 6). More importantly, the inhibiting
capabilities of SCP10 drew near the variation trend of glutathione (GSP). Lipid oxidation
is a very complex chemical reaction, which is affected by multiple factors. Therefore,
lipid peroxidation inhibition assay was generally applied to compare and to analyze the
antioxidant abilities of peptides from marine protein resources, such as Antarctic krill [61],
channel catfish [75], miiuy croaker [63], and croceine croaker [13]. These results suggested
that SCP8, SCP10, and SCP11 have significant protective ability on unsaturated fatty acid
against peroxidation.
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triplicate results.

2.4.3. Protective Activity of SCP8, SCP10, and SCP11 against H2O2-damaged Plasmid DNA

The protective abilities of SCP8, SCP10, and SCP11 on plasmid DNA (pBR322DNA)
against H2O2 damage were determined and presented in Figure 7. Plasmid DNA keeps
the supercoiled (SC) form under normal conditions (Figure 7, lane 6), but the supercoiled
(SC) form will translate into a relaxed open circular (OC) form when free radicals split
one phosphodiester chain of pBR322 DNA. Moreover, the open circular (OC) form will
turn into the linear (LIN) form when excess free radicals split the second breakage near
the first splitting breakage. In this experiment, the plasmid DNA strands was split by
HO·, produced from the chemical reaction of FeSO4 and H2O2, and converted into the
OC and the LIN forms [61,76]. Lane 5 indicated that most of the SC forms of plasmid
DNA were mutated to LIN forms, which suggested that the chemical reaction generated
excessive HO·, which further broke the double-strand of pBR322 DNA. Lane 2 to Lane 4
displayed that the content of SC form of pBR322 DNA was obvious more than that of the
model group (Lane 5), which suggested that SCP8, SCP10, and SCP11 have a remarkable
effect on protecting plasmid DNA against oxidative damage by scavenging superfluous
HO·, and this result agreed well with the previous finding that SCP8, SCP10, and SCP11
could effectively scavenge HO· to protect biomolecules. In addition, SCP8, SCP10, and
SCP11 may serve as a radical scavenger in health products to prevent and to treat these
degenerative diseases caused by free radicals.
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Figure 7. The protective effects of SCP8, SCP10, and SCP11 on the H2O2-damaged plasmid DNA
(pBR322DNA). Lane 1, DNA + FeSO4 + H2O2 + GSH (200 µM); Lane 2, DNA + FeSO4 + H2O2 + SCP8
(200 µM); Lane 3, DNA + FeSO4 + H2O2 + SCP10 (200 µM); Lane 4, DNA + FeSO4 + H2O2 + SCP11
(200 µM); Lane 5, pBR322DNA + FeSO4 + H2O2; Lane 6, the native pBR322DNA.

2.4.4. Cytoprotection of SCP8, SCP10, and SCP11 on H2O2-Induced HUVECs
Effects of H2O2, SCP8, SCP10, and SCP11 on the Viability of HUVECs

To establish the cell model of oxidative damage, HUVECs were treated with different
concentrations of H2O2 (0~600 µM). Figure 8A indicated that the viability of HUVECs
showed a significant downward trend at the H2O2 concentrations, which increased from 0
to 600 µM and dropped to 49.06± 1.96% at the concentration of 200 µM. Therefore, the H2O2
concentration of 200 µM was chosen to establish the cell model of oxidative damage [66].
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Figure 8. Effects of H2O2 concentration (A) and isolated peptides (SCP8, SCP10, and SCP11) (B) on
the viability of HUVECs. All data are presented as the mean ± SD of triplicate results. a–e Values
with different letters indicate significant difference (p < 0.05).

The Effects of SCP8, SCP10, and SCP11 at 200 µM on the viability of HUVECs were
studied by the MTT method and the data is shown in Figure 8B. No significant difference
was found between the blank control and the peptide groups, which indicated that SCP8,
SCP10, and SCP11 had no significant cytotoxicity to HUVECs. Therefore, the concentration
of 200 µM was determined for the subsequent cytoprotection experiment of SCP8, SCP10,
and SCP11.

Effect of SCP8, SCP10, and SCP11 on the Cell Viability and the ROS Level of
H2O2-Injured HUVECs

As shown in Figure 9A, the HUVEC viability of the SCP10 group was 69.36 ± 2.97%
at 200 µM, which was significantly higher than those of the model (49.06 ± 1.96%), SCP8
(62.4± 2.87%), and SCP11 (57.59± 3.21%) groups (p < 0.05), and it was lower than that of the
positive control (86.03 ± 3.57%) (p < 0.001) (Figure 9A). Figures 9B and 10 show the effects
of SCP8, SCP10, and SCP11 on the ROS level of H2O2-injured HUVECs. The ROS levels
of the SCP8, SCP10, and SCP11 groups were significantly decreased from 445.5 ± 14.57%
to 302.2 ± 16.8%, 269.8 ± 11.5%, and 317.6 ± 6.4% for the control group, respectively
(p < 0.001). These data indicated that SCP8, SCP10, and SCP11 could significantly scavenge
ROS to protect HUVECs against H2O2 injury.
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Figure 9. Effects of SCP8, SCP10, and SCP11 on the cell viability (A) and ROS level (B) of H2O2-
injured HUVECs. N-Acetyl-L-Cysteine (NAC) was used as the positive control. All data are presented
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# p < 0.05 vs. model group; +++ p < 0.001, ++ p < 0.01 vs. NAC + H2O2 group.
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Effects of SCP8, SCP10, and SCP11 on the Levels of Antioxidases and MDA of
H2O2-Injured HUVECs

As shown in Figure 11A, the activity of SOD in the SCP10 group was
165.1 ± 11.2 U/mg prot, which was significantly higher than those in the model
(107.8 ± 7.3 U/mg prot) and the SCP8 (147.2 ± 12.6 U/mg prot) and SCP11
(121.9 ± 10.8 U/mg prot) groups (p < 0.001), respectively. Similarly, the activity of GSH-Px
in the SCP10 group (55.77 ± 2.48 U/mg prot) was significantly higher than those in the
model (41.74 ± 2.36 U/mg prot) and the SCP8 (51.46 ± 2.65 U/mg prot) and the SCP11
(46.8 ± 1.82 U/mg prot) groups (p < 0.001), respectively (Figure 11B). However, the activity
of antioxidases in the SCP8, SCP10, and SCP11 groups was significantly lower than those
in the positive control group (p < 0.05). In addition, SCP8, SCP10, and SCP11 could signif-
icantly reduce the MDA contents of H2O2-injured HUVECs. Compared with the model
group (10.84 ± 0.72 nmol/mg prot), the MDA contents of the SCP8, SCP10, and SCP11
groups were gradually reduced to 8.22 ± 0.45, 7.37 ± 0.69, and 9.07 ± 0.84 nmol/mg prot
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at 200 µM, respectively (p < 0.05) (Figure 11C). Nonetheless, the MDA contents of the SCP8,
SCP10, and SCP11 groups were significantly higher than that (6.05 ± 0.54 nmol/mg prot)
of the positive control group.
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++ p < 0.01 and + p < 0.05 vs. NAC+H2O2 group.

In an abnormal environment, excess ROS generated in cells can induce DNA mutations,
loss of protein structures, and lipid peroxidation of cell membrane [4,8,24]. Those oxidative
stress states are closely linked to many chronic diseases, including neurodegenerative
disorders, cardiovascular disease, diabetes mellitus, inflammation, etc. [10,12,52]. Therefore,
excess ROS must be eliminated promptly and efficiently by endogenous antioxidant defense
systems to decrease such oxidative damage [1,53]. Presently, some bioactive peptides show
remarkable protection on cells and tissues by alleviating the oxidative and the inflammatory
responses. For example, LCGEC could suppress the apoptosis of HaCaT cells by altering
the Nrf2 pathway [47]. To decrease the contents of ROS and MDA, FWKVV, FMPLH, and
FPYLRH could significantly up-regulate the levels of SOD and GSH-Px in H2O2-injured
HUVECs [66,77]. By regulating the NF-κB/caspase pathways and enhancing antioxidase
activities, EVSGPGLSPN could protect PC12 cells against H2O2-induced neurotoxicity [78].

In addition, small natural products have been identified as being capable of directly
interacting with the Cys residues of Keap1 and thus resulting in the dissociation of Keap1
from Nrf2, which finally promotes Nrf2 nuclear accumulation and activates the Nrf2
pathway [79,80]. Moreover, a number of peptides have been identified to be capable of
binding to Keap1, especially the Glu residues that form electrostatic interactions with
R380, R415, and R483 and the Asp residue that forms an intramolecular interaction to
stabilize the β-hairpin conformation of the structure [81]. The binding site of Keap1 in
the Kelch domain can be divided into five subcysts, P1-P5, which can combine with the
Neh2 domain of Nrf2 to promote its ubiquitination [82]. The five subcysts are P1 (Arg415,
Ile461, Gly423, Phe478, Arg483, Ser508), P2 (Ser363, Arg380, Asn382, Asp422), P3 (Gly509,
Ser555, Ala556, Gly571, Ser602, Gly603), P4 (Tyr525, Gln530, Tyr572), and P5 (Tyr334,
Phe577), respectively. Wang et al. reported that the Glu residue of peptide EDYGA from
the soft-shelled turtle could directly bind to the Arg415 residue on the Kelch domain of



Mar. Drugs 2022, 20, 325 12 of 20

Keap1 to form a hydrogen bond [81]. Similarly, the Glu residues in an amino acid sequence
of RDPEER from watermelon seed could combine with Asn382, Arg380, and Tyr334 on
the Kelch domain of Keap1 to form hydrogen bonds [83]. Tonolo et al. found that the Ser
residues in the amino acid sequence of APSFSDIPNPIGSENSE from fermented milk could
bind to Arg415 and Ser363 residues on the Kelch domain of Keap1 to form a hydrogen
bond to activate the Nrf2 pathway [84]. The Thr residues in the amino acid sequence of
NTVPAKSCQAQPTTM could bind to the Ser602 residue in the Kelch domain of Keap1
to form a hydrogen bond [81]. Furthermore, Li et al. reported that the Thr residue of the
peptide VTSALVGPR from the urechis unicinctus visceral could bind to Gly423 on the
Kelch domain of Keap1 to form a hydrogen bond and to activate the Nrf2 pathway [85].
The EAMAPKHK from fermented rubbing cheese could regulate the Nrf2 pathway through
its Pro residue combining with Asp422 on the Kelch domain of Keap1 to form a hydrogen
bond [86]. In addition, the Gly residue in an amino acid sequence of PVLGPVR could
combine with Ile461 on the Kelch domain of Keap1 to form a hydrogen bond [86]. Then,
those amino acid residues in the amino acid sequences of APs occupy the active site of
Nrf2 in the Kelch domain of Keap1, competitively inhibit Nrf2 binding, promote Nrf2
into the nucleus, further activate the Keap1/Nrf2 signal pathway, and protect cells from
oxidative stress.

According to the introduced literature, we speculated that Gly and Glu in SCP8
(GEYGFE), Pro and Ser in SCP10 (PSVSLT), and Glu, Pro, and Gly in SCP11 (IELFPGLP)
should play key roles in protecting HUVECs against H2O2 injury by regulating the en-
dogenous antioxidant defense systems (Nrf2 pathway) to scavenge excess ROS, and their
mechanism of action will be explored in our future studies.

3. Materials and Methods
3.1. Materials and Chemical Reagents

Cartilages of Siberian sturgeon (A. baerii) were kindly provided by Thousand Island
Lake Sturgeon Technology Co., Ltd. (Hangzhou, China). HUVECs were purchased from
the Cell Bank of Type Culture Collection of the Chinese Academy of Sciences (Shanghai,
China). 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT), trypsin,
Alcalase, NAC, DPPH, papain, and pepsin were purchased from Sigma-Aldrich Trading
Co., Ltd. (Shanghai, China). Flavorzyme and Sephadex G-25 was purchased from Shanghai
Source Poly Biological Technology Co., Ltd. (Shanghai, China). Collagen peptides of SCP1
to SC13 with a purity higher than 98% were synthesized in Shanghai Apeptide Co., Ltd.
(Shanghai, China).

3.2. Preparation of Collagen Hydrolysate from Siberian Sturgeon Cartilages

The Siberian sturgeon cartilages were thawed, broken, homogenized, and degreased
using the method described by Luo et al. [37]. In short, the cartilage was cut into ap-
proximately 0.5 cm2 pieces, homogenized, added into a NaOH solution (0.1 M) with a
cartilage/solution ratio of 1:8 (w/v) and uninterruptedly stirred for 6 h, and the NaOH
solution was substituted every three hours. Subsequently, the degreased cartilages were
rinsed using cold tap water three times and demineralized using EDTA-2Na (0.5 M) with a
cartilage/solution ratio of 1:8 (w/v) for two days, and the EDTA-2Na solution was changed
every 12 h. The pretreated cartilage was rinsed using cold tap water three times.

Pretreated cartilages were suspended in a buffer solution to prepare the 10% (w/v)
sample slurry. After that, the mixed solution was separately hydrolyzed for 6.5 h with
3.0% dose of Alcalase (pH 9.0, 50 ◦C), papain (pH 7.0, 50 ◦C), trypsin (pH 8.0, 37.0 ◦C),
flavorzyme (pH 7.5, 45 ◦C), and pepsin (pH 2.0, 37.0 ◦C), respectively. The collagen
hydrolysate solutions were put in a 95 ◦C water bath for 15 min to inactivate proteases,
centrifuged at 6000× g for 20 min, dialyzed, and lyophilized. The activities of the prepared
collagen hydrolysates were evaluated using DPPH· and HO· scavenging assays [45]. Then,
the collagen hydrolysate produced using Alcalase revealed the maximum activity among
the five hydrolysates, and it was named SCH.
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3.3. Purification of APs from SCH

APs were prepared from SCH according to the following designed isolated process
(Figure 12).
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(SCH) of Siberian sturgeon cartilages.

The SCH solution was fractionated using a 3 kDa MW cut-off ultrafiltration membrane
and two resulting components, defined as SCH-1 (MW < 3 kDa), and SCH-2 (MW > 3 kDa)
were collected, dialyzed, freeze-dried, and their radical scavenging activity was detected.

A total of 10 mL of SCH-1 solutions (50.0 mg/mL) were injected into the chromatog-
raphy column of Sephadex G-25 (2.6 cm × 150 cm) and washed out by phosphate buffer
solution (PBS, pH 7.2), with a flow rate of 1.0 mL/min. The effluent solution was collected
every 2 min and measured at 230 and 280 nm. Finally, three peptide components (SCH-1a,
SCH-1b, and SCH-1c) were enriched, desalted, freeze-dried, and their radical scavenging
activity was detected.

The SCH-1b (20 µL, 100.0 µg/mL) was pre-treated with a 0.22 µm microporous mem-
brane and purified by a HPLC column of Waters Symmetry C18 (4.6× 250 mm, 5 µm) using
a gradient of acetonitrile containing 0.06% trifluoroacetic acid. The sample was isolated
with a flow velocity of 0.8 mL/min and monitored at 230 and 280 nm. In the end, thirteen
APs (SCP1 to SCP13) were purified from SCH-1b on the basis of the chromatographic peaks.

3.4. Analysis of Sequences and MWs of Thirteen APs (SCP1 to SCP13)

The N-terminal amino-acid sequences of thirteen APs (SCP1 to SCP13) were deter-
mined by the Edman degradation method using an Applied Biosystems 494 protein se-
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quencer (Foster City, CA, USA). The MWs of thirteen APs (SCP1 to SCP13) were measured
by a Q-TOF MS coupled to an electrospray ionization (ESI) source.

3.5. Radical Scavenging, Lipid Peroxidation Inhibition, and Plasmid DNA Protective Assays
3.5.1. Radical Scavenging Assays

The DPPH· and the HO· scavenging assays were performed on the previous methods,
and the EC50 value was set as the AP dose, resulting in a 50% decrease of the initial radical
concentration [14,45].

DPPH· Scavenging Activity

Two milliliters of samples consisting of distilled water and different concentrations
of the analytes were placed in cuvettes, and 500 µL of an ethanolic solution of DPPH
(0.02%) and 1.0 mL of ethanol were added. A control sample containing the DPPH solution
without the sample was also prepared. In the blank, the DPPH solution was substituted
with ethanol. The antioxidant activity of the sample was evaluated using the inhibition
percentage of the DPPH radical with the following equation:

DPPH radical scavenging activity (%) = (A0 + A′ − A)/A0 × 100% (1)

where A is the absorbance rate of the sample, A0 is the control group absorbance, and A′ is
the blank absorbance.

HO· Scavenging Activity

A total of 1.0 mL of a 1.87 mM 1,10-phenanthroline solution and 2.0 mL of the sample
were added to a screw-capped tube and mixed. Then, 1.0 mL of a FeSO4·7H2O solution
(1.87 mM) was added to the mixture. The reaction was initiated by adding 1.0 mL of H2O2
(0.03%, v/v). After incubating at 37 ◦C for 60 min in a water bath, the absorbance of the
reaction mixture was measured at 536 nm against a reagent blank. The reaction mixture
without any antioxidant was used as the negative control, and a mixture without H2O2
was used as the blank. The hydroxyl radical scavenging activity (HRSA) was calculated
using the following formula:

HRSA (%) = [(As − An)/(Ab − An)] × 100% (2)

where As, An, and Ab are the absorbance values determined at 536 nm of the sample,
negative control, and blank after the reaction, respectively.

3.5.2. Lipid Peroxidation Inhibition Assay

Lipid peroxidation inhibition assays were operated on the reported methods [11,14].
Briefly, a sample (5.0 mg) was dissolved in 10 mL of 50 mM PBS (pH 7.0) and added to
0.13 mL of a solution of linoleic acid and 10 mL of 99.5% ethanol. Then, the total volume
was adjusted to 25 mL with deionized water. The mixture was incubated in a conical flask
with a screw cap at 40 ◦C in a dark room, and the degree of oxidation was evaluated by
measuring ferric thiocyanate values. The reaction solution (100 µL) incubated in the linoleic
acid model system was mixed with 4.7 mL of 75% ethanol, 0.1 mL of 30% ammonium
thiocyanate, and 0.1 mL of 20 mM ferrous chloride solution in 3.5% HCl. After 3 min, the
thiocyanate value was measured at 500 nm, following color development with FeCl2 and
thiocyanate at different intervals during the incubation period at 40 ◦C.

3.5.3. Protective Assay on Plasmid DNA

The protective effects of SCP8, SCP10, and SCP11, on supercoiled plasmid DNA
(pBR322) were measured using the previous method [11]. In brief, 15 µL of reaction mix-
tures containing 5 µL of PBS (10 mM, pH 7.4), 2 µL of FeSO4 (1.0 mM), 1µL of pBR322
(0.5 µg), 5 µL of the peptide (SCP8, SCP10, or SCP11, respectively), and 2 µL of H2O2
(1.0 mM) were incubated at 37 ◦C. After 0.5 h incubation, the reaction was terminated by
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adding 2 µL of a loading buffer containing glycerol (50%, v/v), ethylenediaminetetraacetic
acid (40 mM), and bromophenol blue (0.05%). The resulted reaction mixtures were subse-
quently electrophoresed on 1% agarose gel containing 0.5 µg/mL EtBr for 50 min (60 V),
and the DNA in the agarose gel was photographed under ultraviolet light.

3.6. Protective Function of SCP8, SCP10, and SCP11 on H2O2-Injured HUVECs
3.6.1. Cell Culture and Viability Determination

The HUVECs were cultured according to the described method by Cai et al. [66] and
Wang et al. [77]. In brief, HUVECs with the density of 1.0 × 105 cells/well were seeded
into a 96-well plate containing 100 µL of culture media. After incubated for 24 h, 20 µL of
SCP8, SCP10, and SCP11 solutions dissolved in the DMEM medium were separately added
in the sample groups with the final concentration of 200 µg/mL. In addition, peptide was
substituted by PBS (pH 7.2) in the control group. After incubated for 24 h, 20 µL of MTT
was added into the plate and OD490 nm was measured after 4 h. The cell viability was
calculated on the basis of the following formula:

Cell viability (%) = (ODsample/ODcontrol)×100. (3)

3.6.2. Protection of SCP8, SCP10, and SCP11 on H2O2-Injured HUVECs

HUVECs with the density of 1.0 × 105 cells/well were seeded into a 96-well plate
containing 100 µL of culture media. After 24 h, the supernatant in the HUVECs wells was
aspirated and H2O2 was added, and its final concentrations, respectively, reached 0, 100,
200, 300, 400, 500, and 600 µM. After 24 h, cell viability was determined according to the
above method and the H2O2 concentration that induced cell viability by approximately
50% was chosen to establish the oxidative damage model of HUVECs [66,77].

After culturing for 24 h, the supernatant in the HUVECs wells was wiped off. Subse-
quently, 100 µL of the peptide samples at the final concentrations of 200 µM were joined
in the protection groups. After 8 h, the peptide sample was cleared and H2O2 at 200 µM
was put in the model and the peptide sample groups and then treated for 24 h. A total of
100 µL of NAC (1.5 mM) was used as the positive control group. The blank control group
used 20 µL PBS instead of the peptide solution.

3.6.3. Determination of ROS, MDA, and Antioxidases

The levels of ROS in the blank control, model, and sample groups were measured on
the reported method and expressed as a percentage of the of blank control [66].

The activity of SOD and GSH-Px and the content of MDA were measured using assay
kits in accordance with the protocols of the Nanjing Jiancheng Bioengineering Institute Co.,
Ltd. (Nanjing, China), and the levels of SOD and GSH-Px were indicated as U/mg prot.

3.7. Statistical Analysis

The data are expressed as the mean ± standard deviation (SD, n = 3). An ANOVA
test was used to analyze the differences between the means of each group, using SPSS 19.0
(Statistical Program for Social Sciences, SPSS Corporation, Chicago, IL, USA). A Duncan’s
test was used to determine the significance between different groups (p < 0.05, p < 0.01,
or p < 0.001).

4. Conclusions

In the study, thirteen APs were isolated from the collagen hydrolysate of Siberian stur-
geon cartilages produced using Alcalase and identified as GPTGED, GEPGEQ, GPEGPAG,
VPPQD, GLEDHA, GDRGAEG, PRGFRGPV, GEYGFE, GFIGFNG, PSVSLT, IELFPGLP,
LRGEAGL, and RGEPGL, respectively. Among them, GEYGFE, PSVSLT, and IELFPGLP
showed the highest radical scavenging activity, lipid peroxidation inhibiting capability,
and protection on H2O2-injured HUVECs and on plasmid DNA. Therefore, this research
provides free technical support for higher-valued utilizing fish by-products. More im-
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portantly, thirteen isolated collagen APs, especially GEYGFE, PSVSLT, and IELFPGLP,
may act as antioxidant additives for generating health products to treat chronic diseases
caused by oxidative stress. Moreover, the antioxidant mechanism of GEYGFE, PSVSLT,
and IELFPGLP will be systematically researched in our follow-up study.
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