
sensors

Article

ABE-VIEW: Android Interface for Wireless Data
Acquisition and Control

Daniel M. Jenkins * ID and Ryan Kurasaki

Molecular Biosciences and Bioengineering, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA;
rkurasak@hawaii.edu
* Correspondence: danielje@hawaii.edu; Tel.: +1-808-956-6069

Received: 27 June 2018; Accepted: 9 August 2018; Published: 13 August 2018
����������
�������

Abstract: Advances in scientific knowledge are increasingly supported by a growing community
of developers freely sharing new hardware and software tools. In this spirit we have developed a free
Android app, ABE-VIEW, that provides a flexible graphical user interface (GUI) populated entirely
from a remote instrument by ascii-coded instructions communicated wirelessly over Bluetooth.
Options include an interactive chart for plotting data in real time, up to 16 data fields, and virtual
controls including buttons, numerical controls with user-defined range and resolution, and radio
buttons which the user can use to send coded instructions back to the instrument. Data can be
recorded into comma delimited files interactively at the user’s discretion. Our original objective
of the project was to make data acquisition and control for undergraduate engineering labs more
modular and affordable, but we have also found that the tool is highly useful for rapidly testing novel
sensor systems for iterative improvement. Here we document the operation of the app and syntax
for communicating with it. We also illustrate its application in undergraduate engineering labs on
dynamic systems modeling, as well as for identifying the source of harmonic distortion affecting
electrochemical impedance measurements at certain frequencies in a novel wireless potentiostat.

Keywords: graphical user interface; open-source design; Arduino; rapid prototyping; virtual
instrumentation; test equipment; Bluetooth; potentiostat

1. Introduction

1.1. Overview/Objective

In recent years scientists and engineers have increasingly embraced the “open-source” and
freeware movements to share software and hardware tools to help accelerate the pace of discovery [1].
Examples include software tools to analyze biological data such as from imagery [2], single
cell RNA sequencing [3], and neurophysiology experiments [4]. Notably, more software tools
are becoming available to directly interface with hardware for managing disparate sensor data
over networks [5,6], automate the operation of laboratory instruments [7], and directly manage
laboratory experiments [8]. Platforms such as Arduino and Raspberry Pi, with highly versatile
open-source hardware, friendly development environments, and large communities of users
have resulted in massive numbers of highly-customized sensor systems to address needs in
precision agriculture [9,10], plant phenotyping [11], particle physics [12], geosciences [13,14],
long-term low-power environmental monitoring [15], micro-scale process control [16], and other
analytical [17–19] and educational [12,20–22] applications.

In this manuscript we demonstrate the features of a freely available Android app “ABE-VIEW” [23]
intended to provide a versatile wireless graphical user interface (GUI) for customized hardware
assemblies equipped with Bluetooth radio [20]. The primary advantage of ABE-VIEW is that available

Sensors 2018, 18, 2647; doi:10.3390/s18082647 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-1616-0845
http://www.mdpi.com/1424-8220/18/8/2647?type=check_update&version=1
http://dx.doi.org/10.3390/s18082647
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 2647 2 of 17

elements in the GUI have already been coded in XML (a user interface markup language) within
the Android app itself, and are added/configured completely through simple ASCII-coded serial
instructions from the remote device over a Bluetooth connection. This obviates the need for the user to
become adept with separate software tools to develop source code, markup files, and/or to configure
and manage html or other form data as would generally be required to develop a custom user interface.
These advantages are most compelling for quickly developing and troubleshooting simple wireless data
acquisition and control applications where user interaction and/or graphical data display is required.
The app may also be used to quickly test and troubleshoot different components and functionalities
of other more sophisticated systems that include Bluetooth hardware [24–27]. It is less suitable for
applications where sophisticated data processing is required such as for machine vision, where reliable
long-term operation is critical such as in commercially deployed industrial control systems and
biomedical devices, or where more than one wireless system needs to communicate simultaneously.

In this manuscript we provide a general comparison of ABE-VIEW to similarly conceptualized
software tools (Section 1.2), a basic user guide to the networking approach and syntax for
communication (Section 2.2) with template source code (Supplemental materials), along with example
applications of ABE-VIEW for data acquisition and control of simple systems in an undergraduate
engineering lab (Sections 2.3 and 3.2) and for testing/troubleshooting issues in a more sophisticated
custom hardware design outfitted with Bluetooth (Sections 2.4 and 3.3).

1.2. Background/Related Works

A variety of software tools are available to build rich graphical interfaces for custom
instrumentation, but generally these require developers to be adept in more than one development
environment and programming language. For example, Windows Forms built on the Microsoft.NET
framework enables rich GUI features to respond to user interactions with an event-driven application,
but requires familiarity with relatively sophisticated and proprietary integrated development
environment (IDE; Microsoft Visual Studio, Microsoft Corp., Redmond, WA, USA) to develop a custom
interface, and does not directly support software classes for interfacing to customized hardware.
Some open-source analogs to Windows Forms are available, i.e., Koda Forms [28], but these still
require that the GUI be developed in a separate software environment and are most suitable for
user interaction with a custom software application within Windows rather than with customized
hardware. ProviewR [29] is an open-source object-oriented development environment to network
computers around process control of standard unit operations such as pumps and fans, using an
architecture reminiscent of “ladder-logic” of traditional programmable logic controllers, but again
requires separate configuration of an interface using a syntax that is potentially alien to beginning
developers. While numerous tools have become available recently to facilitate the development
of GUIs for controlling customized hardware, we believe that there are several compelling advantages
of ABE-VIEW, notably again the approach that the GUI is configured directly from the remote device
by ASCII coded serial instructions communicated wirelessly over Bluetooth. MIT app inventor [30–32]
is a browser based graphical programming tool for composing a customized app/GUI, that can
be configured to communicate through the Android Bluetooth, but the platform still requires that
the custom interface be developed separately from the software operating on the remote device.
Development of apps through MIT app inventor requires a “companion” app on the Android device,
connected through internet to the browser-based developer tool. Blynk [33] is an app that can be
installed directly on Android (or iOS), with a rich configurable interface with standard libraries
to support commonly used open source hardware (i.e., Arduino and Raspberry Pi), but while the
development interface is highly intuitive it still requires user configuration within the app in addition
to the customized source code on the remote device. Blynk is operated through a proprietary
server so it cannot be used as a direct interface to the test instrument without registering the
app and connecting through the internet. Several options, in various states of development and
documentation, are available for more direct local communication with a remote device. These include

Sensors 2018, 18, 2647 3 of 17

“Arduino Graph” [34], which requires snippets of custom code running on a personal computer
(PC) to communicate with the software on the remote instrument, but the display is rather crude,
not interactive, and generally restricted to a PC using a wired serial to USB interface. Somewhat
more developed are “Instrumentino” [35] and “SerialComInstruments” [36] Windows-based free
softwares for configuring graphical interfaces to interact with remote microcontroller systems through
simple serial communication, with rich options for graphical display and control elements that send
coded data back and forth to the microcontroller using a conserved syntax. However, these tools still
require that the user configure the interface within the Windows app completely independently of
(and in coordination with) the software running on the remote instrument. They are also restricted
to operating on PCs through a wired USB to serial connection. In principle, ABE-VIEW is most
similar to the “Arduino Dashboard” (a Windows-based executable project developed with Visual
Basic) and “EzScrn” (a Python-based program with a browser interface, requiring installation of
Python 2.7 interpreter) [37,38] in that elements in the GUI are enabled and configured by coded serial
instructions from the remote device, and interaction with these elements results in coded instructions
back to the remote device that are parsed to execute a desired function in the hardware (i.e., illuminate
an LED). ABE-VIEW can be more convenient to operate in that it can be directly installed through
Google Play onto a highly portable Android phone or tablet with no additional software dependencies,
and connects directly to the remote instrument through Bluetooth. The ABE-VIEW interface also
has some potentially improved features relative to previously published projects, for example the
resolution of the controls is configurable, and data incoming to the app can easily be recorded into
a standard comma delimited file for subsequent sharing and analysis. A systematic comparison
of the features, strengths, and weaknesses of various software tools for facilitating GUI or custom
instrumentation is summarized in Table 1.

The inspiration for ABE-VIEW was to facilitate a transition away from reliance on powerful yet
expensive applications and hardware [22,39] for fundamental courses on instrumentation and control,
in favor of increasingly capable open-source hardware options [40] and the compactness/ubiquity of
smart-phones and tablets [18,41]. In the teaching context, development with ABE-VIEW allows
students with basic coding skills to focus on experimental design, system modeling, and data
analysis. A secondary motivation for developing ABE-VIEW was to facilitate the testing of new sensor
technologies to help lower development costs and accelerate their transition into the marketplace of
ideas. Correspondingly we illustrate example applications of the app in two design applications in
an undergraduate engineering laboratory course on dynamic systems modeling (precision control
of a customized positive displacement pump, and design/analysis of a heat exchanger in a thermal
cycling application), as well as for identifying the source of harmonic distortion in a prototype wireless
potentiostat currently under development that incrementally builds on previous open-source hardware
designs [42,43]. Supplementary materials, including hardware schematics and Arduino source code
templates, are shared to help facilitate adaptation of the app for new applications.

Sensors 2018, 18, 2647 4 of 17

Table 1. Comparison of ABE-VIEW features to alternative software for GUI development for custom hardware. The key features that we believe facilitate use by
inexperienced developers are flagged in red.

Tool
Standalone

Mobile
App

No
Additional
Software

Dependencies

Android iOS PC/Windows/
Linux

Direct
Support for

Wireless
Bluetooth

GUI Fully
Configured
by Remote
Instrument

Easy user
Options to
Save/Share

Data

High Quality
Graphical
Displays

Numerical
Controls with

Arbitrary
Precision

Easily Scalable
Structured

Coding
(Cut/Paste/Edit)

Can Operate
without
Internet

Can Connect
to Hardware

through
Internet

ABE-VIEW
√ √ √

× ×
√ √ √ √ √ √ √

×
Blynk [33]

√ √ √ √
×

√
×

√ √ √
× ×

√

MIT App Inventor [30,31] × × 1 √
× √ 1 √

×
√ √ √

× √ 1 √

Arduino Dashboard [37] × × × ×
√

×
√ √ 2 √

×
√ √

×
EzScrn [38] × × × ×

√
×

√
× × ×

√ √
×

Instrumentino [35] × × × ×
√

× ×
√ √ √ √ √

×
SerialComInstruments [36] × × × ×

√
× ×

√ √ √
×

√
×

Arduino Graph [34] × × × ×
√

× × × × ×
√ √

×
ProviewR [29] × × × ×

√
× × ×

√ √ √ 3 √ √

1 App/GUI is configured in a browser, with internet connection to a companion app. 2 All serial data is recorded in a logging window. 3 Development options include graphical editor or
structured code (C, C++, Java, FORTRAN).

Sensors 2018, 18, 2647 5 of 17

2. Materials and Methods

2.1. Overview

Details in the Materials and Methods below are provided primarily as documentation about the
behavior of the app, and as a guide for new users to use the app to communicate with new customized
hardware assemblies. Included is a comprehensive summary of GUI elements available, how they
are explicitly populated on the interface from coded instructions from the connected device, and how
to decode instructions/information sent from the app in response to user interaction with elements
on the GUI. Supplemental materials include a hardware schematic and an associated template sketch
from the Arduino IDE that includes code to set up every available GUI element, communicate data,
concatenate data into dynamic ArrayLists, and decode instructions returning from user interactions
on the GUI. We have also attempted to summarize how data communicated to the app is handled
including options to save and share data in a comma delimited (.csv) file format. To illustrate use
of the app in a pedagogical context in an undergraduate engineering lab, we have provided a brief
description of two laboratory design assignments, with more detailed handouts as supplemental
materials. To illustrate use of the app in an iterative hardware design/testing process, we have
described the use of the app to control a customized wireless potentiostat system to identify the source
of severe harmonic distortion in AC impedance measurements.

2.2. General Architecture of ABE-VIEW

All applications demonstrated in this work use ABE-VIEW [23], a freely available app with
a flexible GUI (Figure 1) populated by serial ASCII-coded instructions communicated from the
remote device over Bluetooth. In practice, data to and from the remote device is communicated
serially through a universal synchronous/asynchronous receiver-transmitter (USART) or universal
asynchronous receiver-transmitter (UART) port (i.e., Arduino “Serial” class), interfaced to a serial to
Bluetooth converter (i.e., RN42, Roving Networks, Los Gatos, CA, USA; available packaged on an
easily interfaced evaluation module as BlueSMiRF Silver, SparkFun, Niwot, CO, USA). When the app
makes a Bluetooth connection to the remote device, ABE-VIEW sends a single character code (‘s’)
to request that instructions are returned to enable any of the graphical elements that can compose
the interface, including a chart that is able to plot numerical data, up to 16 data “indicators” with
user defined headings, 8 virtual buttons, 8 numerical controls with user defined precision and range,
and 4 radio groups with up to 4 radio buttons each (Figure 2).

Options for each element in the GUI (i.e., headings, range, and resolution for numerical controls)
are designated by tab delimited ascii text appended to the corresponding code (Table 2). Similarly,
user interactions with elements in the GUI (button presses and numerical controls) result in standard
coded text strings returned to the instrument that can be decoded accordingly (Table 3). A simplified
flowchart for communication between devices is illustrated in Figure 3, and template Arduino source
code is shared as Sketch S1 with a function to populate the app’s GUI, instructions to send data to the
app, and functions to parse data returning from user interactions with buttons and numerical controls
on the app.

Sensors 2018, 18, 2647 6 of 17
Sensors 2018, 18, x 6 of 17

Figure 1. Class Diagram for ABE-VIEW app illustrating the attributes of various elements of the GUI,

as well as the relationship between data communicated to the app and data records that are plotted

on an optional chart or saved as a comma delimited file.

(a)

(b)

(c)

(d)

Figure 1. Class Diagram for ABE-VIEW app illustrating the attributes of various elements of the GUI,
as well as the relationship between data communicated to the app and data records that are plotted on
an optional chart or saved as a comma delimited file.

Sensors 2018, 18, x 6 of 17

Figure 1. Class Diagram for ABE-VIEW app illustrating the attributes of various elements of the GUI,

as well as the relationship between data communicated to the app and data records that are plotted

on an optional chart or saved as a comma delimited file.

(a)

(b)

(c)

(d)

Figure 2. Cont.

Sensors 2018, 18, 2647 7 of 17Sensors 2018, 18, x 7 of 17

(e)

(f)

Figure 2. Illustration of ABE-VIEW graphical interface with customizable elements including: (a)

interactive chart; (b) up to 16 data fields with text headings; (c) up to 8 buttons; (d) up to 8 numerical

controls with customizable range and resolution; (e) up to 4 radio groups with up to 4 radio buttons

each, and; (f) options menu while connected to remote instrument. All elements between the chart

and options button are contained in a scrollview to ensure they are all accessible to the user.

Figure 3. Flowchart for (Bluetooth) communications between ABE-VIEW and remote

instrument/device. Upon making a Bluetooth connection with the remote device, ABE-VIEW sends a

code ‘s’ that prompts the latter to return coded instructions to populate the interface. Thereafter, user

interactions with the GUI result in coded instructions sent to the remote device, and coded data from

the remote device are displayed by the app.

Figure 2. Illustration of ABE-VIEW graphical interface with customizable elements including:
(a) interactive chart; (b) up to 16 data fields with text headings; (c) up to 8 buttons; (d) up to 8 numerical
controls with customizable range and resolution; (e) up to 4 radio groups with up to 4 radio buttons
each, and; (f) options menu while connected to remote instrument. All elements between the chart and
options button are contained in a scrollview to ensure they are all accessible to the user.

Sensors 2018, 18, x 7 of 17

(e)

(f)

Figure 2. Illustration of ABE-VIEW graphical interface with customizable elements including: (a)

interactive chart; (b) up to 16 data fields with text headings; (c) up to 8 buttons; (d) up to 8 numerical

controls with customizable range and resolution; (e) up to 4 radio groups with up to 4 radio buttons

each, and; (f) options menu while connected to remote instrument. All elements between the chart

and options button are contained in a scrollview to ensure they are all accessible to the user.

Figure 3. Flowchart for (Bluetooth) communications between ABE-VIEW and remote

instrument/device. Upon making a Bluetooth connection with the remote device, ABE-VIEW sends a

code ‘s’ that prompts the latter to return coded instructions to populate the interface. Thereafter, user

interactions with the GUI result in coded instructions sent to the remote device, and coded data from

the remote device are displayed by the app.

Figure 3. Flowchart for (Bluetooth) communications between ABE-VIEW and remote instrument/
device. Upon making a Bluetooth connection with the remote device, ABE-VIEW sends a code ‘s’ that
prompts the latter to return coded instructions to populate the interface. Thereafter, user interactions
with the GUI result in coded instructions sent to the remote device, and coded data from the remote
device are displayed by the app.

Sensors 2018, 18, 2647 8 of 17

Table 2. Coded instructions from remote device to populate ABE-VIEW interface, and share data.

Code Description Options 1 Example Text String(s) GUI Result

g display chart enable (0 or 1) “g1\t” Graph visible (i.e., Figure 2a)

h configure data heading/options
heading index (0–15)

enable checkbox for chart (0 or 1)
heading text

“h2\t1\tBlue: \t” Data (index 2) enabled with checkbox to plot on graph, with
heading “Blue: (i.e., Figure 2b)

b configure button button index (0–7)
button text/label “b0\tLED Toggle\t” Button (index 0) enabled, with label “LED Toggle” (i.e., Figure 2c)

c configure numerical control

control index (0–7)
resolution (integer–decimal digits)

minimum value
default/start value

maximum value
heading text

“c4\t3\t-0.015\t0.007\t0.015\tExposure time\t”
Numerical control (index 4) enabled, with 3 decimal place

precision, range −0.015 to 0.015, default value 0.007, labelled
“Exposure time” (Figure 2d)

r configure radio buttons

radio group index (0–3)
radio group text

radio button 1 text
radio button 2 text
radio button 3 text
radio button 4 text

“r0\tSensor Select\tLocal\tRemote\t\t\t”
“r1\tFruit\tbanana\tpapaya\tmango\tlilikoi\t”

Radio group (index 0) enabled, group label “Sensor Select” with
buttons “Local” and “Remote”

Radio group (index 1) enabled, group label “Fruit”, with buttons
“banana”, “papaya”, “mango”, “lilikoi”

(i.e., Figure 2e)

d send data data index (0–15)
data value “d2\t1141\t” New data element (“1141”) for data array index 2

(Figure 2b)

p
set period for automatically

concatenating latest data into
array(s)

period (in seconds) “p10\t”
Most recently communicated value in each data field (and system

time) will be automatically concatenated into its corresponding
ArrayList every 10 s

u concatenate most recent data
into array(s) n/a “u”

Most recently communicated value in each data field (and system
time) will immediately be concatenated into its corresponding

ArrayList
1 Tab (“\t”) delimited configuration options appended to code.

Sensors 2018, 18, 2647 9 of 17

Table 3. Coded information from ABE-VIEW to remote device indicating user interactions with GUI.

Code Description Options 1 Example Text
String (s) Response to User Action

s device connected—request
GUI configuration n/a “s” User/app just connected to remote

Bluetooth (request GUI configuration)
b button pressed button index (0–7) “b0\t” Button (index 0) pressed

c control value changed control index (0–7)
control value “c0\t100.0\t” Control (index 0) set to 100.0

r radio button pressed
radio button identifier (“ij”)
where i is radio group (1–4)

and j is button (1–4)
“r12\t” Second button in first radio group

was pressed

1 Tab (“\t”) delimited configuration options appended to code.

Any element that is not specifically initialized following a Bluetooth connection does not appear
in the GUI. Data “indicators” can have checkboxes associated with them (Table 1 code ‘h’) to select
them to be plotted on (or removed from) the chart if the chart is active. Within the app, ArrayLists
are assigned to each data element, and the most recent datum is concatenated into its corresponding
ArrayList either at pre-defined intervals (Table 2 code ‘p’, typically issued once when connection is
made), or on demand from the instrument by sending the code ‘u’ (Table 2). If the chart is active,
it will plot all of the data in ArrayLists corresponding to checked data indicators. By default, the chart
displays all selected data against time, but an alternative radio button “y-x” (Figure 2a) allows the user
to plot data in ArrayLists against each other. If this option is selected, the first checked data group will
be used for the “x” data, and all others will be used for “y”. The scales on the chart can be changed
dynamically by swiping on the chart, and the origin can be moved by pressing any of the green arrows
at the bottom right of the chart (Figure 2a; for “y-t” plots the origin of the time scale will never go
below 0).

The options menu (Figure 2f) allows the user to clear the data in all ArrayLists (this will also clear
the chart), or save all the ArrayLists with their corresponding headings into a comma delimited (.csv)
file, with the first column including the times (in ms) which each row of data was added into their
corresponding ArrayLists. An option allows these files to be shared by e-mail if the app is not actively
connected to a device (Figure 3).

The illustrations provided in Figures 2 and 3, and example strings in Tables 2 and 3 come directly
from an example using ABE-VIEW to interact with a custom circuit designed by undergraduate
students to sort coffee cherries by color (Design S1). This device was designed to mount onto a chute,
and it uses a digital color sensor (APDS-9960, Avago Technologies, San Jose, CA, USA) to measure
the chromaticity of light reflecting off of cherries illuminated by diffused high power white LEDs.
For wireless communication, the device has an integral Bluetooth radio (Roving Networks RN42)
interfaced to the UART port of the microcontroller (ATMEGA328P, Atmel Corporation, Chandler,
AZ, USA), which can be programmed through an Arduino device in the Arduino IDE using the
built-in example sketch “ArduinoISP”. The device also can switch a load (up to 30V/3.6 A) through an
n-channel metal-oxide-semiconductor field effect transistor (MOSFET), a feature originally intended to
engage a pneumatic solenoid valve to actuate binary sorting. The waveforms displayed on the charts
in Figures 2a and 3 were recorded by alternately illuminating the color sensor with red, green and blue
LEDs, adjusting intensities with a rectified sinusoidal current. The source code running on the device
to control the GUI of ABE-VIEW, written in the Arduino IDE, is shared as Sketch S1, and may be used
as a template to facilitate the use of ABE-VIEW for other applications.

2.3. Application of ABE-VIEW for Student Data Acquisition and Control

We have incorporated ABE-VIEW into engineering design courses. To illustrate example uses of
the app, we have shared lab handouts from an undergraduate course in dynamic systems modeling,
where electronics are assembled directly from commercially available open-source microcontrollers
and sensor/controller evaluation boards. In one lab, students write firmware to enable ABE-VIEW to
control a custom fabricated syringe pump operated by a stepper motor turning a lag screw to move

Sensors 2018, 18, 2647 10 of 17

the plunger (File S1). In a second lab/design experience, students are asked to design a heat sink to be
used with a Peltier cooler, and analyze the performance of the system for thermal cycling (File S2).

2.4. ABE-VIEW for Rapid Device/Sensor Development

To illustrate the use of ABE-VIEW for testing and troubleshooting a custom hardware design,
we used it to enable a user to interactively set the parameters of a control signal (Figure 4a) to a custom
potentiostat network (Figure 4b). An integral Bluetooth (Roving Networks RN42) on the design
(Design S2) allowed the firmware to be quickly adapted to operate with ABE-VIEW (Figure 4a; Sketch
S2), with no additional hardware or software dependencies. The microcontroller used in the design
(ESP8266 packaged on module ESP-12S, Espressif Systems, Shanghai, China) can be programmed
directly through the Arduino IDE by importing the associated system dependencies, so the example
sketch (S2) is also provided as using the Arduino file extension. This convenience facilitated the
identification of sources of harmonic distortion in the control signal resulting in very large errors in
the predicted electrochemical impedance spectra at certain frequencies, which enabled us to quickly
make iterative design improvements to correct the issue.

Sensors 2018, 18, x 10 of 17

and sensor/controller evaluation boards. In one lab, students write firmware to enable ABE-VIEW to

control a custom fabricated syringe pump operated by a stepper motor turning a lag screw to move

the plunger (File S1). In a second lab/design experience, students are asked to design a heat sink to

be used with a Peltier cooler, and analyze the performance of the system for thermal cycling (File S2).

2.4. ABE-VIEW for Rapid Device/Sensor Development

To illustrate the use of ABE-VIEW for testing and troubleshooting a custom hardware design,

we used it to enable a user to interactively set the parameters of a control signal (Figure 4a) to a

custom potentiostat network (Figure 4b). An integral Bluetooth (Roving Networks RN42) on the

design (Design S2) allowed the firmware to be quickly adapted to operate with ABE-VIEW (Figure

4a; Sketch S2), with no additional hardware or software dependencies. The microcontroller used in

the design (ESP8266 packaged on module ESP-12S, Espressif Systems, Shanghai, China) can be

programmed directly through the Arduino IDE by importing the associated system dependencies, so

the example sketch (S2) is also provided as using the Arduino file extension. This convenience

facilitated the identification of sources of harmonic distortion in the control signal resulting in very

large errors in the predicted electrochemical impedance spectra at certain frequencies, which enabled

us to quickly make iterative design improvements to correct the issue.

(a) (b)

Figure 4. (a) Implementation of ABE-VIEW to set the frequency and amplitude of (b) the control signal

to custom potentiostat network. The control voltage (VB) into the potentiostat network is composed

of a weighted sum and inversion of the voltage from a digital synthesizer (VA) of a network analyzer

chip (Analog Devices AD5933) with AC coupling, and a low pass filtered digital to analog converter

voltage to apply arbitrary DC bias. This enables the device to perform any basic potentiometric or

amperometric method in 2 or 3 electrode configuration, as well as electrochemical impedance analysis

with arbitrary bias.

The custom potentiostat (Design S2) is largely inspired by the component selection and design

configuration of the high-performance open-source design reported previously by Dryden and

Wheeler [42]. Our design has attempted to condense the footprint slightly, and include Bluetooth

(integral Roving Networks RN42) and WiFi (ESP8266, Espressif Systems) capability to facilitate

portability and/or to allow the system to be directly networked. Notably, our design has added a chip

level network analyzer (AD5933, Analog Devices, Norwood, MA, USA) to enable the device to

conduct Electrochemical Impedance Spectroscopy (EIS). The excitation signal from the AD5933

is provided by a digital synthesizer that can be operated at any of 4 voltage amplitudes, at a

 1

VA

VB

…to transimpedance

amplifiers

Figure 4. (a) Implementation of ABE-VIEW to set the frequency and amplitude of (b) the control signal
to custom potentiostat network. The control voltage (VB) into the potentiostat network is composed of
a weighted sum and inversion of the voltage from a digital synthesizer (VA) of a network analyzer
chip (Analog Devices AD5933) with AC coupling, and a low pass filtered digital to analog converter
voltage to apply arbitrary DC bias. This enables the device to perform any basic potentiometric or
amperometric method in 2 or 3 electrode configuration, as well as electrochemical impedance analysis
with arbitrary bias.

The custom potentiostat (Design S2) is largely inspired by the component selection and design
configuration of the high-performance open-source design reported previously by Dryden and
Wheeler [42]. Our design has attempted to condense the footprint slightly, and include Bluetooth
(integral Roving Networks RN42) and WiFi (ESP8266, Espressif Systems) capability to facilitate
portability and/or to allow the system to be directly networked. Notably, our design has added a
chip level network analyzer (AD5933, Analog Devices, Norwood, MA, USA) to enable the device
to conduct Electrochemical Impedance Spectroscopy (EIS). The excitation signal from the AD5933 is
provided by a digital synthesizer that can be operated at any of 4 voltage amplitudes, at a frequency

Sensors 2018, 18, 2647 11 of 17

that is set by controlling the incremental value added to a phase accumulator at fixed intervals
with respect to the system clock [44]. In our design, the control signal to the potentiostat network
(VB, Figure 4b) is set by summing a scaled (and AC coupled) version of the synthesizer signal (VA,
Figure 4b) with the signal from a separate Digital to Analog Converter (DAC; AD5061, Analog Devices).
The superposition of these signals allows EIS to be conducted at an arbitrary frequency and DC bias,
with any of 4 pre-defined amplitudes. The AD5933 reports a complex representation of the system
admittance based on the Discrete Fourier Transform (DFT) of 1024 current values sampled from
an internal transimpedance amplifier with an externally configured gain, at a fixed frequency with
respect to the system clock [44]. At low frequencies, significant errors can occur by not sampling a
whole integer number of waveforms at the given frequency, so that the effective range of frequencies
that can be analyzed by the AD5933 operating with the internal 16.776 MHz clock is about 1 kHz
to 100 kHz (with the upper end of the range limited by low pass filtering of the synthesizer signal).
We have accurately evaluated EIS spectra between 0.1 Hz up to about 70 Hz by generating the desired
waveform directly with the DAC, and evaluating the complex value of the corresponding element
from the DFT of working current values sampled from a separate transimpedance amplifier. To fill
in the gap in the EIS spectra we included a 250 kHz external clock that can be selected to provide
an alternative sampling frequency and update interval to the AD5933 phase accumulator, in theory
allowing admittances to be evaluated accurately between 15.29 Hz and 7812.5 Hz.

In the prototype design described above, we observed very serious systematic errors in the
predicted admittances for signals around 750 Hz when operating the AD5933 with the 250 kHz
external clock. To determine the source of these errors, we quickly adapted the device firmware to
operate with ABE-VIEW to provide an easy way to control and maintain the characteristics of a desired
signal into the potentiostat network (Figure 4a; Sketch S2). The circuit was then probed with a digital
storage oscilloscope (TDS2012B, Tektronix Inc., Beaverton, OR, USA) to compare the synthesizer
signal to other signals in the network to identify any sources of distortion that could potentially be
corrected in a revised design. For these tests we configured the network to operate in a 2-electrode
configuration, applied no DC bias, and used passive resistors for the network load. The ABE-VIEW
interface was configured to also enable the control of the transimpedance amplifier gain from the
network, to help determine if the electrode network and downstream measurement electronics had an
effect on distortion of the control signal.

3. Results

3.1. Overview

We share below results using the ABE-VIEW app in a pedagogical context with customized
hardware assemblies wired together quickly from commercially available evaluation modules, and
screenshots illustrating customized GUIs and graphical data from these systems using customized
Arduino code that students can quickly adapt from scratch or from a template (i.e., Sketch S1). Since we
believe that the app can also be a very useful tool for iterative hardware design and testing, we have also
included a somewhat more detailed description of results using ABE-VIEW with a customized wireless
potentiostat device to identify the source of harmonic distortion in AC impedance measurements.

3.2. ABE-VIEW for Flexible Data-Acquisition and Control

Junior level undergraduate students were able to assemble simple electronic systems by wiring
together Arduino-compatible microcontroller boards and other off-the-shelf evaluation boards.
To communicate with ABE-VIEW, students used a Bluetooth module (BlueSMiRF Silver) that could be
powered from the regulated 5V from Arduino and connected directly to the serial UART port, and
which includes built-in logic level shifting to work with the 3.3 V logic level Bluetooth radio on board.
Students were able to quickly and independently write sketches using Arduino IDE to populate the
ABE-VIEW interface to intuitively control and record data from these systems (Figures 5 and 6).

Sensors 2018, 18, 2647 12 of 17Sensors 2018, 18, x 12 of 17

(a)

(b)

Figure 5. (a) Motion control system assembled by students using off-the-shelf components (Sparkfun

RedBoard, BlueSMiRF Silver, Big Easy Motor Driver, and 12 V bipolar 200 steps/rev stepper motor),

and (b) student populated ABE-VIEW interface to control the system to operate the motor to drive a

custom pipette/syringe pump.

(a)

(b)

Figure 6. (a) Data acquisition system assembled by students using off the shelf components (Sparkfun

RedBoard, BlueSMiRF Silver, 2 MAX31855 thermocouple breakout boards with type K thermocouple,

and bi-directional logic level converter) to record the dynamic performance of a thermal cycler with

a student designed heat sink, and; (b) student populated ABE-VIEW interface for data acquisition.

3.3. ABE-VIEW for Custom Device Testing and Troubleshooting

By adapting the custom potentiostat firmware to work with ABE-VIEW to easily set the control

signal into the potentiostat network, we were able to quickly identify the origin of harmonic

distortion affecting EIS measurements near 750 Hz. Interestingly, distortions in system phase and

admittance magnitudes (normalized to the predicted values for the given load resistor) were highly

Figure 5. (a) Motion control system assembled by students using off-the-shelf components (Sparkfun
RedBoard, BlueSMiRF Silver, Big Easy Motor Driver, and 12 V bipolar 200 steps/rev stepper motor),
and (b) student populated ABE-VIEW interface to control the system to operate the motor to drive
a custom pipette/syringe pump.

Sensors 2018, 18, x 12 of 17

(a)

(b)

Figure 5. (a) Motion control system assembled by students using off-the-shelf components (Sparkfun

RedBoard, BlueSMiRF Silver, Big Easy Motor Driver, and 12 V bipolar 200 steps/rev stepper motor),

and (b) student populated ABE-VIEW interface to control the system to operate the motor to drive a

custom pipette/syringe pump.

(a)

(b)

Figure 6. (a) Data acquisition system assembled by students using off the shelf components (Sparkfun

RedBoard, BlueSMiRF Silver, 2 MAX31855 thermocouple breakout boards with type K thermocouple,

and bi-directional logic level converter) to record the dynamic performance of a thermal cycler with

a student designed heat sink, and; (b) student populated ABE-VIEW interface for data acquisition.

3.3. ABE-VIEW for Custom Device Testing and Troubleshooting

By adapting the custom potentiostat firmware to work with ABE-VIEW to easily set the control

signal into the potentiostat network, we were able to quickly identify the origin of harmonic

distortion affecting EIS measurements near 750 Hz. Interestingly, distortions in system phase and

admittance magnitudes (normalized to the predicted values for the given load resistor) were highly

Figure 6. (a) Data acquisition system assembled by students using off the shelf components (Sparkfun
RedBoard, BlueSMiRF Silver, 2 MAX31855 thermocouple breakout boards with type K thermocouple,
and bi-directional logic level converter) to record the dynamic performance of a thermal cycler with
a student designed heat sink, and; (b) student populated ABE-VIEW interface for data acquisition.

3.3. ABE-VIEW for Custom Device Testing and Troubleshooting

By adapting the custom potentiostat firmware to work with ABE-VIEW to easily set the control
signal into the potentiostat network, we were able to quickly identify the origin of harmonic distortion
affecting EIS measurements near 750 Hz. Interestingly, distortions in system phase and admittance

Sensors 2018, 18, 2647 13 of 17

magnitudes (normalized to the predicted values for the given load resistor) were highly conserved
for given control signals, independent of load resistor and transimpedance amplifier gain. Observed
distortions of signal VB relative to VA were reproduced with high fidelity at every location in the
reference/counter electrode control circuit, and indeed were independent of whether the DAC signal
was removed, and whether VB was disconnected from the network control amplifiers (data not shown).
Distortion was most pronounced near 750 Hz, resulting in the extremely large errors in admittance
and system phase reported by AD5933 (Figure 7), evidently originating in the summing amplifier
used to construct the control signal to the network. The distortion at this frequency results in a sharp
peak in the predicted admittance value for the 10 mVpeak amplitude signal, and correspondingly
an inflection point in the system phase vs. frequency (Figure 7d). While a significant change is
expected in the observed “system phase” with frequency (which must be calibrated for when using
the device to predict the phase of actual network impedance), the relationship is typically highly
linear in the absence of control signal distortion [44]. Interestingly, at all tested signal amplitudes the
observed distortion (as estimated by the reported complex admittance) was numerically consistent
with a resonant signal with peak amplitude of about 25 mV, and approximately 180 degrees out
of phase with the control signal, at 750 Hz (analysis not shown). This “destructive” interference
overwhelmed the smallest desired control signal (10 mV) and resulted in larger predicted admittance
(i.e., Figure 7d), and very dramatic changes in system phase as the superposition of the control signal
and harmonic rapidly rotated around the phase plane at frequencies near the harmonic. Control
signals with larger putative magnitudes (20 mV, 50 mV, and 100 mV) resulted in underestimated
admittance values as superposition with the harmonic signal resulted in signals smaller in magnitude
than the desired control signals (Figure S1a). At the two highest values of the putative control signal
amplitudes (50 mV and 100 mV), the harmonic signal was never larger than the control signal, so that
non-linearities in system phase were moderated (Figure S1b). Closer investigation into the source of
the summing amplifier distortion showed that it was due to instability in the analog virtual ground
due to overloading the precision analog voltage reference with the network analyzer.

From initial evaluation of the potentiostat performance, we were inclined to correct for harmonic
distortions in software based on their reproducible behavior, and independence from the network load
and transimpedance amplifier gain. However, given the non-linear (i.e., less predictable) behavior of
more complex electrochemical networks we chose instead to investigate the source of the distortion
to correct it in hardware. As a result, we redesigned the coupling between the AD5933 synthesizer
and potentiostat network, and modified the power regulation for the network analyzer to eliminate
the observed distortions. These modifications successfully eliminated the distortion, and we have
successfully used the revised prototype to make accurate EIS measurements across the spectrum from
0.1 Hz to 100 kHz.

Sensors 2018, 18, 2647 14 of 17

Sensors 2018, 18, x 13 of 17

conserved for given control signals, independent of load resistor and transimpedance amplifier gain.

Observed distortions of signal VB relative to VA were reproduced with high fidelity at every location

in the reference/counter electrode control circuit, and indeed were independent of whether the DAC

signal was removed, and whether VB was disconnected from the network control amplifiers (data not

shown). Distortion was most pronounced near 750 Hz, resulting in the extremely large errors in

admittance and system phase reported by AD5933 (Figure 7), evidently originating in the summing

amplifier used to construct the control signal to the network. The distortion at this frequency results

in a sharp peak in the predicted admittance value for the 10 mVpeak amplitude signal, and

correspondingly an inflection point in the system phase vs frequency (Figure 7d). While a significant

change is expected in the observed “system phase” with frequency (which must be calibrated for

when using the device to predict the phase of actual network impedance), the relationship is typically

highly linear in the absence of control signal distortion [44]. Interestingly, at all tested signal

amplitudes the observed distortion (as estimated by the reported complex admittance) was

numerically consistent with a resonant signal with peak amplitude of about 25 mV, and

approximately 180 degrees out of phase with the control signal, at 750 Hz (analysis not shown). This

“destructive” interference overwhelmed the smallest desired control signal (10 mV) and resulted in

larger predicted admittance (i.e., Figure 7d), and very dramatic changes in system phase as the

superposition of the control signal and harmonic rapidly rotated around the phase plane at

frequencies near the harmonic. Control signals with larger putative magnitudes (20 mV, 50 mV, and

100 mV) resulted in underestimated admittance values as superposition with the harmonic signal

resulted in signals smaller in magnitude than the desired control signals (Figure S1a). At the two

highest values of the putative control signal amplitudes (50 mV and 100 mV), the harmonic signal

was never larger than the control signal, so that non-linearities in system phase were moderated

(Figure S1b). Closer investigation into the source of the summing amplifier distortion showed that it

was due to instability in the analog virtual ground due to overloading the precision analog voltage

reference with the network analyzer.

Time (ms)

-15 -10 -5 0 5 10 15

S
ig

n
a
l

(m
V

)

-10

-5

0

5

10 -VA / 10

VB

(a) (76.29 Hz)

Time (ms)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

S
ig

n
a
l

(m
V

)

-10

-5

0

5

10 -VA / 10

VB

(b) (747.7 Hz)

Time (ms)

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

S
ig

n
a
l

(m
V

)

-10

-5

0

5

10 -VA / 10

VB

(c) (7507 Hz)

Frequency (Hz)

0 2000 4000 6000 8000

N
o

rm
a
ll

iz
e
d

 A
d

m
it

ta
n

c
e

0.0

0.5

1.0

1.5

2.0

S
y
s
te

m
 P

h
a
s
e
 (

o
)

-180

-135

-90

-45

0

45

90

135

180

(750Hz)

(d)

Figure 7. Recorded signals from digital synthesizer of network analyzer (VA) and output of summing
junction (VB) for potentiostat operating to deliver 10 mVpeak at (a) 76.29 Hz; (b) 747.7 Hz, and;
(c) 7507 Hz, with network analyzer running on 250 kHz external clock. The control signal VB

consistently exhibits a few more mV of random noise, but large additional harmonic distortions
near 750 Hz result in HH (d) very significant errors in admittance and system phase of a resistor
as predicted by the network analyzer. Note that the synthesizer output VA is inverted and divided
by 10 to scale with the predicted value of control signal VB, and the frequency at which the phase
accumulator is updated for the synthesizer (62.5 kHz) is easily observable in the 7507 Hz signal (c).

4. Discussion

Our primary objective of this manuscript is to facilitate the adaptation of ABE-VIEW by new
users for unique applications, so we have tried to concisely document the features, program flow, and
syntax for communicating with it. The approach of the app is somewhat unique among standalone
applications in that the flexible GUI is configured entirely from instructions from the remote instrument
so that users are only required to develop firmware for the remote device without any additional
coding required for the Android device. As communication with the app is based on simple ascii
coded instructions, the remote firmware can easily be developed using virtually any development
environment (such as the user-friendly Arduino IDE), and the physical link can easily be achieved with
simple serial to Bluetooth radios. This allows novel hardware configurations to be rapidly assembled
and tested without building in additional displays, interfacing hardware, proprietary cables, or relying
on desktop applications for an interface. Our initial motivation was to use this as a versatile and
modular platform to support instruction in engineering courses at the University of Hawaii. In this
context the effort has been quite successful, as students can easily configure the interface and focus on
mastery of a single IDE, understanding more fundamental principles of instrumentation, and other
analytical skills related to complex system dynamics. The app has also been very useful to us in testing

Sensors 2018, 18, 2647 15 of 17

and troubleshooting novel instrumentation systems, as illustrated in our identification of the origin
of harmonic distortion in a wireless potentiostat system. To encourage new users to use ABE-VIEW,
we have provided supplemental materials including template source code (Sketch S1) with related
hardware designs that can be used to rapidly adapt the app for new applications. It is our sincere
hope that this work will be useful to others in accelerating the development of novel instruments and
applications that we can, in turn, benefit from.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/8/2647/s1,
Design S1: Coffee Cherry Color Sorter, Sketch S1: Coffee Cherry Color Sorter ABE-VIEW Example Template, File S1:
Lab Handout for Precision Syringe Pump Control, File S2: Lab Handout for Heat Exchanger/Thermal Cycler
Design and Testing, Design S2: ABE-Stat1_0_01 Potentiostat, Sketch S2: ABE-VIEW signal control for ABE-Stat,
Figure S1: Normalized admittance and system phase for different signal amplitudes.

Author Contributions: Conceptualization, D.M.J. and R.K.; Methodology, D.M.J. and R.K.; Software, D.M.J.;
Validation, D.M.J. and R.K.; Formal Analysis, D.M.J. and R.K.; Investigation, D.M.J. and R.K.; Resources, D.M.J.
and R.K.; Data Curation, D.M.J. and R.K.; Writing-Original Draft Preparation, D.M.J.; Writing-Review & Editing,
R.K.; Visualization, D.M.J. and R.K.

Funding: This research received no formal external funding, though some of the hardware evaluated was
developed with partial support of the USDA (Hatch Project Number HAW05027-H, and Multi-State Project
NC-1194 Nanotechnology and Biosensors).

Acknowledgments: We would like to acknowledge Tiffany Ulep and Taylor Hori for their contributions to the
design of the coffee berry color sorter which is shared in the supplemental materials, and forms the basis for the
simple Arduino sketch example that is shared as a template for interacting with ABE-VIEW.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dryden, M.D.M.; Fobel, R.; Fobel, C.; Wheeler, A.R. Upon the Shoulders of Giants: Open-Source Hardware
and Software in Analytical Chemistry. Anal. Chem. 2017, 89, 4330–4338. [CrossRef] [PubMed]

2. Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2:
ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, 529. [CrossRef] [PubMed]

3. Zhu, X.; Wolfgruber, T.K.; Tasato, A.; Arisdakessian, C.; Garmire, D.G.; Garmire, L.X. Granatum: A graphical
single-cell RNA-Seq analysis pipeline for genomics scientists. Genome Med. 2017, 9, 108. [CrossRef] [PubMed]

4. Zhang, B.; Dai, J.; Zhang, T. NeoAnalysis: A Python-based toolbox for quick electrophysiological data
processing and analysis. Biomed. Eng. Online 2017, 16, 129. [CrossRef] [PubMed]

5. Mejías, A.; Herrera, R.; Márquez, M.; Calderón, A.; González, I.; Andújar, J. Easy Handling of Sensors and
Actuators over TCP/IP Networks by Open Source Hardware/Software. Sensors 2017, 17, 94. [CrossRef]
[PubMed]

6. Martínez, E.; Toma, D.; Jirka, S.; del Río, J. Middleware for Plug and Play Integration of Heterogeneous
Sensor Resources into the Sensor Web. Sensors 2017, 17, 2923. [CrossRef] [PubMed]

7. Lütjohann, D.S.; Jung, N.; Bräse, S. Open source life science automation: Design of experiments and data
acquisition via “dial-a-device”. Chemom. Intell. Lab. Syst. 2015, 144, 100–107. [CrossRef]

8. Chen, X.; Li, H. ArControl: An Arduino-Based Comprehensive Behavioral Platform with Real-Time
Performance. Front. Behav. Neurosci. 2017, 11, 244. [CrossRef] [PubMed]

9. Gao, Y.; Ramirez, B.C.; Hoff, S.J. Omnidirectional thermal anemometer for low airspeed and multi-point
measurement applications. Comput. Electron. Agric. 2016, 127, 439–450. [CrossRef]

10. Barnard, H.R.; Findley, M.C.; Csavina, J. PARduino: A simple and inexpensive device for logging
photosynthetically active radiation. Tree Physiol. 2014, 34, 640–645. [CrossRef] [PubMed]

11. Tovar, J.C.; Hoyer, J.S.; Lin, A.; Tielking, A.; Callen, S.T.; Elizabeth Castillo, S.; Miller, M.; Tessman, M.;
Fahlgren, N.; Carrington, J.C.; et al. Raspberry Pi-powered imaging for plant phenotyping. Appl. Plant Sci.
2018, 6, 1031. [CrossRef] [PubMed]

12. Axani, S.N.; Frankiewicz, K.; Conrad, J.M. The CosmicWatch Desktop Muon Detector: A self-contained,
pocket sized particle detector. J. Instrum. 2018, 13, P03019. [CrossRef]

http://www.mdpi.com/1424-8220/18/8/2647/s1
http://dx.doi.org/10.1021/acs.analchem.7b00485
http://www.ncbi.nlm.nih.gov/pubmed/28379683
http://dx.doi.org/10.1186/s12859-017-1934-z
http://www.ncbi.nlm.nih.gov/pubmed/29187165
http://dx.doi.org/10.1186/s13073-017-0492-3
http://www.ncbi.nlm.nih.gov/pubmed/29202807
http://dx.doi.org/10.1186/s12938-017-0419-7
http://www.ncbi.nlm.nih.gov/pubmed/29132360
http://dx.doi.org/10.3390/s17010094
http://www.ncbi.nlm.nih.gov/pubmed/28067801
http://dx.doi.org/10.3390/s17122923
http://www.ncbi.nlm.nih.gov/pubmed/29244732
http://dx.doi.org/10.1016/j.chemolab.2015.04.002
http://dx.doi.org/10.3389/fnbeh.2017.00244
http://www.ncbi.nlm.nih.gov/pubmed/29321735
http://dx.doi.org/10.1016/j.compag.2016.06.011
http://dx.doi.org/10.1093/treephys/tpu044
http://www.ncbi.nlm.nih.gov/pubmed/24935916
http://dx.doi.org/10.1002/aps3.1031
http://www.ncbi.nlm.nih.gov/pubmed/29732261
http://dx.doi.org/10.1088/1748-0221/13/03/P03019

Sensors 2018, 18, 2647 16 of 17

13. Soler-Llorens, J.L.; Galiana-Merino, J.J.; Giner-Caturla, J.; Jauregui-Eslava, P.; Rosa-Cintas, S.; Rosa-Herranz, J.
Development and programming of Geophonino: A low cost Arduino-based seismic recorder for vertical
geophones. Comput. Geosci. 2016, 94, 1–10. [CrossRef]

14. Soler-Llorens, J.L.; Galiana-Merino, J.J.; Giner-Caturla, J.J.; Jauregui-Eslava, P.; Rosa-Cintas, S.;
Rosa-Herranz, J.; Nassim Benabdeloued, B.Y. Design and test of Geophonino-3D: A low-cost
three-component seismic noise recorder for the application of the H/V method. Sens. Actuators A Phys. 2018,
269, 342–354. [CrossRef]

15. Beddows, P.A.; Mallon, E.K. Cave Pearl Data Logger: A Flexible Arduino-Based Logging Platform for
Long-Term Monitoring in Harsh Environments. Sensors 2018, 18, 530. [CrossRef] [PubMed]

16. Husain, A.R.; Hadad, Y.; Zainal Alam, M.N.H. Development of Low-Cost Microcontroller-Based Interface
for Data Acquisition and Control of Microbioreactor Operation. J. Lab. Autom. 2016, 21, 660–670. [CrossRef]
[PubMed]

17. De Morais, C.D.L.M.; Carvalho, J.C.; Sant’Anna, C.; Eugênio, M.; Gasparotto, L.H.S.; Lima, K.M.G. A low-cost
microcontrolled photometer with one color recognition sensor for selective detection of Pb2+ using gold
nanoparticles. Anal. Methods 2015, 7, 7917–7922. [CrossRef]

18. Shen, H.-Y.; Chen, Y.-C.; Hsu, C.-H. A Power Frequency Sensing Device Using an Arduino Device and
Zero-Crossing Algorithm and Its Implementation on Android App. Sensors Mater. 2017, 29, 741–756.
[CrossRef]

19. Segura, F.; Bartolucci, V.; Andújar, J. Hardware/Software Data Acquisition System for Real Time Cell
Temperature Monitoring in Air-Cooled Polymer Electrolyte Fuel Cells. Sensors 2017, 17, 1600. [CrossRef]
[PubMed]

20. Jin, H.; Qin, Y.; Pan, S.; Alam, A.U.; Dong, S.; Ghosh, R.; Deen, M.J. Open-Source Low-Cost Wireless
Potentiometric Instrument for pH Determination Experiments. J. Chem. Educ. 2018, 95, 326–330. [CrossRef]

21. Grinias, J.P.; Whitfield, J.T.; Guetschow, E.D.; Kennedy, R.T. An Inexpensive, Open-Source USB Arduino Data
Acquisition Device for Chemical Instrumentation. J. Chem. Educ. 2016, 93, 1316–1319. [CrossRef] [PubMed]

22. Nichols, D. Arduino-Based Data Acquisition into Excel, LabVIEW, and MATLAB. Phys. Teach. 2017, 55,
226–227. [CrossRef]

23. Jenkins, D.M. Google Play, ABE-VIEW. Available online: Https://play.google.com/store/apps/details?id=
com.uhmbe.DAQCTRL&hl=en_US (accessed on 1 May 2018).

24. Brunelli, D.; Farella, E.; Giovanelli, D.; Milosevic, B.; Minakov, I. Design Considerations for Wireless
Acquisition of Multichannel sEMG Signals in Prosthetic Hand Control. IEEE Sens. J. 2016, 16, 8338–8347.
[CrossRef]

25. Rossi, M.; Khouia, A.O.; Lorenzelli, L.; Brunelli, D. Energy neutral 32-channels embedded readout system
for IoT-ready fitness equipments. In Proceedings of the 2016 IEEE Sensors Applications Symposium (SAS),
Catania, Italy, 20–22 April 2016; pp. 1–6.

26. Brunelli, D.; Tadesse, A.M.; Vodermayer, B.; Nowak, M.; Castellini, C. Low-cost wearable multichannel
surface EMG acquisition for prosthetic hand control. In Proceedings of the 2015 6th IEEE International
Workshop on Advances in Sensors and Interfaces, IWASI 2015, Gallipoli, Italy, 18–19 June 2015; pp. 94–99.

27. Brunelli, D.; Farella, E.; Rocchi, L.; Dozza, M.; Chiari, L.; Benini, L. Bio-feedback system for rehabilitation
based on a wireless body area network. In Proceedings of the 4th Annual IEEE International Conference on
Pervasive Computing and Communications (PerCOM 2006)—Workshop UbiCare, Pisa, Italy, 13–17 March
2006.

28. Koda Forms. Available online: http://koda.darkhost.ru/page.php?id=index (accessed on 11 June 2018).
29. ProviewR. Available online: http://www.proview.se/v3/ (accessed on 11 June 2018).
30. MIT App Inventor. Available online: http://appinventor.mit.edu/explore/index-2.html (accessed on

11 June 2018).
31. MIT App Inventor 2. Available online: http://ai2.appinventor.mit.edu/Ya_tos_form.html (accessed on

12 June 2018).
32. Mnati, M.; Van den Bossche, A.; Chisab, R. A Smart Voltage and Current Monitoring System for Three Phase

Inverters Using an Android Smartphone Application. Sensors 2017, 17, 872. [CrossRef] [PubMed]
33. Blynk. Available online: https://www.blynk.cc/ (accessed on 11 June 2018).
34. Arduino Graph. Available online: https://www.arduino.cc/en/tutorial/Graph (accessed on 11 June 2018).

http://dx.doi.org/10.1016/j.cageo.2016.05.014
http://dx.doi.org/10.1016/j.sna.2017.11.047
http://dx.doi.org/10.3390/s18020530
http://www.ncbi.nlm.nih.gov/pubmed/29425185
http://dx.doi.org/10.1177/2211068215594770
http://www.ncbi.nlm.nih.gov/pubmed/26185253
http://dx.doi.org/10.1039/C5AY01762A
http://dx.doi.org/10.18494/SAM.2017.1497
http://dx.doi.org/10.3390/s17071600
http://www.ncbi.nlm.nih.gov/pubmed/28698497
http://dx.doi.org/10.1021/acs.jchemed.7b00479
http://dx.doi.org/10.1021/acs.jchemed.6b00262
http://www.ncbi.nlm.nih.gov/pubmed/27453587
http://dx.doi.org/10.1119/1.4978720
Https://play.google.com/store/apps/details?id=com.uhmbe.DAQCTRL&hl=en_US
Https://play.google.com/store/apps/details?id=com.uhmbe.DAQCTRL&hl=en_US
http://dx.doi.org/10.1109/JSEN.2016.2596712
http://koda.darkhost.ru/page.php?id=index
http://www.proview.se/v3/
http://appinventor.mit.edu/explore/index-2.html
http://ai2.appinventor.mit.edu/Ya_tos_form.html
http://dx.doi.org/10.3390/s17040872
http://www.ncbi.nlm.nih.gov/pubmed/28420132
https://www.blynk.cc/
https://www.arduino.cc/en/tutorial/Graph

Sensors 2018, 18, 2647 17 of 17

35. Koenka, I.J.; Sáiz, J.; Hauser, P.C. Instrumentino: An Open-Source Software for Scientific Instruments.
Chim. Int. J. Chem. 2015, 69, 172–175. [CrossRef]

36. SerialComInstruments. Available online: http://www.serialcominstruments.com/instrument.php (accessed
on 11 June 2018).

37. Arduino Dashboard. Available online: http://www.mathias-wilhelm.de/arduino/projects/arduino-
dashboard/ (accessed on 11 June 2018).

38. EzScrn. Available online: https://forum.arduino.cc/index.php?topic=312547.0 (accessed on 11 June 2018).
39. Sandesh, R.S.; Venkatesan, N. LabVIEW-based design and control of five-digit anthropomorphic robotic

hand using EEG signals. Int. J. Biomed. Eng. Technol. 2016, 22, 258–271. [CrossRef]
40. Cvjetkovic, V.M.; Matijevic, M. Overview of Architectures with Arduino Boards as Building Blocks for Data

Acquisition and Control Systems. Int. J. Online Eng. 2016, 12, 10–17. [CrossRef]
41. Priye, A.; Wong, S.; Bi, Y.; Carpio, M.; Chang, J.; Coen, M.; Cope, D.; Harris, J.; Johnson, J.; Keller, A.; et al.

Lab-on-a-Drone: Toward Pinpoint Deployment of Smartphone-Enabled Nucleic Acid-Based Diagnostics for
Mobile Health Care. Anal. Chem. 2016, 88, 4651–4660. [CrossRef] [PubMed]

42. Dryden, M.D.M.; Wheeler, A.R. DStat: A Versatile, Open-Source Potentiostat for Electroanalysis and
Integration. PLoS ONE 2015, 10, e0140349. [CrossRef] [PubMed]

43. Rowe, A.A.; Bonham, A.J.; White, R.J.; Zimmer, M.P.; Yadgar, R.J.; Hobza, T.M.; Honea, J.W.; Ben-Yaacov, I.;
Plaxco, K.W. CheapStat: An Open-Source, “Do-It-Yourself” Potentiostat for Analytical and Educational
Applications. PLoS ONE 2011, 6, e23783. [CrossRef] [PubMed]

44. Analog_Devices AD5933 Datasheet, Rev F. Available online: http://www.analog.com/media/en/technical-
documentation/data-sheets/AD5933.pdf (accessed on 2 May 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2533/chimia.2015.172
http://www.serialcominstruments.com/instrument.php
http://www.mathias-wilhelm.de/arduino/projects/arduino-dashboard/
http://www.mathias-wilhelm.de/arduino/projects/arduino-dashboard/
https://forum.arduino.cc/index.php?topic=312547.0
http://dx.doi.org/10.1504/IJBET.2016.079489
http://dx.doi.org/10.3991/ijoe.v12i07.5818
http://dx.doi.org/10.1021/acs.analchem.5b04153
http://www.ncbi.nlm.nih.gov/pubmed/26898247
http://dx.doi.org/10.1371/journal.pone.0140349
http://www.ncbi.nlm.nih.gov/pubmed/26510100
http://dx.doi.org/10.1371/journal.pone.0023783
http://www.ncbi.nlm.nih.gov/pubmed/21931613
http://www.analog.com/media/en/technical-documentation/data-sheets/AD5933.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/AD5933.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Overview/Objective
	Background/Related Works

	Materials and Methods
	Overview
	General Architecture of ABE-VIEW
	Application of ABE-VIEW for Student Data Acquisition and Control
	ABE-VIEW for Rapid Device/Sensor Development

	Results
	Overview
	ABE-VIEW for Flexible Data-Acquisition and Control
	ABE-VIEW for Custom Device Testing and Troubleshooting

	Discussion
	References

