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Oxidative stress (OS) has been implicated in the etiology of certain neurodegenerative
disorders. Some of these disorders have been associated with unbalanced levels of
essential fatty acids (EFA). The response of certain brain regions to OS, however, is
not uniform and a selective vulnerability or resilience can occur. In our previous study
on rat brains, we observed that a two-generation EFA dietary restriction reduced the
number and size of dopaminergic neurons in the substantia nigra (SN) rostro-dorso-medial.
To understand whether OS contributes to this effect, we assessed the status of lipid
peroxidation (LP) and anti-oxidant markers in both SN and corpus striatum (CS) of rats
submitted to this dietary treatment for one (F1) or two (F2) generations. Wistar rats were
raised from conception on control or experimental diets containing adequate or reduced
levels of linoleic and α-linolenic fatty acids, respectively. LP was measured using the
thiobarbituric acid reaction method (TBARS) and the total superoxide dismutase (t-SOD)
and catalase (CAT) enzymatic activities were assessed. The experimental diet significantly
reduced the docosahexaenoic acid (DHA) levels of SN phospholipids in the F1 (∼28%)
and F2 (∼50%) groups. In F1 adult animals of the experimental group there was no LP
in both SN and CS. Consistently, there was a significant increase in the t-SOD activity
(p < 0.01) in both regions. In EF2 young animals, degeneration in dopaminergic and
non-dopaminergic neurons and a significant increase in LP (p < 0.01) and decrease in the
CAT activity (p < 0.001) were detected in the SN, while no inter-group difference was
found for these parameters in the CS. Conversely, a significant increase in t-SOD activity
(p < 0.05) was detected in the CS of the experimental group compared to the control. The
results show that unbalanced EFA dietary levels reduce the redox balance in the SN and
reveal mechanisms of resilience in the CS under this stressful condition.

Keywords: substantia nigra, corpus striatum, oxidative stress, superoxide dismutase, catalase, lipid peroxidation,

DHA, neurodegeneration

INTRODUCTION
Docosahexaenoic acid (DHA) and arachidonic acid (AA) are
long chain polyunsaturated fatty acids (LC-PUFA) which play
important roles as critical modulators of brain function under
physiological or pathological conditions (Zhang et al., 2011).
They are derived from the essential fatty acids (EFA) α-linolenic
and linoleic acids, respectively, and can exert opposite effects on

brain metabolism (Schmitz and Ecker, 2008). Imbalance in their
levels, early in life, and especially DHA deficiency, can decrease
anti-inflammatory responses that can induce neurodegeneration
(Yavin, 2006; Schmitz and Ecker, 2008). Recent studies using
microarray technology have shown that DHA is able to regulate
the transcription of many genes related to oxidative stress (OS),
cell signaling, and apoptosis (Kitajka et al., 2004; Lapillonne et al.,
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2004; Yavin, 2006). Consistent with this evidence, it has been
demonstrated that DHA protects against peroxidative damage
of lipids and proteins in developing and adult brains in exper-
imental models of ischemia-reperfusion (Glozman et al., 1998;
Green et al., 2001; Pan et al., 2009; Mayurasakorn et al., 2011) or
reduce OS-induced apoptosis of retina photoreceptors (Rotstein
et al., 2003). Moreover, the DHA-derived docosanoid, named
neuroprotectin D1, protects human retinal pigment epithelial
cells from OS (Mukherjee et al., 2004) as well as inhibits brain
ischemia-reperfusion-mediated leukocyte infiltration and pro-
inflammatory gene expression (Marcheselli et al., 2003).

It is well established that OS is caused by the disequilib-
rium between the production and detoxification of highly reac-
tive oxygen species (ROS), including singlet oxygen, superoxide
anion, and hydrogen peroxide, which can disrupt the redox bal-
ance inside cells if not properly neutralized. The superoxide
anion is known to induce protein and nucleic acid dysfunc-
tion and to initiate lipid peroxidation (LP) (Kohen and Nyska,
2002). Endogenous anti-oxidant mechanisms against superoxides
include a series of linked enzyme reactions. The first of these
enzymes is superoxide dismutase (SOD; EC1.15.1.1), that con-
verts superoxide anion to hydrogen peroxide (H2O2), which can
be removed by catalase (CAT; EC 1.11.1.6) and/or glutathione
peroxidase (GPx; EC 1.11.1.9) (Kohen and Nyska, 2002; Melo
et al., 2011).

Neuron response to OS is not uniform in the brain. This
differential vulnerability depends on a number of factors includ-
ing high intrinsic OS, high demand for ROS-based intracellular
signaling, low ATP production, mitochondrial dysfunction, and
high inflammatory response (Wang and Michaelis, 2010). Strong
evidence indicates that OS may be one of the most important
mechanisms involved in the etiology and evolution of a num-
ber of neurodegenerative diseases (Hashimoto and Hossain, 2011;
Thomas and Beal, 2007; Melo et al., 2011). DHA is consid-
ered as a potential target for therapeutic intervention in some
of these disorders, including Parkinson’s Disease (PD), where
the dopaminergic neurons of substantia nigra (SN) are espe-
cially affected by OS and mitochondrial dysfunction (Jenner et al.,
1992; Sayre et al., 2001). In experimental models of PD, for
example, it has been shown that the dietary supplementation of
DHA may partially restore dopaminergic neurotransmission after
6-hydroxidopamine (6-OHDA)- or 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-induced striatal lesions which pro-
duce OS (Bousquet et al., 2008; Cansev et al., 2008). Moreover,
DHA supplementation is able to increase the SOD activity in the
corpus striatum (CS) (Sarsilmaz et al., 2003) as well as signif-
icantly decrease cyclooxigenase-2 activity and prostaglandin E2
levels in the SN, decreasing MPTP-induced dopaminergic cell
death (Ozsoy et al., 2011). Conversely, combination of succes-
sive parity and α-linolenic acid deficient maternal diet reduced
the number of dopaminergic neurons in the rat SN pars com-
pacta and ventral tegmental area of adult offspring (Ahmad et al.,
2008).

Recent evidence from our laboratory, adopting a two gener-
ation model of EFA dietary restriction and stereological assess-
ment, showed a differential vulnerability of two distinct SN
dopaminergic cell populations to this type of nutritional insult. In

addition to a reduction in the number of dopaminergic neurons
in the SN rostro-dorso-medial region, this dietary treatment was
able to change body and brain weights, TH protein levels, and the
size of these neurons in young animals (Passos et al., 2012). The
mechanisms involved in such effects are not yet completely under-
stood. It is well established that under physiological conditions,
the SN has unique biochemical features which provide a higher
vulnerability to OS (Kidd, 2000) when compared to other brain
regions, including the CS (Mythri et al., 2011). The present study
was conducted to test the hypothesis that OS can be a potential
mechanism involved in the neurodegeneration of SN dopaminer-
gic cells induced by EFA dietary restriction. We tested whether this
restriction for one or two generations could induce LP or modify
the anti-oxidant activity of SOD or CAT in the SN and CS of rats.

MATERIALS AND METHODS
All procedures were approved by the Ethics Committee for
Animal Research of Federal University of Pernambuco (proto-
col # 009428/200633), which complies with the “Principles of
Laboratory Animal Care” (NIH, Bethesda, USA). Adult female
Wistar rats weighing 200–250 g were fed from mating through-
out pregnancy and lactation on a control or experimental diets,
each containing approximately 400 Kcal 100 g and differing only
in the lipid source. The diets were prepared according to Soares
et al. (1995) and meet all current nutrient standards for rat preg-
nancy and growth (Table 1). The control diet contained 50 g/Kg
of soybean oil with adequate amounts of saturated, monounsat-
urated, α-linolenic (6% of total fatty acids) and linoleic (56% of
total fatty acids) acids. The experimental diet contained 50 g/Kg of
coconut oil (from Babaçu, Orbignia martiana) with reduced lev-
els of linoleic and α-linolenic acids and higher levels of saturated
(2-fold) and monounsaturated (2.5-fold) fatty acids (Table 2).

Table 1 | Diet composition (grams/100g diet).

Ingredients Control diet Experimental diet

Casein 20.7 20.7

Cellulose 1.8 1.8

Corn starch 46.8 46.8

Sucrose 21.0 21.0

Soyabean oil 5.0 −
Coconut oil − 5.0

Vitamin mixa 0.9 0.9

Mineral mixb 3.7 3.7

D.L-Cystine 0.1 0.1

Butyl hydroxytoluene 0.001 0.001

Kcal/100 g 399.1 400.5

aVitamin mixture (Rhoster Ind.Com. LTDA. SP. Brazil) containing (m%): folic acid

(20); niacin (300); biotin (2); calcium pantothenate 160; pyridoxine (70); riboflavin

(60); thiamine chloride (60); vitamin B12 (0.25); vitamin K1 (7.5). Additionally con-

taining (UI%): vitamin A 40.000; vitamin D3 10.000; vitamin E (750).
bMineral mixture (Rhoster Ind. Com. LTDA. SP. Brazil) containing (m%): CaHP04

(38); K2HP04 (24); CaCO3 (18.1); NaF (0.1); NaCl(7.0); MgO (2.0); MgS04 7H20

(9.0); FeS04 7H20 (0.7); ZnS04 H20 (0.5); MnSO+ H20 (0.5); CuS04 5H20 (0.1);

Al2 (S04)3K2S04 24H20 (0.02); Na2SeO3 5H20 (0.001); KCl (0.008).
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Table 2 | Fatty acid composition of the diets (% of total fatty acids).

Fatty acids Control diet Experimental diet

8 0.02 3.27

10 0.03 3.95

11 nd 0.07

12 0.20 28.04

13 nd 0.06

14 0.19 19.56

15 0.02 0.02

16 9.27 11.32

17 nd 0.02

18 15.31 0.72

20 0.33 0.16

22 0.51 0.08

23 0.07 0.02

24 0.04 nd

Total saturated 26.01 67.29

16:1 2.72 0.06

18:1n9 9.36 23.51

20:1 0.24 0.16

Total monounsaturated 12.32 23.73

18:2n6 55.36 8.10

18:3n3 6.04 0.49

20:2 0.04 0.06

20:5n3 0.03 nd

22:2n 0.05 0.04

22:6n3 0.13 0.06

Total polyunsaturated 61.65 8.75

18:2n6 /18:3n3 9.17 16.39

nd, not detected. Bold values indicate p < 0.001.

Rat offspring (n = 112) were the object of the present study
and only males were used for the experimental assays. Litters were
culled to six pups on postnatal day 1 and weaned on postnatal
day 21. Dams and pups were distributed into two main groups
according to the nutritional condition: control (C) and exper-
imental (E) rats. After weaning, pups were separated and fed
ad libitum the same diet as their respective mothers. First gen-
eration (CF1 and EF1) male rats were weighed and evaluated for
biochemical parameters related to LP and anti-oxidant markers
at 90–110 days. The remaining males and females were allowed
to mate to provide the second-generation groups (CF2 and EF2),
which were analyzed at 30–42 days. In each group, animals were
sampled randomly from different litters, housed three per cage in
a room maintained at 22 ± 2◦C with 67% relative air humidity
and kept on a 12 h light/dark cycle (lights on 6:00 h).

Each experimental day, six animals per group were anes-
thetized with isofluorane and then decapitated. The regions con-
taining the SN or CS were rapidly dissected in 0.9% (w/v) NaCl
solution at 2◦C. After weighing, the pooled tissue was homoge-
nized in a 0.9% (w/v) NaCl solution (1:10) at 4◦C and centrifuged
for 10 min at 1000 g at 4◦C for an analysis of LP for the determina-
tion of thiobarbituric acid-reactive substances (TBARS) level and
for 10 min at 10,000 g at 4◦C in order to assess either the total
(Cu–Zn and Mn) superoxide dismutase (t-SOD) and catalase

enzymatic activities. An aliquot of supernatant was analyzed
for total protein content using a bicinchroninic acid protein kit
(Sigma-Aldrich, St. Louis, MO).

LIPID PEROXIDATION
LP was measured by estimating malondialdehyde (MDA) using
a thiobarbituric acid (TBA) reaction (TBARS method) according
to Ohkawa et al. (1979). In the TBA test reaction, MDA or MDA-
like substances and TBA react to produce a pink pigment with
maximum absorption at 532 nm. The reaction was developed by
the sequential addition of 0.2 mL of 8.1% sodium duodecil sul-
fate, 1.5 mL of 20% acetic acid (pH 3.5), and 1.5 mL of 0.8%
TBA solutions in a boiling water-bath for 30 min to triplicates
of supernatants. After tap water cooling, 1.5 mL of n-buthanol /
pyridine (15:1 v/v) was added to the sample, centrifuged at 2500 g
for 10 min and the organic phase was read at 532 nm using a
plate reader. The results were expressed as nmol per mg of protein
using a standard curve generated using different concentrations
1,1,3,3-tetramethoxypropane solution. The control SN and CS
samples were incubated in a 30 μM sodium nitroprusside (SNP)
solution for 45 min before the assay and used as positive controls
for LP.

SUPEROXIDE DISMUTASE (SOD) ASSAY
Assessment of total SOD (t-SOD) enzymatic activity was per-
formed according to Misra and Fridovich, (1972) at 25◦C.
Triplicates of SN or CS supernatants (100 μL) were previously
incubated in a water bath at 37◦C and then added to 880 μL of
0.05% sodium carbonate solution pH 10.2 in 0.1 mM EDTA. The
reaction was developed by adding 20 μL of 30 mM epinephrine
(in 0.05% acetic acid). The absorbance was measured at 480 nm
for 4 min. One unit of t-SOD was defined as the enzyme amount
causing 50% inhibition of epinephrine oxidation. Tissue t-SOD
enzymatic activity was also expressed as units per milligram of
protein (U/mg protein). Positive controls were obtained incubat-
ing control homogenate samples of SN and CS in a 30 μM SNP
solution for 45 min before the enzymatic assay.

CATALASE (CAT) ASSAY
CAT activity was measured according to Aebi (1984). The rate
constant k of H2O2 decomposition under our experimental con-
ditions of temperature (∼20◦C) and pH (7.0) was determined to
be 4.6 × 107 by measuring the absorbance changes per minute,
for 4 min. The enzymatic activity was expressed as the H2O2

consumed in nM/min/mg protein. Positive controls for catalase
activity were obtained by incubation of SN and CS homogenates
of the control group in increasing concentrations of H2O2 (3.156
to 100 μM) for 30 min at 37◦C before the enzymatic assay.

STATISTICAL ANALYSIS OF OXIDATIVE STRESS PARAMETERS
AND BODY WEIGHT
All biochemical experiments were carried out in triplicate and
repeated at least twice. Six animals from three litters per group
were used each time. A total of 38 and 58 animals were used
in the F1 and F2 generations, respectively. Biochemical data of
TBARS levels, t-SOD, and catalase enzymatic activity were plot-
ted using GraphPad Prism 5.0 software and the statistical analysis
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was performed using ANOVA followed by Tukey as the post-hoc
test or Student’s t-test in some cases. The analysis of body weight
was carried out using unpaired Student’s t-test. Differences were
considered significant when p < 0.05.

FLUORO JADE C (FJC) ASSAY
Considering our recent evidence that a loss of SN dopaminergic
cells is induced by EFA dietary restriction for two generations
(Passos et al., 2012), FJC, a polyanionic fluorescein derivative,
was applied to examine signals of neurodegeneration. It has been
shown that this protocol specifically labels damaged neurons and
not glial cells in the SN and CS (Bian et al., 2007; Ehara and
Ueda, 2009) when these regions are submitted to certain types
of insult, especially under conditions that induce OS (Ehara and
Ueda, 2009; Li et al., 2009; Yang et al., 2011).

Animals from the F1 and F2 groups (n = 6/group) were anes-
thetized with a sodium pentobarbital solution (100 mg/kg, i.p.
Sigma-Aldrich, St. Louis, MO), perfused with a 0.9% NaCl solu-
tion, followed by 4% paraformaldehyde in a phosphate buffered
saline (PBS), pH 7.4. The brains were post-fixed in the same
fixative for two hours, rinsed in a phosphate buffer (PB) and
subsequently cryoprotected in solutions of 10, 20, and 30%
sucrose in PB. Brain blocks were serially cut on a freezing micro-
tome (Leitz Wetzlar) into 50 μm-thick sections in the parasagittal
plane. All sections were collected serially in PB and arranged in
six series. The Atlas of Paxinos and Watson (1986) was used to
delimit cytoarchitectonic regions of interest. Sections of one series
per animal were mounted on gelatin-coated slides, air-dried, and
subjected to FJC staining according to Ehara and Ueda (2009).
Slides were immersed in a 1% NaOH solution (in 80% ethanol)
for 5 min, rinsed for 2 min in 70% ethanol, and for 2 min in
distilled water, and then incubated in 0.06% potassium perman-
ganate solution for 5 min. After water washing (2 min), the slides
were immersed in a FJC solution (0.0001%) in 0.1% acetic acid
for 10 min followed by washing in distilled water. The slides were
air-dried on a slide warmer at 50◦C for 30 min, cleared in xylene,
cover slipped with Entellan (Merck). As a positive control for FJC
labeling we used brain sections of rats previously treated with
the mitochondrial toxin 3-Nitropropionic Acid (3-NP) which
induces striatal neurodegeneration. The animals treated with 3-
NP were from another study not related to the present work. As
a better positive control for FJC labeling in the SN, we used also
brain sections of animals which previously received intracerebral
injections of pilocarpine in order to induce epilepticus status. The
number of FJC-positive neurons was analyzed in the CS and SN
in six animals of C and EF2 groups at the stereotaxic coordi-
nate identified as corresponding approximately to lateral 1.9 mm
(plate 81) according to Paxinos and Watson (1986).

Double fluorescence staining against FJC and tyrosine hydrox-
ylase in brain sections of two EF2 animals was achieved by the
method described by Ehara and Ueda (2009). Tissue sections
were incubated first with blocking solution containing 1% BSA,
0.3% triton X-100 for 60 min and then with rabbit polyclonal
anti-TH antibody (1:500; Millipore) for 24 h at 4◦C. The sec-
tions were washed three times in phosphate buffer (PB) 0.1 M,
pH 7.4, and incubated for 4 h with Rhodamine-conjugated 546-
labeled anti-rabbit IgG (1:600; Jackson). After washing twice in

PB, they were mounted onto gelatin coated slides and dried at
50◦C for 30 min. The samples were rehydrated for 1 min, incu-
bated in 0.06% potassium permanganate solution for 5 min, and
then rinsed for 1 min in distilled water followed by FJC (0.0001%
dissolved in 0.1% acetic acid) for 30 min. After rinsed in distilled
water, the sections were dried at 50◦C for 20 min, clearead in
xylene for 1 min and coverslipped with Entellan. Fluoro-Jade C
and TH in the CS and SN were analyzed using an epifluorescence
microscope (Leica, DM LB).

FATTY ACID DETERMINATION IN THE CORPUS STRIATUM AND
MIDBRAIN
The fatty acid profiles of CS and midbrain phospholipids were
assessed in F1 groups at 95 days and F2 groups at 35 days of
age. The pups (n = 6/group) were decapitated and the regions
containing the CS or midbrain were rapidly dissected in an ice
bath. The tissues were homogenized in a 50 mM Tris-HCl buffer
(pH = 7.4) with EGTA and centrifuged for 30 min at 28,000 g
at 4◦C. The pellets were immediately re-suspended in 50 mM
Tris-HCl buffer (pH = 7.4). The total lipids of CS or midbrain
homogenates were extracted according to Folch et al. (1957). The
phospholipids were then separated by means of a Sep-Pak proce-
dure (Juaneda and Rocquelin, 1985) and transmethylated (Berry
et al., 1965). These samples were analyzed using a Shimatzu GC
apparatus equipped with a flame ionization detector and HP-
inowax 20 M) capillary column (30 m × 0.32 mm × 0.3 μm). The
column temperature was initially 40◦C for 1 min, then increased
to 150◦C by 55◦C/min, and finally increased to 220◦C by
1.7◦C/min. The injector and detector temperatures were 200 and
220◦C, respectively. Hydrogen was used as the carrier gas at a flow
rate of 1.0 mL/min; injection was in split-less mode and the injec-
tion volume was 1.0 μL of the sample isoctane extract. A stan-
dard fatty acid methyl ester mixture (Supelco™, 37 Component
FAME mix, USA) was used to identify the fatty acid methyl
esters by their retention time. Fatty acid data were expressed
as percentage of total peak area. Data are expressed as the
mean ± standard deviation (SD). Differences between the groups
were analyzed by Student’s t-test and considered significant at
P < 0.05.

RESULTS
Data on body weights of F1 and F2 groups are presented in
Table 3. Adult animals of the EF1 group and young animals of
the EF2 group showed significantly lower body weights when
compared to the control (p < 0.05).

Table 3 | Body weights of F1 and F2 animals.

Groups Body Weight (g)

CF1 402.54 ± 40.04 (n = 38)

EF1 376.97 ± 36.92** (n = 43)

CF2 79.65 ± 14.87 (n = 33)

EF2 71.91 ± 10.09* (n = 43)

Values are expressed as Mean ± SD.
*P < 0.05; **P < 0.01 Unpaired Student’s t-test.
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CORPUS STRIATUM AND MIDBRAIN FATTY ACID PROFILE
Table 4 shows the midbrain fatty acid profile of F1 generation
adult animals and Table 5 combines data of midbrain and CS
fatty acids of the F2 generation young animals raised under either
control or experimental diets. As can be observed, the midbrain
phospholipids from the EF1 and EF2 groups exhibit, respectively,
28 and 50% lower DHA levels (22:6n–3) as compared to their
control groups. DHA levels were also lower in the EF2-CS phos-
pholipids (∼50%) when compared to control. The reduced levels
of DHA in both EF1 and EF2 groups was accompanied by a sig-
nificant increase in the docosapentanoic fatty acid (DPA; 22:5n6)
contents (2-tail t-test, P < 0.001). On the other hand, the values

Table 4 | Fatty acid composition (% of total) in midbrain

phospholipids of F1 generation groups raised on Control or

Experimental diets.

Fatty acid Midbrain

Control diet Experimental diet

C16 16.41 ± 1.9 15.85 ± 0.81

C16:1 0.96 ± 0.34 1.10 ± 0.28

C18 22.47 ± 1.63 23.99 ± 1.87

C18:1n9 24.55 ± 0.96 24.64 ± 2.00

C20 0.74 ± 0.13 0.91 ± 0.10

C20:1 2.04 ± 0.21 2.83 ± 0.12

C20:4n6 8.76 ± 0.32 8.73 ± 0.30

C20:3n6 0.45 ± 0.30 0.35 ± 0.24

C22 0.97 ± 0.53 0.80 ± 0.11

C23 3.11 ± 0.51 3.10 ± 0.52

C22:5n6 1.03 ± 0.74 3.16 ± 0.75***

C22:6n3 14.41 ± 1.81 11.25 ± 0.69**

C24:1n 2.24 ± 0.52 1.07 ± 0.18

Values are expressed as means ± SD.
**p < 0.01; ***p < 0.001.

for AA (20:4n–6) did not differ between both groups of F1 or F2
generations. With respect to saturated and monounsaturated fatty
acids, the presence of coconut oil in the maternal diet significantly
increased the levels of palmitic (16:0), stearic (18:0), palmitoleic
(16:1), and oleic (18:1n9) acids (2-tail t-test, P < 0.01) in the EF2
midbrain phospholipids.

LIPID PEROXIDATION AND T-SOD ENZYME ACTIVITY IN ADULT
ANIMALS OF F1 GENERATION
Biochemical results of the F1 groups are summarized in
Figure 1. As expected, LP (measured as TBARS levels) was
found to be significantly increased in SN (0.770 ± 0.136 nmol
MDA/mg protein) and CS (0.834 ± 0.140 nmol MDA/mg pro-
tein) homogenates of CF1 group previously treated with 30 μM
SNP, compared to the control condition (0.425 ± 0.105 and
0.532 ± 0.015 nmol MDA/mg protein for SN and CS, respec-
tively; P < 0.001). However, TBARS levels in both regions were
not modified in rats fed on the experimental diet (0.494 ±
0.089 and 0.570 ± 0.038 nmol MDA/mg protein for SN and CS,
respectively) when compared to the control animals (Figure 1A).
Consistent with these results, a significant increase in the t-SOD
enzyme activity was observed in the EF1 group (P < 0.01) either
in the SN (0.735 ± 0.020 U/mg protein) or CS (0.640 ± 0.192
U/mg protein) compared to the control condition not sub-
mitted to pre-treatment with SNP (0.606 ± 0.028 and 0.355 ±
0.034 U/mg protein for SN and CS, respectively). As can be
observed, the SNP treatment used as a positive control, signif-
icantly increased SOD activity in the SN (1.241 ± 0.206 U/mg
protein) and CS (1.832 ± 0.046 U/mg protein).

LIPID PEROXIDATION, T-SOD, AND CAT ENZYME ACTIVITIES IN
YOUNG ANIMALS OF F2 GENERATION
In young animals of the F2 generation, distinct effects were
induced by the experimental diet in the two regions ana-
lyzed. Evidence of LP, assessed by a significant increase in
TBARS levels, was detected in the SN of EF2 group (0.564 ±

Table 5 | Fatty acid composition (% of total) in Corpus Striatum and Midbrain membrane phospholipids of F2 generation groups raised on

Control or Experimental diets.

Fatty acid Corpus Striatum Midbrain

Control diet Experimental diet Control diet Experimental diet

C16 17.99 ± 1.04 21.74 ± 0.74 16.51 ± 1.90 24.09 ± 0.27*

C16:1 0.73 ± 0.10 0.73 ± 0.12 0.64 ± 0.04 0.85 ± 0.03

C17 Nd nd 0.16 ± 0.00 0.20 ± 0.02

C18 25.74 ± 0.25 25.20 ± 0.51 24.88 ± 0.67 29.09 ± 0.37*

C18:1n9 17.07 ± 0.34 15.18 ± 0.69 16.38 ± 0.25 19.21 ± 0.21*

C18:2n6t nd nd 0.74 ± 0.17 0.65 ± 0.22

C20:1 nd nd 0.62 ± 0.10 0.60 ± 0.05

C20:4n6 (AA) 14.08 ± 0.27 13.12 ± 0.34 13.74 ± 0.83 14.93 ± 0.48

C23 3.88 ± 0.13 3.46 ± 0.18 3.98 ± 0.20 3.52 ± 0.19

C22:5n6 1.54 ± 0.06 9.60 ± 0.26** 1.49 ± 0.11 9.39 ± 0.31**

C22:6n3 (DHA) 19.23 ± 0.88 9.48 ± 0.84** 19.70 ± 0.69 8.70 ± 0.73**

Values are expressed as means ± SD.
*p < 0.01; **p < 0.001; nd, not detected.
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FIGURE 1 | Thiobarbituric acid-reactant substances (TBARS) levels

(A) and total superoxide dismutase (t-SOD) activities (B) in the pool of

Substantia Nigra and Corpus Striatum from first generation adult rats

fed essential fatty acid restricted diet and controls (n = 12 per group).
∗P < 0.05 compared to control group. Treatment of control homogenates
with sodium nitroprusside (SNP) was used as positive control in all the
experiments. #P < 0.001 compared to control or EF1 groups.

0.02 nmol MDA/mg protein) in comparison with the control
group (0.372 ± 0.01 nmol MDA/mg protein, P < 0.05). The
magnitude of LP induced by the experimental condition in the
SN is about 50% less than that obtained by using 30 μM SNP
(1.330 ± 0.220 nmol MDA/mg protein). No difference between
the EF2 (0.354 ± 0.005 nmol MDA/mg protein) and the C
(0.391 ± 0.083 nmol MDA/mg protein) groups was found in the
CS (Figure 2A). A significant increase in t-SOD enzyme activ-
ity was found in the CS of the EF2 group (1.074 ± 0.145 U/mg
protein) compared to the control group in the absence of pre-
treatment with SNP (0.610 ± 0.096 U/mg protein, P < 0.01).
Nevertheless, the increase in SOD activity in the EF2 group CS
was smaller than that induced by 30 μM SNP in the C group
(1.633 ± 0.046 U/mg protein). No difference between the groups
was detected for t-SOD activity in the SN (0.741 ± 0.087 and
0.667 ± 0.138 U/mg protein for the EF2 and C groups, respec-
tively) as shown in the Figure 2B. On the other hand, the CAT
activity was significantly reduced in the SN of the EF2 group
(0.652 ± 0.238 nmol/min/mg protein) compared to the con-
trol group (3.159 ± 0.279 nmol/min/mg protein in the control;
P < 0.001). No difference between the groups was detected in
CAT activity in the CS (4.339 ± 0.217 nmol/min/mg protein and
4.420 ± 0.125 nmol/min/mg protein for the EF2 and C groups,
respectively) as shown in Figure 2C. The insert in the Figure 2C

FIGURE 2 | Thiobarbituric acid-reactant substances (TBARS) levels (A),

total superoxide dismutase (t-SOD) activities (B), and catalase (CAT)

activities (C) in the pool of Substantia Nigra and Corpus Striatum from

young rats fed an essential fatty acid restricted diet over two

generations and respective controls (n = 12 per group). ∗P < 0.05;
∗∗P < 0.001 compared to control group. Treatment of control homogenates
with sodium nitroprusside (SNP) was used as positive control for TBARS
and t-SOD in all the experiments. The insert (c) in the panel (C) shows the
H2O2 concentration-dependent manner of the CAT activity in the SN and
CS control homogenates obtained as positive controls. #P < 0.0001
compared to control or EF2 groups.

shows the H2O2 concentration-dependent manner of the CAT
activity in the SN and CS control homogenates obtained as pos-
itive controls. As can be observed, at lower concentrations of
H2O2, the CAT activity is significantly greater in the CS as com-
pared to SN (p < 0.05) but this difference disappears at higher
concentrations.

FLUORO JADE C AND TYROSINE HYDROXILASE LABELING
Fluoro-Jade C-positive cell bodies were not detected in the SN or
CS in the groups (6 animals/group) of F1 generation (Figure 3A).
In the SN of the EF2 group, several FJC-positive cells were seen
either in the pars compacta or in the pars reticulata while no
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labeling was detected in cell bodies of the CS in all animals
(n = 6) analyzed (Figure 3B). In the EF2 group (n = 6), the
number of FJC-positive cells distributed in the pars compacta and
pars reticulata at the middle level of SN changed from 59 to 70
cells and the average number was estimated as 63.8 ± 6.4 cells.

Double fluorescence staining for FJC and TH of a representa-
tive EF2 animal is shown in the Figure 4. As can be seen, signals
of degeneration were detected in SN dopaminergic and non-
dopaminergic neurons either in the pars reticulata or in the pars
compacta. Nevertheless, no staining for FJC was found in cell

FIGURE 3 | Fluoro-Jade C staining in brain parasagittal sections of

F1- (panel A) or F2- (panel B) generation groups at the level of Substantia

nigra (SN) or Corpus Striatum (CS). No labeling was detected in cell bodies
or processes of SN (Aa, Ab) and CS (Ac, Ad) in adult animals of F1 generation.
However, FJC positive cell bodies and processes were detected in the SN pars

reticulata (Bb) and pars compacta (Bd) of EF2 group while no labeling in these
regions was seen in the controls (Ba, Bc). No FJC labeling was detected in cell
bodies of the CS in the EF2 (Bf) or control (Be) groups. A slight and
non-specific labeling was seen in regions rich in myelin such as cerebral
peduncle (cp), corpus callosum (cc), or myelinated fibers crossing the CS.

FIGURE 4 | Photographs of epifluorescence microscopy showing SN

sections from a representative EF2 animal subjected to TH

immunostaining followed by Fluoro-Jade C staining. Examples of single
(FJC; yellow arrows) or double (TH + FJC; black arrows) labeled cells can be

seen either in the SN pars reticulata (A,B, and C) or in the pars compacta
(D,E, and F). High magnification of the region (d) is shown in the bottom
panel. Scale bar of A = B,C,D,E, and F represents 60 μm while the scale bar
of bottom panel represents 20 μm.
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FIGURE 5 | Photographs of epifluorescence microscopy showing

CS sections from a representative EF2 animal subjected to TH

immunostaining (A) followed by Fluoro-Jade C staining (B). Note the
absence of FJC-positive cells surrounded by TH-positive neuronal terminals.
cc = corpus calosum, Scale bar = 40 μm.

bodies surrounded by TH-positive neuronal terminals in the CS,
confirming data obtained using single labeling for FJC (Figure 5).

DISCUSSION
The current study investigated whether a dietary restriction of
both linoleic and α-linolenic fatty acids for one or two generations
could affect the redox balance in the SN and CS. We hypothesized
that OS could be a potential mechanism involved in the loss of
dopaminergic cells previously demonstrated (Passos et al., 2012).
Our data showed signals of degeneration in SN dopaminergic and
non-dopaminergic neurons and indicated a differential vulnera-
bility of SN and CS to oxidative insult induced by two generations
of EFA dietary restriction.

REPERCUSSION OF DIETARY TREATMENT ON BODY WEIGHT
The significant lower body weight gain of adult EF1 and young
EF2 animals is in agreement with previous studies using coconut
oil as the only source of dietary lipids (Deuel et al., 1954; Soares
et al., 1995; Borba et al., 2010). Regarding this effect, this type of
dietary treatment has been associated with dysfunction of growth
hormone regulation (Soares et al., 1995). Moreover, it has been
reported that coconut oil can reduce body weight due to high
saturated medium chain fatty acids (8:0–14:0) turnover rates,
which are predominant in its lipid profile. Such effect seems to
be independent of essential fatty acid deficiency (Hargrave et al.,
2005).

MIDBRAIN AND CORPUS STRIATUM FATTY ACID PROFILE
It has been demonstrated that a diet containing coconut oil as the
only source of lipids depletes DHA in the brain more than a fat
free diet, even for a short-term treatment, especially due to the
diet’s high content of saturated fatty acids (Ling et al., 2010). In
the present study, the experimental diet based on coconut oil sig-
nificantly reduced DHA levels about 28 and 50% in the midbrain
phospholipids of the EF1 and EF2 groups, respectively, as com-
pared to their controls. The DHA depletion was accompanied by
a significant increase in DPA levels, which reinforces the condi-
tion of DHA deficiency. On the other hand, despite containing
8% linoleic acid (about 30% of recommended minimal dietary

requirement for rodents (Bourre et al., 1990), the experimental
diet did not modify the AA levels in either region of EF2 group.
These results agree with other studies, indicating that AA is more
tightly controlled than DHA in the central nervous system and
that its brain concentrations are less vulnerable to limitations in
the supply of precursor than other organs (Bourre et al., 1990;
Brenna and Diau, 2007; Igarashi et al., 2009; Ling et al., 2010).
In fact, recent evidence has indicated that even when using a diet
containing 2.3% linoleic acid for 15 weeks, starting at weaning,
the brain AA concentration is reduced by only 28%, while a 74%
reduction has been observed in the liver of the same rats (Igarashi
et al., 2009). Thus, in addition to DHA deficiency, our dietary
treatment was able to increase AA/DHA ratio in the fatty acid
profile of SN and CS phospholipids.

REPERCUSSION OF DIETARY TREATMENT ON LIPID
PEROXIDATION AND ENZYMATIC ANTI-OXIDANT ACTIVITY
It has been established that an imbalance in the AA/DHA ratio
and especially DHA deficiency can decrease anti-inflammatory
and anti-oxidant responses and induce cellular damage in differ-
ent classes of neurons (Yavin, 2006; Schmitz and Ecker, 2008). An
inverse relation between the number of some brain neurons and
increasing ratios of n–6/n–3 EFAs in the maternal diet has been
also recently reported (Tian et al., 2011). In the present study, an
increase in the t-SOD activity observed in the SN and CS of the
EF1 group was able to protect these regions from membrane LP
measured as TBARS levels. The absence of FJC labeling in neu-
ronal cell bodies of both brain regions reinforces these results,
considering the efficacy of this reagent in detecting signals of neu-
rodegeneration induced by conditions of OS, such as ischemia
(Yang et al., 2011), glutamate excitotoxicity (Ehara and Ueda,
2009) or dopaminergic lesions induced by 6-OHDA (Ehara and
Ueda, 2009) or MPTP (Bian et al., 2007; Li et al., 2009).

EFA dietary restriction over two generations, which induced
a more expressive DHA deficiency in midbrain phospholipids
(∼50%) and AA/DHA ratio (∼2), was able to provoke LP and
impaired the anti-oxidant responses at least in SOD and CAT
enzymes in the SN of the EF2-group as compared to the control.
Such results are consistent with recent evidence of the protective
action of DHA dietary supplementation on SN cell populations
under experimental conditions that induce OS, such as MPTP
(Ozsoy et al., 2011). The lack of efficient t-SOD reactivity and
the expressive reduction in the CAT activity observed in the EF2
group shows the vulnerability of SN to conditions that reduce
DHA availability during the critical period of brain develop-
ment. Studies on rats or human SN have indicated a progressive
decrease in the activity of several anti-oxidant enzymes including
SOD and CAT during physiological brain aging (Kolosova et al.,
2003; Venkateshappa et al., 2012). The present findings in the
EF2 young animals corroborate our initial hypothesis indicating
that a decreased anti-oxidant function can be a potential mecha-
nism by which long-term EFA dietary restriction induces loss of
SN dopaminergic neurons (Passos et al., 2012). Thus, increased
levels of OS in the young brain might act synergistically with
other deleterious effects induced by DHA deficiency, accelerat-
ing the degenerative profile of SN. The FJC staining in the SN of
EF2 animals reinforces these data, demonstrating the presence of
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neuronal damage in several dopaminergic neurons either in the
pars compacta or in the pars reticulata. Moreover, we also detected
signals of degeneration in non-dopaminergic cells at the same
regions of SN, suggesting that the oxidative insult induced by
EFA dietary restriction affects neuronal populations with distinct
neurochemical profile.

In contrast to the effects detected in the SN and despite a
similar DHA deficiency, we did not observe LP or anti-oxidant
dysfunction in the CS of the EF2 young rat brains, when com-
pared to their respective controls. In support of this biochemical
data, we did not find FJC-positive cell bodies in parasagittal or
transversal sections of this nucleus. These findings reinforce some
early and recent evidence in human and experimental animals
that this region is more resistant than SN under physiological
(Kolosova et al., 2003; Venkateshappa et al., 2012) or pathological
conditions where SN dopaminergic neurons are affected (Floor
and Wetzel, 1998; Mythri et al., 2011). The significant increase
in the t-SOD activity in the CS of the EF2 animals indicates
that this region has differential compensatory means which can
be triggered from the insult induced by DHA deficiency. It is
noteworthy that under normal conditions, dietary DHA supple-
mentation, even for a short period (30 days), is able to increase
the t-SOD activity in the CS of adult rats, which has been sug-
gested as a potential regulatory action of this LC-PUFA on this
enzyme (Sarsilmaz et al., 2003). If this is the case, our findings
suggest that such action could be activated even under conditions
of 50% DHA depletion in the CS phospholipids. A differential
reactivity of CS under OS conditions was also recently reported:
in animals injured with 6-OHDA, the dopamine turnover is sig-
nificantly increased in this nucleus by fish oil supplementation
(Delattre et al., 2010).

The increased t-SOD activity in the CS was not accompanied
by a similar CAT reaction, which did not change its activity as
compared to the control condition. These enzymes play comple-
mentary activities in the anti-oxidative defense system, consider-
ing that the H2O2 generated by SOD activity is the substrate for
CAT. Thus, the absence of LP in the CS suggests that other anti-
oxidant mechanisms involved in the degradation of H2O2 could
be implicated in the relative resistance of this nucleus. An expres-
sive increase in the total glutathione levels and in the glutathione
peroxidase activity associated with glial cell proliferation has been
found in the CS and frontal cortex of human postmortem PD
brains (Mythri et al., 2011). Although future studies need to be
carried out in order to address this issue in our experimental
model, preliminary results of our group indicate that the glial cell
reactivity might be also implicated in the lower vulnerability of
CS to oxidative insult described herein.

Despite the resistance of CS to OS under the present exper-
imental conditions, we cannot discard potential effects of EFA
dietary restriction on other parameters involving neuroprotec-
tion in the nigrostriatal system. The anti-oxidant parameters here
investigated under conditions of DHA deficiency probably are
not working alone. A recent study demonstrated that a relatively
short-term feeding of an α-linolenic acid-restricted diet was able
to lower the DHA content and the brain derived neurotrophic fac-
tor (BDNF) levels in the mouse striatum, while two other brain
regions were not affected (Miyazawa et al., 2010). Conversely,
when DHA is supplemented in the diet, CS strongly reacts to OS
induced by MPTP, increasing the synthesis of BDNF more than
in control conditions (Bousquet et al., 2009). The disrupted rela-
tion between OS and neurotrophin availability could be involved
in behavioral or neurochemical effects observed in animals or
human beings submitted to EFA dietary restriction (Fedorova and
Salem, 2006; Kuperstein et al., 2008).

CONCLUSION
The present data shows the importance of adequate dietary lev-
els of EFA to maintain an effective redox balance in the SN.
Our results demonstrate that LP associated with an impaired
anti-oxidant response increases the vulnerability of SN dopamin-
ergic and non-dopaminergic neurons to degeneration induced
by long-term EFA dietary restriction. These results reinforce the
hypothesis that this dietary treatment increases the risk of certain
neurological disorders. The data also demonstrate that biological
mechanisms of resilience can be activated in the CS even under a
similar condition of DHA deficiency.
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