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Abstract: Polymer composite membranes containing aniline were prepared for CO2/N2 separation.
Aniline was selected for high separation performance as an additive containing both the benzene
ring to interfere with gas transport and an amino group that could induce the accelerated transport
of CO2 molecules. As a result, when aniline having both a benzene ring and an amino group
was incorporated into polymer membranes, the selectivity was largely enhanced by the role of
both gas barriers and CO2 carriers. Selective layers coated on the polysulfone were identified by
scanning electron microscopy (SEM) images and the interaction with aniline in the polymer matrix
was confirmed by FT-IR spectroscopy. The binding energy of oxygen in the polymer matrix was
investigated by XPS, and the thermal stability of the composite membrane was confirmed by TGA.
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1. Introduction

Increasing CO2 emissions in the environment is leading to global warming, which has become
a major concern today [1,2]. Excessive greenhouse gases in the atmosphere cause a variety of
environmental problems, such as constant rise in sea level, sea storms, and increased flooding [3,4].
Of the greenhouse gases, CO2 is a major cause of global warming, and alone accounts for about 64%
for the deterioration of the greenhouse effect [5]. Thus, the efforts to solve these problems and reduce
CO2 have been researched and reported under various categories such as absorption and adsorption
technology [6–8].

However, the development of more efficient CO2 separation processes has remained only of
interest in industrial and academic research, although absorption or adsorption-based processes have
been widely used in the industrial field for CO2 separation. Especially, membrane-based technology
has acquired much attraction recently. It can be utilized in important applications including pure gas
supply, natural gas separation (CH4/CO2), and CO2 capture (H2/CO2 and CO2/N2) [9,10]. In addition,
several advantages, such as easy operation, reliability, environmental friendliness, low cost and energy
consumption, are attractive as reducing technology for greenhouse gases. However, for the case of
gas separation, gas transport through polymer membranes follows a solution–diffusion mechanism,
but the trade-off has been observed between gas permeability and selectivity. Thus, the performance
limitation called “Robeson Upper Bound” exists [11]. Due to these limitations [12], facilitated transport
membranes have been considered as an effective alternative to overcome this limitation in CO2

separation processes [13–15]. Facilitated transport is to add a carrier that reacts only with a specific
material in an existing medium, so that the transport of a specific material becomes very fast because a
carrier-mediated transport is added to the existing fickian transport.

Recently, a growing number of groups has been investigating the facilitated transport applied for
CO2 separation. Dai et al. reported that polyethylene glycol dimethyl ether (PEGDME, Mn-250 and 500)
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of different molecular weights was added as a CO2-philic additive to Nafion-based membranes [16].
The addition of 40 wt % PEGDME (Mn-250) to the Nafion matrix showed 57.4 barrer of CO2 permeability
in the dry state. It was 36-fold higher than the original Nafion, and the CO2 capture performance
was improved. Kline et al. reported on PEO-based crosslinked membranes by systematically varying
crosslinking densities and crosslinking heterogeneity [17]. These crosslinked PEO films surpassed the
most recent Robeson upper limits for CO2/H2 and CO2/N2 separations, making them an attractive
membrane for H2 purification and carbon capture. Reijerkerk et al. presented the heat and mass
transfer properties of a series of mixed membranes prepared with commercially available PEBAX®

MH1657 and poly (ethylene glycol) (PEG)-based additives [18]. The additive (PDMS-PEG) was very
flexible and permeable, improving the permeability of 530 barrer and CO2/H2 selectivity at 50 wt%
loading. Hanioka et al. reported the SLM (supported liquid membrane) based on a specific ionic
liquid to achieve highly-selective and facilitated CO2 transport through the membrane [19]. The SLM
promoted by the amine-terminated ionic liquid showed high selectivity and high stability for CO2

separation from a CO2/CH4 gas mixture. Zulfiqar et al. reported that polymeric ionic liquids (PILs)
served as potential substitutes that could offer a versatile and tunable platform to fabricate a wide
range of sorbents for CO2 capture particularly for flue gas separation and natural gas purification [20].
On the other hand, Zhang et al. fabricated facilitated transport membranes containing sodium glycine
(SG) for enhancing CO2 separation performance [21]. The introduced SG provided simultaneously
abundant −COO− and −NH2 groups as carriers for facilitating CO2 transport, and the addition of
SG increased the water content in membranes, enhancing CO2 solubility. Sun et al. reported that
they had succeeded in producing a series of polymers containing a number of secondary amines [22].
These secondary amines provided adequate adsorbate–adsorbent interaction with regard to selective
capture of CO2. As a result, these materials were reported as producing selective adsorption of CO2

and exhibited high CO2/N2 and CO2/CH4 selectivity.
Our group has also conducted various studies to increase CO2 transport. In research to utilize ionic

liquids, composite membranes were prepared containing ZnO nanoparticles and a representative ionic
liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM+BF4

−). Consequently, the selectivity
and permeance of CO2 in the composite membrane were greatly improved to 42.1 and 101 GPU [23].
Furthermore, poly(ethylene oxide) (PEO) composite membranes were prepared for CO2/N2 separation
through the prepared CrO3 particles and BMIM+BF4

− dispersion. When compared to the pure PEO
membrane and the composite membrane, the permeability increased from 11.0 GPU up to 144 GPU
and the selectivity improved from 6.5 to 30. In these researches, CrO3 particles increased the solubility
of CO2, while free imidazolium ions of BMIM+BF4− enhanced CO2 transport, increasing permeability
and selectivity [24]. Furthermore, highly selective composite membranes for CO2 were suggested
using BMIM+BF4

− and rod-shaped aluminum oxide [25]. As a result, the BMIM+BF4−/rod shaped
Al2O3 composite obtained a permeance of 39.3 GPU and selectivity of 43.7.

On the other hand, research to utilize both the barrier effect using aromatic rings and the carrier
effect was reported [26–28]. For example, the impact of 5-hydroxy-isophthalic acid on the facilitated
transport of CO2 was investigated [26]. When 5-hydroxy-isophthalic acid was incorporated into
the poly(ethylene oxide) (PEO) polymer matrix, the membrane separation performance was largely
improved, the ideal selectivity 32.4 of CO2 to N2 and the CO2 permeability of 573 barrer were observed.
The carboxyl group of 5-hydroxy-isophthalic acid produced a dipole–dipole interaction with the
CO2 molecule to increase the solubility of the CO2 while the benzene rings as barrier effect could
reduce N2 transport, resulting in high permeability and high selectivity. Furthermore, 1,3,5-benzene
tricarboxylic acid was used in polymer composite membranes to achieve improved CO2/N2 separation
performance. Conclusively, the selectivity of CO2 increased to 8.5 and CO2 gas permeance was 1.2
GPU [27]. For poly(ethylene oxide) (PEO) membranes using 4-hydroxybenzoic acid (4-HBA), the CO2

selectivity increased from 1.8 to 23 and CO2 permeance was 8.8 GPU [28].
However, a solid state membrane is more desirable for practical application since the liquid

state such as ionic liquids showed disadvantages such as penetration into the support, resulting in
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decreased permeability. In this study, we selected poly(vinyl alcohol) (PVA) containing a hydroxyl
group as hydrophilic functional group. It was thought that the PVA as polymer matrix could not easily
penetrate into the support when coated on a polysulfone porous support, and the OH groups included
could disperse the additives with the effect of enhancing the solubility of CO2 molecules. Especially,
aniline as an additive was utilized since it was expected that the benzene ring could generate a barrier
effect and the amino groups could act as carrier for facilitated transport. Therefore, aniline would help
the CO2 molecule pass through the membrane.

2. Materials and Methods

2.1. Materials

Poly(vinyl alcohol) (PVA) (Mw = 85,000~124,000) and aniline were purchased from Sigma-Aldrich
(Saint Quentin Fallavier, France). Distilled water was used as the solvent. The permeance measurement
was followed as described previously [29].

2.2. Preparation of Membrane

The membranes were prepared using PVA, aniline and distilled water. First, the PVA was added
together with distilled water to make a 3 wt % solution. Then aniline was added in various mole
ratios. To dissolve evenly the solutes, the solution was stirred one day at 95 ◦C in an oil bath. The final
solution was coated onto polysulfone microporous membrane supports (Toray Chemical Korea Inc.,
Seoul, Korea) using an RK Control Coater (Model 202, Control Coater RK Print-Coat Instruments Ltd.,
Litlington, UK). The coated membrane was placed in a vacuum oven to remove the solvents for 3 h.

2.3. Permeance Measurements

All gas flow rates refer to gas permeance measurements using a bubble flow meter at room
temperature and 2 atmospheres. The unit of gas permeance is GPU and 1 GPU = 1 × 10−6 cm3

(STP)/(cm2 s cmHg).

2.4. Characterization

The thickness of the selective layer was investigated using scanning electron microscopy (SEM,
JEOL, JSM-5600LV). Fourier transform infrared measurements (FT-IR) were performed on a VERTEX
70 FT-IR spectrometer (BRUKER, Billerica, MA, USA). IR spectra were acquired in the range of
the wavenumber from 4000 to 400 cm−1, and 16–32 scans were averaged at a resolution of 4 cm−1.
The weight loss of the composite membrane in flowing N2 was confirmed using thermogravimetric
analysis (TGA, TGA Q50, TA Instrument, New Castle, DE, USA) at a heating rate of 10 ◦C/min. X-ray
photoelectron spectroscopy (XPS) data were acquired using a PHI 5000 Versa Probe (Ulvac-PHI, Japan)
photoelectron spectrometer. This system was equipped with an Al Ka µ-focused monochromator
(1486.6 eV) and the detection limit was 0.5 at %. The carbon (C 1s) line at 285.0 eV was used as a
reference for determining the binding energies of the O atom.

3. Results

3.1. Scanning Electron Microscopy (SEM) Images of the Membrane

The SEM image of polysulfone, a macroporous support, and polysulfone coated with PVA/aniline
revealed the presence and thickness of a selective layer of composite membrane. The sponge-like
structure of the support was effective for gas permeation (shown in Figure 1a). In addition, as Figure 1b,
the PVA/aniline composite membrane had a selective layer, which was a section that contributed to
increasing the selectivity of the gas. The average thickness of the selective layer was about 4.3 µm,
filling the pores of the support and generating facilitated transport of CO2.
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about 700 °C. When aniline was added to the polymer, the intermolecular force of PVA was reduced 
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Figure 1. SEM image of (a) neat polysulfone and (b) 1/0.15 PVA/aniline composite membrane.

3.2. Thermogravimetric Analysis (TGA)

The thermal properties of neat PVA, neat aniline, 1:0.15 PVA/aniline composite membranes were
measured through TGA as shown in Figure 2. Figure 2 exhibites the multiple-steps of degradation.
Evaporation of the solvent and partial aniline amount occurred from room temperature to about 100 ◦C.
The change of curve in the next step to 235 ◦C was generated by the melting point of the PVA molecule,
and the decomposition around 430 ◦C was the stage at which the hydroxy group decomposed from the
PVA chains. Finally, degradation of the polymer backbone was observed after about 700 ◦C. When
aniline was added to the polymer, the intermolecular force of PVA was reduced by the aniline, and
chain-packing was prevented compared to the pure polymer. These steric effects increased the free
volume and decreased the thermal stability. These increased free volumes were expected to enhance
the gas permeability through increased diffusivity.
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Figure 2. TGA graph of neat PVA, neat aniline and 1/0.15 PVA/aniline composite membranes.

3.3. X-ray Photoelectron Spectroscopy (XPS)

The change in the chemical environment of the O atom in the PVA/aniline composite was analyzed
by XPS. As shown in Figure 3, an increase of binding energy for the O atom from 532.72 to 532.85 eV
was observed. This increase in binding energy was due to the decrease in the electron density of O
atoms, suggesting that there was interaction between the H atom of aniline and the O atom of PVA.
In C–O–H bonds of the PVA chain, O was partially negatively charged and formed hydrogen-bonds
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with N–H of aniline. These interactions caused the electron density of O to be diminished, resulting in
the increase of the binding energy.
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Figure 3. XPS spectra showing binding energy of oxygen in neat PVA and 1/0.15 PVA/aniline
composite membranes.

3.4. FT-IR

As shown in Figure 4, to identify the complexation behavior of the functional groups, the
FT-IR spectra of neat PVA, neat aniline, and 1:0.15 PVA/aniline composite membrane were measured.
Figure 4a shows the peak of the C–O bond in PVA. As shown in Figure 4a, the main peaks of the C–O
bond in neat PVA were 1058 and 1091 cm−1. The C–O bond of PVA was weakened by the hydrogen
bond with aniline, and as a result, the peak was shifted from 1091 to 1086 cm−1. Figure 4b shows the
IR spectra of the OH bond of PVA, where a change in peak was not observed. The deconvoluted area
% for each component is shown in Figure 5 and Table 1. For membranes with aniline embedded in
PVA, the area of the left peak increased from 74.17% to 85.25%. This result showed that the strength of
the O–H bond was decreased by hydrogen bonding between PVA and aniline. Thus, new interactions
between the O atom of PVA and the H atom of aniline, and the H atom of PVA and the N atom of
aniline were created as shown in Figure 6, and it was also found that aniline was successfully inserted
into the polymer matrix.Polymers 2020, 12, x FOR PEER REVIEW 6 of 10 
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1/0.15 PVA/aniline composite membrane 3268.59 85.25
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3.5. Separation Results

Figure 7 shows the selectivity of CO2 according to the mole ratio of aniline added to neat PVA.
Neat PVA membrane had almost no selectivity for CO2 at 1.1 and permeance was 0.9 GPU. In contrast,
the PVA/aniline composite membrane showed the best performance with CO2 permeance of 0.8 GPU
and selectivity of 83 at 1:0.15 mole ratio of PVA/aniline. These results were obtained through repeated
experiments of at least three times, and it was confirmed that the performance was maintained for up
to 6 h.



Polymers 2020, 12, 1363 7 of 10

This enhanced separation performance meant that aniline had a special role. The first effect was
the role as a carrier for facilitated transport. The amino group of the aniline had a basic property
that could accelerate CO2 transport as a reversible reaction. In particular, CO2 molecules, which
were originally of linear structure, could give a bent-shape when complexed with the amino group
in aniline. The second factor was the barrier effect caused by the benzene ring. The benzene ring
had a high electron density, meaning the gas molecules could not be permeated [30]. In addition,
aniline could be readily dispersed in the polymer matrix by the interactions with PVA. As a result,
facilitation transport occurred in the PVA/aniline composite membrane, as both the solubility and the
diffusivity of the CO2 molecule increased simultaneously by facilitated transport of the fixed carriers
in the solid-state. Data showing the difference between the permeability of the pure polymer and
PVA/aniline is not distinguishable, and it seems that aniline acted more as the second factor than the
first factor. Scheme 1 shows the separation mechanism of the PVA/aniline composite membrane. After
coating PVA/aniline on the porous support of polysulfone, the solubility of CO2 increased because
aniline in the polymer matrix caused CO2 to be largely soluble through the membrane due to facilitated
transport. On the other hand, as the transport path of N2 increased due to the barrier effect of the
benzene ring, the permeability of N2 decreased, resulting in the enhancement of selectivity for CO2.

However, it was observed that the selectivity decreases after a 0.15 mole ratio. These results were
caused by the permeance of all gases enhanced due to the aggregation phenomena of aniline. Above
0.2 mole ratio, a collapsed polysulfone support was observed due to the solvation effect of aniline,
resulting in the decrease of gas permeance.
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4. Conclusions

In this work, we succeeded in providing a highly selective membrane using aniline for facilitated
transport for CO2 molecules. As a result, the PVA/aniline composite membrane showed a largely
enhanced separation performance of about 80 times that of neat PVA membrane with 80 selectivity
CO2/N2 in single gas permeation experiment. These results were due to both the facilitated transport
and the barrier effect produced by aniline with enhanced CO2 solubility by the OH groups in PVA.
The chemical and physical properties of the membranes were characteristics of the membranes which
were analyzed by various types of analysis equipment. As a result, it was confirmed that the free
volume increase by the additive and hydrogen bonding between the polymer chain and aniline was
generated for both the increase of diffusion and CO2 solubility with the facilitated transport, resulting
in an enhanced separation performance.
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