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Circadian rhythms regulate many biological processes and play fundamental roles
in behavior, physiology, and metabolism. Such periodicity is critical for homeostasis
because disruption or misalignment of the intrinsic rhythms is associated with
the onset and progression of various human diseases and often directly leads
to pathological states. Since the first identification of mammalian circadian clock
genes, numerous genetic and biochemical studies have revealed the molecular basis
of these cell-autonomous and self-sustainable rhythms. Specifically, these rhythms
are generated by two interlocking transcription/translation feedback loops of clock
proteins. As our understanding of these underlying mechanisms and their functional
outputs has expanded, strategies have emerged to pharmacologically control the
circadian molecular clock. Small molecules that target the molecular clock may
present novel therapeutic strategies to treat chronic circadian rhythm-related diseases.
These pharmaceutical approaches may include the development of new drugs to
treat circadian clock-related disorders or combinational use with existing therapeutic
strategies to improve efficacy via intrinsic clock-dependent mechanisms. Importantly,
circadian rhythm disruptions correlate with, and often precede, many symptoms
of various neuropsychiatric disorders such as sleep disorders, affective disorders,
addiction-related disorders, and neurodegeneration. In this mini-review, we focus
on recent discoveries of small molecules that pharmacologically modulate the core
components of the circadian clock and their potential as preventive and/or therapeutic
strategies for circadian clock-related neuropsychiatric diseases.

Keywords: circadian rhythm, circadian clock, cryptochrome, REV-ERB, ROR, small molecule, circadian rhythm-
related disease

INTRODUCTION

Circadian rhythms are ubiquitous biological oscillations with an approximate 24-h period. These
evolutionarily well-conserved rhythms arise from an intrinsic timekeeping system known as the
“circadian clock”, which allows organisms to anticipate environmental cycling and coordinate
biological processes. This clock is self-sustainable through an elaborate cooperation of genetic
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components and is hierarchically organized into a circadian
timing system. In mammals, the apex of this system is the
suprachiasmatic nucleus (SCN) of the hypothalamus, which
is considered the central or master clock (Ralph et al., 1990;
Reppert and Weaver, 2002). The SCN integrates environmental
cues such as light into time information to entrain its phase
and then conveys this information to other oscillators in extra-
SCN brain regions and peripheral tissues. Indeed, in multi-
cellular organisms, most cells harbor cell-autonomous oscillators.
These so-called local or peripheral clocks contribute to overt
circadian rhythms, including the rest-activity cycle, periodic
daily variations in metabolism and body temperature, as well as
rhythmic hormone secretion (Dibner et al., 2010; Son et al., 2011).

Robust circadian timing is required for health, and disruption
of these intrinsic rhythms causes diverse pathologies. For
instance, circadian disruption caused by shift-work, jet-lag, or
mis-timed food intake is considered a risk factor for various
chronic diseases, including sleep disorders, metabolic syndromes,
cardiovascular diseases, affective disorders, neurodegeneration,
and tumorigenesis (Takahashi et al., 2008; Bechtold et al., 2010).
To develop treatments for these disorders, extensive studies
have identified several small molecule compounds that can
directly modulate circadian clocks. In this mini-review, we will
discuss recent investigations of the most promising of these
small chemical compounds and their therapeutic implications in
neuropsychiatric diseases.

THE MAMMALIAN CIRCADIAN
MOLECULAR CLOCK

The self-sustainable nature of the circadian system is primarily
attributed to circadian molecular oscillators. The molecular clock
is composed of several clock proteins that are required for
the generation and maintenance of cell-autonomous rhythms
(Dibner et al., 2010). Clock proteins form two interlocking
positive and negative transcription/translation feedback loops
that drive periodic expression of their target genes (Figure 1).
The primary regulators are Circadian Locomotor Output Cycle
Kaput (CLOCK) and Brain Muscle Aryl Hydrocarbon Receptor
Nuclear Translocator-Like 1 (BMAL1, encoded by the ARNTL
gene). They belong to the basic helix-loop-helix–PER-ARNT-
SIM (bHLH–PAS) transcription factor family. CLOCK and
BMAL1 activate transcription of target genes by forming
heterodimers and binding to E-box enhancer elements (5′-
CACGTG-3′) in the promoter/enhancer regions. In addition
to CLOCK, Neuronal PAS 2 (NPAS2) is another bHLH–
PAS protein enriched in forebrain regions that can also form
heterodimers with BMAL1 to control E-box element-dependent
gene transcription (Asher and Schibler, 2006). The targets
include proteins that form a negative feedback loop such as
PERIODs (PERs: PER1, 2, and 3) and CRYPTOCHROMEs
(CRYs: CRY1 and 2). Accumulated PER and CRY proteins form
repressive complexes that suppress E-box-mediated transcription
by binding to CLOCK/BMAL1 heterodimers, whereas PER
and CRY degradation terminates this repression and reinitiates
transcription (Gekakis et al., 1998; Hogenesch et al., 1998;

Kume et al., 1999; Shearman et al., 2000). Stability of PER and
CRY proteins is linked with their post-translational modifications
and is crucial for proper circadian period length. It is well
known that the Tau-mutant hamster, bearing a mutation in the
casein kinase 1ε (CK1ε) gene, displays a shortened free-running
period in locomotor activities (Ralph and Menaker, 1988). In
accordance, PER proteins are phosphorylated by CK1s prior
to their proteasomal degradation, contributing to regulation of
circadian period lengths (Eide et al., 2005; Shirogane et al.,
2005). Similarly, CRY protein phosphorylation by adenosine
monophosphate-activated protein kinase (AMPK) or glycogen
synthase kinase 3β (GSK3β) leads to degradation mediated by
paralogous F-box proteins, FBXL3 and FBXL21 (Busino et al.,
2007; Lamia et al., 2009; Kurabayashi et al., 2010; Hirano et al.,
2013; Yoo et al., 2013). Mutations in the Fbxl3 gene result in long-
period phenotypes in mice, whereas Fbxl21-mutant mice display
short-period phenotypes (Godinho et al., 2007; Siepka et al., 2007;
Hirano et al., 2013; Yoo et al., 2013). This CLOCK/BMAL1-
initiated loop is considered the core loop of the mammalian
clock.

An additional stabilizing loop adjusts the amounts of
bHLH–PAS proteins. This secondary loop consists of sets of
the circadian nuclear receptors, in particular REV-ERBs (REV-
ERBα and β, encoded by NR1D1 and NR1D2, respectively) and
retinoic acid receptor-related orphan nuclear receptors (RORs:
RORα-γ), that are also under the transcriptional control of
CLOCK/BMAL1 heterodimers. REV-ERBs and RORs compete
to occupy the RORs/REV-ERBs-responsive elements (RREs)
located in the promoter/enhancer regions of their target genes.
RORs usually activate RRE-mediated transcription, whereas
REV-ERBs strongly suppress it (Preitner et al., 2002; Ueda et al.,
2002; Sato et al., 2004). This stabilizing loop was originally
considered as accessory because only moderate phenotypes
were observed in mutant mice bearing null alleles of any
of these genes. However, more recent studies using inducible
double knockouts for both Nr1d1 and 2 revealed that their
compensatory activity yielded these subtle phenotypes and that
REV-ERBs are required for normal period regulation (Cho
et al., 2012). REV-ERBs also control circadian outputs by
cooperating with cell type-specific transcriptional regulators
(Chung et al., 2014; Zhang et al., 2015). Additional feedback
loops involving the proline and acidic amino acid-rich basic
leucine zipper proteins (PARbZip), such as D-box binding
protein (DBP) and E4 promoter-binding protein 4 (E4BP4),
as well as several members of bHLH transcription factors
(BHLHE40 and BHLHE41), also intersect with the main loops
to confer further regulation and mediate circadian expression
of subsets of clock-controlled genes (Mitsui et al., 2001;
Honma et al., 2002).

SMALL MOLECULES TARGETING
CLOCK PROTEINS

As noted earlier, circadian disruptions are pivotal in various
biological dysfunctions. Subsequent studies have attempted
to correct these dysfunctions by exploring pharmacological
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FIGURE 1 | The mammalian circadian molecular clock and its potential drug targets. The mammalian circadian clock is composed of two interlocking
transcription/translation feedback loops, the core and stabilizing/auxiliary loops, respectively. The integral components of the core loop are CLOCK (or NPAS2) and
BMAL1, which form a heterodimer and then induce E-box-mediated transcription of their negative regulators Periods (PERs) and Cryptochromes (CRYs).
Accumulated PER and CRY proteins repress E-box-mediated transcription until they are sufficiently cleared by proteasome-mediated degradation. CLOCK and
BMAL1 also control expression of circadian nuclear receptors such as RORs and REV-ERBs, which modulate Bmal1 mRNA levels by competitive actions on the
RORs/REV-ERBs-responsive elements (RREs) in the Bmal1 promoter. Collectively, cycling of clock components determines the periodic mRNA expression levels of
various clock-controlled genes (CCGs) through E-box, RRE, and/or other cis-elements recognized by secondary circadian transcription factors, thus generating
rhythmic physiological outputs. Of these core clock proteins, we focused primarily on CRYs, REV-ERBs, and RORs (red boxes), which were recently identified as
targets for small molecule modifiers of the circadian clock.

strategies (Schroeder and Colwell, 2013). Initially, high-
throughput screening studies identified several compounds that
influence circadian oscillators by acting on post-translational
regulators, including CK1s, CK2, GSK3β, and AMPK (Chen
et al., 2018). These studies have advanced our understanding of
the post-translational mechanisms underlying the circadian clock
and uncovered novel clock-regulatory pathways. Additionally,
some of the clock modulators that target these signaling
pathways have already been recognized for their therapeutic
implications (He and Chen, 2016; Chen et al., 2018). For
example, lithium, a widely used mood stabilizer, inhibits GSK3β

and lengthens the circadian period; however, some synthetic
inhibitors exhibited opposite effects (Hirota et al., 2008; Li et al.,
2012). Also, AMPK activators with a wide range of beneficial
metabolic and physiological effects also altered circadian gene
expression, as demonstrated both in vivo and in vitro (Um
et al., 2007; Lamia et al., 2009). These observations suggest that
modulation of the circadian clock may have beneficial effects on
circadian rhythm-related chronic diseases. In this regard, recent
investigations have attempted to directly target core components
of the mammalian circadian clock by using small-molecule
modifiers. Representative small molecules that bind to core clock
components are summarized in Table 1. Pharmacological targets
of these small molecules include CRYs, REV-ERBs, and RORs,
which are described below.

CRYs: Key Targets of Small Molecules
That Act Directly on the Core Loop
A carbazole derivative, KL001, and its analogs are the first-
in-class small molecules that target the core components
of the mammalian clock (Hirota et al., 2012). In cultured

SCN explants and fibroblasts, continuous treatment with these
compounds significantly lengthens the circadian period and
reduces amplitude of both Bmal1 and Per2 promoter activity,
implying CRY protein activation. KL001 binds to CRY through
the FAD-binding pocket, which is known to be recognized by
FBXL3 and mediate proteasomal degradation (Xing et al., 2013).
The co-crystal structure of the KL001–CRY2 complex revealed
that KL001 competes with FAD and interferes with binding of
the FBXL3 C-terminal to CRY, thereby stabilizing CRY proteins
(Hirota et al., 2012; Nangle et al., 2013). Alternatively, we
identified a derivative of 2-ethoxypropanoic acid (designated as
KS15) that inhibits CRY-mediated feedback on CLOCK/BMAL1-
mediated transcription (Chun et al., 2014). KS15 directly
binds to CRY C-terminal domains, enhancing E-box-mediated
transcription in a CRY-dependent manner, and attenuates the
circadian oscillations of Bmal1 and Per2 promoter activity (Chun
et al., 2014; Jang et al., 2018). Thus, while KL001 and its
derivatives strengthen CRY-mediated feedback, KS15 increases
basal promoter activity by inhibiting the repressive actions of
CRYs on CLOCK/BMAL1-mediated transcription. CRYs are
composed of highly conserved N-terminal photolyase homology
regions and variable C-terminal extension domains (Chaves et al.,
2006). The putative coiled-coil (CC) domain is located in the
C-terminal tail and is highly conserved between CRY1 and
CRY2. Previous studies have suggested that CRY C-terminal tails,
including the CC domain, are important for nuclear localization
and interactions with other core clock proteins (Chaves et al.,
2006; van der Schalie et al., 2007). We found that KS15 binding
of CRY C-terminal domains significantly inhibits CRY-BMAL1
interactions, but barely affects CRY-PER associations. Thus, KS15
can be used as a distinct scaffold to develop additional derivatives
with improved pharmacokinetics, although further SAR studies
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TABLE 1 | Representative small molecule clock modulators.

Name Structure Actions Potential applications Reference

KL001 and analogs CRY stabilizer
Suppresses E-box-mediated
transcription
Alters period

Metabolic disorders Hirota et al., 2012; Nangle et al.,
2013

KS15 CRY inhibitor
Enhances E-box-mediated
transcription

Cancer Chun et al., 2014, 2015;
Jang et al., 2018

SR9009 and related
compounds

REV-ERB agonist
Suppresses RRE-mediated
transcription

Sleep disorders
Anxiety disorders
Metabolic disorders
Cancer

Solt et al., 2012; Banerjee et al.,
2014; Sulli et al., 2018b

SR8278 REV-ERB antagonist
Enhances RRE-mediated
transcription

Depressive disorders
Risk of bipolarity

Kojetin et al., 2011; Chung et al.,
2014; Guo et al., 2018

Nobiletin RORα/γ agonist
Enhances RRE-mediated
transcription
Increases amplitude

Depressive disorders
Neurodegeneration
Metabolic disorders

Onozuka et al., 2008; Yi et al.,
2011; Yabuki et al., 2014; Nakajima
et al., 2015; He et al., 2016

SR1078 and related
compounds

RORα/γ agonist
Enhances RRE-mediated
transcription

Autism-spectrum disorders
Diabetic cardiomyopathy

Wang et al., 2010, 2016; Zhao
et al., 2017

SR1001 and related
compounds

RORα/γ inverse agonist
Suppresses RRE-mediated
transcription

Metabolic disorders
Atherosclerosis
Autoimmunity
Anti-inflammation

Solt et al., 2011; Billon et al., 2016;
Dai et al., 2017

CRY, cryptochrome; ROR, retinoic acid receptor-related orphan nuclear receptor; RRE, RORs/REV-ERBs-responsive element.

are required to determine its mechanism of action (Jang et al.,
2018).

Circadian Nuclear Receptors as Small
Molecule Probe Targets
The circadian nuclear receptors, REV-ERBs and RORs, mediate
many physiological processes, including circadian rhythms,
development, metabolism, immunity, and even various brain
functions. Members of the nuclear receptor superfamily are
ligand-activated transcription factors that act as intracellular
receptors for cell-permeable ligands. Thus, nuclear receptors are
considered as one of the primary molecular classes suitable for
drug targets. Interestingly, REV-ERBs contain atypical ligand-
binding domains (LBDs) and lack C-terminal transactivation
domains, which are used for interactions with transcriptional
co-activators. These features provide a structural basis for
constitutively repressive action of REV-ERBs upon binding
their target genes transcription. Recent studies have identified
endogenous ligands for these circadian nuclear receptors, thereby
stimulating the development of synthetic ligands with therapeutic

applications to circadian rhythm-related diseases (Kojetin and
Burris, 2014).

Although REV-ERBs were initially identified as orphan
nuclear receptors, subsequent studies revealed that heme binds
to the LBD of REV-ERBs (Raghuram et al., 2007; Yin et al.,
2007). The discovery of endogenous REV-ERBs ligands led
to the identification of chemical scaffolds that can act as
synthetic ligands. The first identified synthetic REV-ERB ligand
was GSK4112 (Meng et al., 2008). Specifically, GSK4112 is
a REB-ERB agonist that enhances recruitment of NCoR and
HDAC3 to their target promoters and then represses target
gene transcription (Grant et al., 2010). While GSK4112 did
not exhibit favorable pharmacokinetics, it paved the way for
the subsequent development of synthetic REV-ERBs ligands.
To improve potency, efficacy, and pharmacokinetics, Burris
and colleagues developed additional REV-ERB agonists, such
as SR9009 and SR9011, that were more suitable for in vivo
applications. Both compounds demonstrated therapeutic efficacy
of small molecule REV-ERB modulators in the treatment of
circadian-related metabolic diseases and sleep disorders (Solt
et al., 2012). Although there are several REV-ERBs agonists,
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SR8278 is the only antagonist that has been identified thus
far. SR8278 inhibits the transcriptional repression activity of
both REV-ERBs, thereby enhancing RRE-mediated transcription
(Kojetin et al., 2011). So far, SR8278 applications in vivo have
been limited; however, it provides a convenient tool to temporally
inhibit REV-ERB activity in target cells or tissues.

Cholesterol and some of its metabolites were initially shown
to act as natural ROR ligands. Recent studies revealed that
several oxysterols are high-affinity endogenous ROR modulators.
Oxysterol ligands bind directly to the RORα/γ LBD and act as
inverse agonists by modulating the interaction of co-regulators.
As indicated by their names, RORs are evolutionarily related
to retinoic acid receptors. Interestingly, all-trans retinoic acids
recognize the LBD of RORβ, but not RORα/γ, suggesting subtype
specificity. Alternatively, the liver X receptor agonist, T0901317,
was the first synthetic ligand and inverse agonist identified for
RORα/γ (Kumar et al., 2010). Subsequently, a series of RORα/γ
agonists or inverse agonists were developed as reviewed in
more detail elsewhere (Kojetin and Burris, 2014). In a more
recent study, Chen et al. identified that nobiletin, a natural
polymethoxylated flavone, enhances circadian molecular rhythm
amplitudes by acting on RORs (He et al., 2016).

IMPLICATIONS IN CIRCADIAN
RHYTHM-RELATED
NEUROPSYCHIATRIC DISEASES

Considering the impact of the circadian system on a wide range of
biological processes, small-molecule circadian modifiers may be
used to optimize internal timing for pharmacological treatment
and/or to rescue the desynchrony underlying circadian-related
diseases. For example, SR9009/9011 and nobiletin have beneficial
effects on high-fat diet-induced metabolic disturbances that
affect a wide range of molecular, metabolic, and behavioral
rhythms (Kohsaka et al., 2007; Solt et al., 2012; He et al., 2016).
Dysregulation of circadian rhythmicity is also associated with
various neuropsychiatric disorders, including sleep disorders,
affective disorders, substance use disorders, schizophrenia,
and neurodegeneration (Jagannath et al., 2013). However,
determining whether the changes in brain function associated
with these disorders manifest because of circadian dysregulation
or additional malfunctions is controversial. Compelling evidence
suggests that the effects of circadian disruption on brain function
are attributable to both the SCN and local oscillators in discrete
brain regions. Here, we will discuss how the circadian clock
is involved in neuropsychiatric disorders and the potential
implications of clock modulators for those diseases.

Sleep Disorders
Given that the circadian system constitutes one of the two major
mechanistic facets of sleep, small molecule clock modulators
may be applicable for circadian rhythm-related sleep disorders.
Indeed, abnormal sleep phenotypes have been reported in mutant
mice with defective alleles of core clock genes as well as
genes mediating post-translational modification of clock proteins
(Sehgal and Mignot, 2011). For example, familial advanced

sleep phase syndrome can be caused by either phosphorylation-
defective mutations in human PER2 or by mutant alleles for
protein kinases such as CK1δ (Toh et al., 2001; Xu et al., 2005).
A variation in human PER3 is also associated with differential
sleep homeostasis, particularly after sleep deprivation (Viola
et al., 2007). Furthermore, REV-ERBs appear to have a certain
role in both homeostatic and circadian regulation of sleep. In
mutant mice with a defective allele of Rev-erbα gene, sleep/wake
distributions are advanced in comparison with the environmental
light-dark cycle. Moreover, both electroencephalogram delta
power and sleep consolidation were also significantly reduced
after sleep onset, suggesting a slower increase of homeostatic
sleep need during wakefulness in the mutant mice (Mang
et al., 2016). Interestingly, daytime administration of REV-ERB
agonists induced wakefulness and suppressed both slow-wave
and rapid eye movement sleep (Banerjee et al., 2014). Thus,
pharmacological manipulation of the circadian clock may be used
to treat circadian rhythm-related sleep disorders, such as sleep
fragmentation, abnormal sleep phase syndromes, and non-24-h
sleep-wake rhythm disorders.

Mood-Related Psychiatric Disorders
Mood spectrum disorders, including major depression, bipolar
disorder, seasonal affective disorder, and various addiction-
related diseases, are the most attractive targets for clock
modulators. Patients with mood disorders commonly suffer
from disrupted sleep/wake cycles and dysregulated diurnal mood
variations. Furthermore, several genetics studies have reported
significant associations of clock genes with the onset and
symptoms of affective disorders (Wulff et al., 2010; McCarthy
and Welsh, 2012). Similarly, mutant mice with defective clock
genes exhibit behavioral phenotypes linked with abnormal
despair, anxiety, and reward responses (McClung et al., 2005;
Hampp et al., 2008; Chung et al., 2014; Schnell et al., 2015).
The key mediators of circadian mood regulation are central
monoamine systems, making them ideal therapeutic targets
for affective disorders. These monoamine systems are related
to circadian disruption, as mutant mice bearing defective
Clock119 demonstrate mania-like behaviors characterized by
hyperactivity, as well as decreased depression- and anxiety-
related behaviors. They also demonstrate increased cocaine
sensitization with enhanced dopamine (DA) transmission
(McClung et al., 2005). More recently, our data demonstrating
mania-like phenotypes in Rev-erbα-deficient mice revealed that
REV-ERBα connects the molecular clock with the midbrain DA
system (Chung et al., 2014). CLOCK and REV-ERBα expression
in DA neurons evokes daily variations in DA biosynthesis
and transmission in mesocorticolimbic DA circuits, particularly
through transcriptional control of tyrosine hydroxylase, a rate-
limiting enzyme for catecholamine biosynthesis. Monoamine
oxidase-mediated DA clearance in post-synaptic sites is also
reported to be under the circadian control of NPAS2 and
BMAL1 (Hampp et al., 2008). Taken together, these findings
indicate that the circadian clock tightly controls DA biosynthesis,
transmission, and turnover.

Interestingly, acute administration of the REV-ERB
antagonist, SR8278, to the ventral midbrain produces mania-like
behaviors with increased DA production and release (Chung
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et al., 2014). While both REV-ERB agonists and antagonists
reduce anxiety-like behaviors in mice, REV-ERB agonists do not
significantly affect despair-based behaviors (Banerjee et al., 2014;
Chung et al., 2014). This discrepancy may arise from the presence
of two REV-ERB isoforms that could interact with synthetic
ligands. Although SR8278 promotes mania in wild-type mice, it
acts as an anti-depressant in a mouse genetic model of depression
(Guo et al., 2018). Nobiletin also has anti-depressant-like effects
that are comparable with those of fluoxetine. These effects are
also prevented by inhibitors for monoamine transmission (Yi
et al., 2011). These findings strongly suggest that circadian
clock modulators have therapeutic potential for mood-related
psychiatric disorders, but also warn of potential risks in their
clinical applications to circadian rhythm-related sleep and
metabolic diseases.

Neurodegenerative Diseases
Circadian disruptions are common among patients with
neurodegenerative diseases, including Alzheimer’s disease (AD),
Parkinson’s disease (PD), and Huntington’s disease, despite the
range in pathogenesis and associated symptoms of these diseases
(Hood and Amir, 2017). Circadian disturbances manifesting
as alterations in sleep-wake cycles, hormone secretion, and
diurnal mood regulation precede the cognitive and motor
symptoms characteristic of these diseases. Indeed, various forms
of AD models have exhibited phenotypes linked with circadian
and/or sleep abnormalities (Wisor et al., 2005; Gorman and
Yellon, 2010; Sterniczuk et al., 2010; Koss et al., 2016), and
neurodegenerative lesions in the SCN have been proposed as a
possible underlying mechanism (Sterniczuk et al., 2010; Zhou
et al., 2016). Conversely, amyloid-beta (Aβ) pathologies are
affected by the sleep-wake cycle in both mice and humans (Kang
et al., 2009; Ooms et al., 2014). The sleep-wake cycle controls
a diurnal rhythm found in Aβ levels in brain interstitial fluid
(ISF) and sleep deprivation exacerbated Aβ plaque burden in an
AD mouse model (Kang et al., 2009). These findings collectively
suggest mutual interactions between circadian disturbances and
neurodegenerative pathologies.

Considerable evidence suggests that circadian disturbances
may play more direct roles in the progression of
neurodegenerative diseases, particularly in sporadic disease
forms (Musiek and Holtzman, 2016; Videnovic and Willis,
2016). Specifically, genetic variations in clock gene loci are
associated with neurodegenerative diseases (Gu et al., 2015).
Furthermore, the absence of functional BMAL1 is associated
with various phenotypes of premature aging, increased oxidative
stress, induced age-dependent gliosis, and neurodegeneration
in the presence of neurotoxic assaults (Kondratov et al.,
2006; Musiek et al., 2013). Recently, Musiek et al. (2013)
demonstrated that loss of central circadian rhythms accelerates
amyloid plaque accumulation along with disruption of daily
Aβ oscillations in hippocampal ISF, whereas loss of local
BMAL1 in extra-SCN brain regions promotes fibrillar plaque
deposition and increased APOE expression, suggesting both
central and local brain clock influence AD pathogenesis (Kress
et al., 2018). It was also demonstrated that the expression of
several AD risk genes, including Bace1 and Bace2, are under
the control of cellular clockworks (Ma et al., 2016). In addition

to AD, genetic abrogation of REV-ERBα and chronic circadian
disruption were shown to exacerbate neurotoxin-induced
PD-like phenotypes and neuroinflammation-mediated DA
neuron loss (Lauretti et al., 2017; Kim et al., 2018). Thus, chronic
circadian disruption by either environmental or genetic causes
is likely a risk factor for sporadic forms of neurodegenerative
diseases, and neuroinflammatory dysregulation could be a link
between circadian dysfunction and neurodegeneration (Musiek
et al., 2013; Lauretti et al., 2017).

These findings also suggest that circadian rhythm-based
therapeutics may delay the progression and severity of
neurodegenerative diseases. Such chronobiological interventions
for neuropsychiatric disorders, such as affective disorders and
neurodegeneration, include bright-light therapy and timed
melatonin administration (Forbes et al., 2014). Previous studies
have suggested that timed light exposure and/or melatonin
administration partially improve sleep- and circadian rhythm-
related symptoms of AD and PD (Ancoli-Israel et al., 2003;
Riemersma-van der Lek et al., 2008; Videnovic et al., 2017).
However, whether bright light has long-lasting beneficial effects
on cognitive or motor-skill impairments in AD or PD patients
remains unclear. Alternatively, these impairments may be
treated with small-molecule modulators of clock proteins.
Indeed, nobiletin attenuated memory impairments and amyloid
pathology in transgenic mouse models of AD (Onozuka et al.,
2008; Nakajima et al., 2015) and ameliorated motor and cognitive
deficits in MPTP-induced PD mice (Yabuki et al., 2014).
Considering that clock proteins have been implicated in cellular
antioxidant responses (Lee et al., 2013; Woldt et al., 2013),
amelioration of oxidative damage may be an additional potential
mechanism by which clock modulators delay neurodegeneration.

Possible Mode of Actions: Brain
Region-Specific and Systemic
Mechanisms
Although still in preclinical development, small-molecule
modifiers of clock components may exert beneficial effects
at multiple levels (Sulli et al., 2018a). The simplest modes of
action could involve cellular clock-dependent modulation
of transcriptional networks or signaling pathways that
are responsible for pathological states due to malfunction.
Considering that the cellular clock coordinates diverse cellular
pathways, pharmacological manipulation of clock components
may have pleiotropic benefits, comparable to combination-
therapy approaches. For example, a REV-ERBs antagonist
enhanced both DA biosynthesis and activity-dependent
neurotransmitter release, which may both contribute to its
anti-depressant-like effects (Chung et al., 2014; Guo et al.,
2018). In this context, it should be also noted that some
molecular targets of established drugs have been identified to
follow oscillatory expression or to be directly controlled by
the cellular clock. Hogenesch et al. (1998) identified sets of
oscillatory genes across multiple tissues in mice. Additionally,
they found that more than 20% of the 100 best-selling drugs
with short half-lives involved circadian gene targets; these drugs
included widely used drugs for neuropsychiatric disorders
such as insomnia, depressive disorders, and attention-deficit
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hyperactivity disorders (Zhang et al., 2014). These findings imply
therapeutic potential of clock modulators that can be also
considered for combinational therapy with existing treatments to
improve their efficacy.

Systemic restoration or stabilization of the circadian system
may also mediate therapeutic effects of clock modulators,
plausibly by strengthening the autonomous oscillations of
the SCN pacemaker and/or by helping the synchronization
between brain clocks. As noted earlier, behavioral interventions
to restore circadian rhythm and sleep have been reported
to ameliorate some symptoms of affective disorders and
neurodegeneration (Forbes et al., 2014; Sulli et al., 2018a).
Furthermore, co-morbidities among circadian rhythm-related
diseases are frequently found. For example, there is a bi-
directional association between metabolic syndromes and mental
health disorders including bipolar disorder, major depression,
anxiety, attention-deficit hyperactivity disorder, schizophrenia,
and autism spectrum disorders (Nousen et al., 2013). Because
circadian rhythms coordinate the multiple brain systems
responsible for affective, cognitive, and metabolic functions,
dysregulation of circadian clocks has been proposed to play
a central role in cardio-metabolic co-morbidity in psychiatric
disorders (Barandas et al., 2015). It can be, therefore suggested
that systemic actions of clock-targeting pharmaceuticals may
provide additional distinct preventive or therapeutic strategies
for co-morbid disorders.

CONCLUDING REMARKS

Circadian clocks govern a wide spectrum of biochemical,
physiological, and behavioral processes. Disruption or

misalignment of the intrinsic rhythms are considered as
a risk for the pathogenesis of various chronic diseases.
Therefore, improving our understanding of the impact of
the circadian system on brain functions may lead to the
development of novel treatment schemes, increase efficacious
therapeutic delivery, and improve preventative strategies for
circadian rhythm-related brain disorders. In this context,
development of chemical clock modulators may primarily
contribute to revealing the functional relevance of the
molecular clock across discrete brain regions because these
small molecules can be used to dynamically control location-
specific cellular clocks in the brain. More importantly,
these molecules could provide lead structures for novel
therapeutics for prevention and treatment of neuropsychiatric
disorders.
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