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The visual and auditory systems frequently work together to facilitate the identification and
localization of objects and events in the external world. Experience plays a critical role in establishing
and maintaining congruent visual–auditory associations, so that the different sensory cues associated
with targets that can be both seen and heard are synthesized appropriately. For stimulus location, visual
information is normally more accurate and reliable and provides a reference for calibrating the
perception of auditory space. During development, vision plays a key role in aligning neural
representations of space in the brain, as revealed by the dramatic changes produced in auditory
responses when visual inputs are altered, and is used throughout life to resolve short-term spatial
conflicts between these modalities. However, accurate, and even supra-normal, auditory localization
abilities can be achieved in the absence of vision, and the capacity of the mature brain to relearn to
localize sound in the presence of substantially altered auditory spatial cues does not require visuomotor
feedback. Thus, while vision is normally used to coordinate information across the senses, the neural
circuits responsible for spatial hearing can be recalibrated in a vision-independent fashion.
Nevertheless, early multisensory experience appears to be crucial for the emergence of an ability to
match signals from different sensory modalities and therefore for the outcome of audiovisual-based
rehabilitation of deaf patients in whom hearing has been restored by cochlear implantation.
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behavioural training; vision
1. INTRODUCTION
Our perception of the external world relies principally
on vision and hearing. An ability to determine accurately
and rapidly the location of a sound source is of great
importance in the lives of many species. This is equally
the case for animals seeking potential mates or prey as
for those trying to avoid and escape from approaching
predators. The process of localizing sounds also plays a
key role in directing attention towards objects or events
of interest, so that they can be registered by other
senses, most commonly vision. Perhaps of most value in
humans, spatial hearing can significantly improve the
detection and, in turn, the discrimination of sounds of
interest in noisy situations, such as a restaurant or bar.
Consequently, preservation of this ability is of consider-
able importance in the rehabilitation of the hearing
impaired. This review will consider the role of learning
and plasticity in the development and maintenance of
auditory localization and, in particular, the contribution
of vision to this process.
2. DETERMINING THE DIRECTION OF A SOUND
SOURCE
In contrast to the visual and somatosensory systems,
where stimulus location is encoded by the distribution
of activity across the receptor surface in the retina or
tribution of 12 to a Theme Issue ‘Sensory learning: from
echanisms to rehabilitation’.
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the skin, respectively, localizing a sound source is a
highly complex, computational process that takes place
within the brain. Because auditory space cannot be
mapped onto the cochlea in the inner ear in the same
way, the direction of a sound source has to be inferred
from acoustical cues generated by the interaction of
sound waves with the head and external ears (Blauert
1997; King et al. 2001). The separation of the ears on
either side of the head is key to this, as sounds
originating from a source located to one side of the
head will arrive at each ear at slightly different times.
Moreover, by shadowing the far ear from the sound
source, the head produces a difference in amplitude
level at the two ears. The level of the sound is also
altered by the direction-specific filtering by the external
ears, giving rise to spectral localization cues.

By themselves, each of these spatial cues is potentially
ambiguous and is informative only for certain types of
sound and regions of space. Thus, interaural time
differences are used for localizing low-frequency sounds
(less than approx. 1500 Hz in humans), whereas
interaural level differences are more important at high
frequencies. For narrow-band sounds, both binaural
cues are spatially ambiguous, since the same cue value
can arise from multiple directions known as ‘cones of
confusion’ (Blauert 1997; King et al. 2001). Similarly,
spectral cues are ineffective unless the sound has a broad
frequency content (Butler 1986), in which case they
enable the front–back confusions in the binaural cues to
be resolved. Spectral cues also provide the basis for
This journal is q 2008 The Royal Society
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Figure 1. The acoustical cues that provide the basis for
auditory localization change in value as the head and ears
grow. Directional transfer functions (DTFs) from (a) an
infant (post-natal day (P) 33) and (b) an adult ferret (Mustela
putorius). Each plot shows how the gain in decibels of the
external ear varies as a function of sound azimuth (x) and
frequency (y) at a constant elevation (the animal’s horizon).
The difference in gain on either side of the midline (08) is due
to the acoustic shadowing effect of the head. The infant ear is
less directional and features present in the adult, such as the
high-frequency notch (arrowed in (b)), are shifted to higher
frequencies. (c) Age-related differences are quantified for a
large number of animals by converting each DTF to a vector
and performing a principal components analysis on the
population of DTF vectors. Data are plotted along the first
two principal components (which cumulatively explain 56%
of the variance). Points are labelled according to the age of the
animal and each animal is represented by two data points, one
for each ear. The large crosses indicate the mean and 95%
confidence intervals for each distribution. There is a clear
distinction between the infant (blue, P33–P37) and adult
points (green) with no overlap between the distributions.
Juvenile animals (red, aged approx. P50 (P49–P51)) have
intermediate DTFs that overlap with the adult distribution,
indicating that spectral cues approach maturity three to four
weeks after the onset of hearing in this species. Adapted from
Campbell et al. (2008).
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Figure 2. The ventriloquism after-effect. Regression of mean
auditory localization judgments taken before (pre-training,
x -axis) and after (post-training, y-axis) exposing human
subjects to spatially misaligned auditory and visual stimuli.
(a) Data obtained after conditioning with an 88 mismatch
between the stimuli. The dashed line indicates perfect
correlation between the pre- and post-training estimates. In
this case, the auditory localization estimates have been shifted
in the direction of the previously present visual stimulus, so
the regression line lies above the dashed line. (b) Data
obtained after conditioning with a 08 mismatch between the
stimuli. There is no difference between pre- and post-training
estimates and the dashed line is hidden by the thicker solid
regression line. Adapted and reproduced with permission
from Recanzone (1998). Copyright (1998) National Academy
of Sciences, USA. Open and filled squares, subject 1; open
and filled diamonds, subject 2; open and filled circles,
subject 3 (open symbols, 750 Hz; filled symbols, 3 kHz).
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localization in the vertical plane and even allow some
capacity to localize sounds in azimuth using one ear alone
(Slattery & Middlebrooks 1994; Van Wanrooij &
Van Opstal 2004). However, because this involves
Phil. Trans. R. Soc. B (2009)
detection of the peaks and notches imposed on the

sound spectrum by the external ear, the sound must have

a sufficiently high amplitude for these features to be

discerned (Su & Recanzone 2001). Moreover, under

monaural conditions, these cues no longer provide

reliable spatial information if there is uncertainty in the

stimulus spectrum (Wightman & Kistler 1997). In
everyday listening conditions, auditory localization cues

are also likely to be distorted by echoes or other sounds.

Accurate localization can therefore be achieved and

maintained only if the information provided by the

different cues is combined appropriately within the brain.

The values of the localization cues vary not only with
the properties of the sound, but also with the
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Figure 3. Visual experience shapes the developing auditory localization pathway in the barn owl (Tyto alba). (a) Effects of prism
rearing on the auditory spatial receptive fields of neurons in the optic tectum. (i) Visual (V) and auditory (AUD) receptive fields
are normally in close correspondence. (ii) Placing prisms that displace the visual field to the right by 238 disrupts the alignment of
these receptive fields. (iii) After young owls have worn the prisms for eight weeks, the auditory receptive field has shifted so that it
becomes realigned with the visual receptive field. Adapted from Knudsen & Brainard (1991). (b) Adjustment of auditory
orienting responses in a prism-reared owl. Head-orienting responses to visual (open circles) or auditory (filled circles) targets
plotted with respect to the location of the stimulus. Owls normally make accurate head turns towards either stimulus. Prisms
immediately shift the visual responses, but have no effect on the auditory responses. However, after 42 days of experience with
the prisms, the auditory responses have shifted to match the optical displacement of the visual field, presumably as a
consequence of the changes that take place in the optic tectum. When the prisms are removed, normal visual responses are
restored, although it takes several weeks for the auditory orienting responses to recover ((i) before prisms, (ii) after 1 day with
prisms, (iii) after 42 days with prisms and (iv) prisms removed). Adapted from Knudsen & Knudsen (1990).
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dimensions of the head and external ears. Thus, during

development, the cue values associated with any given

direction in space will gradually change while these

structures are growing (Moore & Irvine 1979; Clifton

et al. 1988; Schnupp et al. 2003; Campbell et al.

2008; figure 1). Consequently, representations of

sound-source location in the brain cannot become

fully mature until the auditory periphery has stopped

growing. Moreover, the adult values attained once

development is complete will vary from one individual

to another according to differences in the size, shape

and separation of the ears. This implies that listeners

must learn by experience to localize with their own

ears, a view that is supported by the finding that

humans can localize headphone signals that simulate

real sound sources more accurately when these are

derived from measurements made from their own ears

than from the ears of other individuals (Wenzel et al.
1993; Middlebrooks 1999).

Accurate auditory localization relies on non-acoustic

factors too. Because the coordinates of auditory

space are centred on the head and ears, information

must be provided by the vestibular and proprioceptive

senses about the orientation and motion of these

structures (Goossens & Van Opstal 1999; Vliegen et al.

2004). Moreover, a congruent representation of the

external world has to be provided by the different

senses, so that the objects registered by more than one

modality can be reliably localized and identified. In

the case of vision and hearing, this means that activation

of a specific region of the retina corresponds to a

particular combination of monaural and binaural
Phil. Trans. R. Soc. B (2009)
localization cues values. Because most animals can
move their eyes, that relationship is not fixed. Conse-
quently, the neural processing and perception of
auditory spatial information is also influenced by the
direction of gaze (Zwiers et al. 2004; Bulkin & Groh
2006; Razavi et al. 2007).
3. VISUAL INFLUENCES ON THE ACCURACY OF
AUDITORY LOCALIZATION
Although sound sources can obviously be localized on
the basis of auditory cues alone, localization accuracy
improves if the target is also visible to the subject
(Shelton & Searle 1980; Stein et al. 1989). This is an
example of a more general phenomenon by which the
central nervous system can combine inputs across the
senses to enhance the detection, localization and
discrimination of stimuli and speed up reactions to
them. Cross-modal interactions also occur when
conflicting information is provided by different senses.
For instance, it is frequently the case when listening to
someone’s voice that we also see their lips moving,
which, particularly in noisy situations, can improve
speech intelligibility (Sumby & Pollack 1954). But
when the visual and auditory signals no longer match,
as occurs when viewing someone articulating one
speech syllable while listening to another, listeners
typically report hearing a third syllable that represents a
combination of what was seen and heard (the ‘McGurk
effect’; McGurk & MacDonald 1976).

Conflicting visual cues can also influence the
perceived location of a sound source. Thus, the
presentation of synchronous but spatially disparate
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visual and auditory targets tends to result in mis-
localization of the auditory stimulus, which is perceived
to originate from near the location of the visual
stimulus (Bertelson & Radeau 1981). Visual capture
of sound-source location forms the basis for the
ventriloquist’s illusion and explains why we readily
associate sounds with their corresponding visual events
on a television or cinema screen, rather than with the
loudspeakers located to one side. This is usually
thought to arise because, in contrast to the ambiguous
and relatively imprecise cues that underlie auditory
localization, the retina provides the brain with high-
resolution and reliable information about the visual
world. However, if visual stimuli are blurred so that
they become harder to localize, the illusion can work in
reverse, with sound capturing vision (Alais & Burr
2004). Along with other studies (Ernst & Banks 2002;
Battaglia et al. 2003; Heron et al. 2004), this finding
suggests that rather than vision having an inherent
advantage in spatial processing, the weighting afforded
to different sensory cues when they are integrated by
the brain varies according to how reliable they are.

Nevertheless, visual localization is normally more
accurate than sound localization and therefore tends to
dominate conflicts between the two modalities, thereby
enabling, at least within certain limits, spatially
misaligned cues to be perceived as if they originate
from the same object or event. Repeated presentation
of consistently misaligned cues results in a shift in the
perception of auditory space that can last for tens of
minutes once the visual stimulus is removed (figure 2).
This is known as the ventriloquism after-effect and has
been observed in both human (Radeau & Bertelson
1974; Recanzone 1998; Lewald 2002) and non-human
(Woods & Recanzone 2004) primates. Short-term
changes in auditory localization can also be induced
in humans by compressing the central part of the visual
field for 3 days with 0.5! lenses (Zwiers et al. 2003).
These studies highlight the dynamic nature of auditory
spatial processing in the mature brain, which allows the
perceived location of sound sources to be modified in
order to conform to changes in visual space.
4. VISUAL–AUDITORY INTERACTIONS
IN THE BRAIN
Revealing where and how multisensory information is
combined and integrated in the brain is critical to
understanding the basis by which visual inputs
influence auditory perception and behaviour. Until
recently, multisensory convergence was thought to be
the preserve of specific cortical and subcortical brain
regions. It is now clear, however, that many cortical
regions receive afferent inputs from more than one of
the senses, including primary areas that were previously
thought to be modality specific. This seems to be
particularly the case in the auditory cortex, where
sensitivity to visual stimulation has been demonstrated
in humans (Calvert et al. 1999; Giard & Peronnet
1999; Molholm et al. 2002), non-human primates
(Schroeder & Foxe 2002; Brosch et al. 2005; Ghazanfar
et al. 2005; Kayser et al. 2007), ferrets (Bizley et al.
2007) and rats (Wallace et al. 2004a).
Phil. Trans. R. Soc. B (2009)
One likely function for these multisensory
interactions has been revealed by Ghazanfar et al.
(2005) who found that responses to vocalizations in
monkey auditory cortex could be either enhanced or
suppressed when the animals viewed the corresponding
facial expressions, whereas this was less likely to be the
case if the image of the face was replaced by a disc that
was flashed on and off to mimic the mouth movements.
It has been suggested that visual and somatosensory
inputs can modulate the phase of oscillatory activity in
the auditory cortex, potentially amplifying the response
to related auditory signals (Schroeder et al. 2008).
A facilitatory role for these inputs in sound localization
has also been proposed (Schroeder & Foxe 2005),
a possibility supported by the finding that visual inputs
can increase the amount of spatial information
conveyed by neurons in auditory cortex (Bizley &
King 2008). As the cortex is necessary for normal
sound localization (Recanzone & Sutter 2008), it
seems likely that such interactions could underlie the
visual capture of auditory space perception. Indeed, the
observation that the ventriloquism after-effect does not
seem to transfer across sound frequency (Recanzone
1998; Lewald 2002; Woods & Recanzone 2004, but see
also Frissen et al. 2005 for a different result) implies
that early, tonotopically organized regions are involved.
5. VISUAL GUIDANCE OF AUDITORY SPATIAL
PROCESSING DURING DEVELOPMENT
In addition to recalibrating auditory space whenever
temporary spatial mismatches occur, vision plays an
important role in guiding the maturation of the auditory
spatial response properties of neurons in certain regions
of the brain. This has been demonstrated most clearly in
the superior colliculus (SC) in the midbrain, where
visual, auditory and tactile inputs are organized into
topographically aligned spatial maps (King 2004). This
arrangement allows each of the sensory inputs associated
with a particular event to be transformed into appro-
priate motor signals that control the direction of gaze.
Where individual SC neurons receive converging multi-
sensory inputs, the strongest responses can often be
generated to combinations of stimuli that occur in close
temporal and spatial proximity, which, in turn, appears
to improve the accuracy of orienting responses (Stein &
Stanford 2008). As with the perception of space,
maintenance of intersensory map alignment in the SC
requires the incorporation of eye-position information in
order to allow for differences in the reference frames
used to specify visual and auditory spatial signals (Jay &
Sparks 1987; Hartline et al. 1995; Populin et al. 2004).

The dominant role played by vision in aligning the
sensory maps in the SC has been demonstrated by
altering the spatial relationship between auditory
localization cues and directions in visual space. This
has been achieved by surgically inducing a persistent
change in eye position (King et al. 1988), by the use of
prisms that laterally displace the visual field represen-
tation (Knudsen & Brainard 1991; figure 3), and, most
recently, by maintaining young animals in the dark and
periodically exposing them to temporally coincident
but spatially incongruent visual and auditory stimuli
(Wallace & Stein 2007). In each case, a corresponding
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shift in the neural representation of auditory space is
produced, which, at least in prism-reared owls, involves
a rewiring of connections within the midbrain (DeBello
et al. 2001). In addition to these long-lasting effects on
auditory spatial tuning, behavioural studies in owls
have shown that prism experience induces equivalent
changes in the accuracy of auditory head-orienting
responses (Knudsen & Knudsen 1990; figure 3).

Studies in human infants have shown that certain
multisensory abilities emerge at different stages within
the first year of life (Neil et al. 2006; Kushnerenko et al.
2008). However, the capacity to integrate different
sensory cues in a statistically optimal fashion emerges
much later, at approximately 8 years of age (Gori et al.
2008; Nardini et al. 2008). Before this, one or other sense
seems to dominate, which is potentially useful if one
sense is used during development to calibrate another, as
in the influence of vision on auditory spatial processing.
6. AUDITORY SPATIAL LEARNING IN
ADULTHOOD
Early studies in barn owls showed that altered vision
results in adaptive auditory plasticity during a sensitive
period of development, but not in older animals
(Knudsen & Knudsen 1990; Knudsen & Brainard
1991). This is consistent with other studies, including
those in mammals, which have explored the role of
experience in the development and maintenance
of sound localization mechanisms (King et al.
2000). Nevertheless, more recent experiments in
owls have shown that the capacity for prism experience
to induce long-term modifications of both the
auditory space map (Brainard & Knudsen 1998;
Knudsen 1998; Bergan et al. 2005) and localization
behaviour (Brainard & Knudsen 1998) can be
extended to older animals under certain conditions.

It is also now clear that the mature mammalian brain
is capable of relearning to localize sound in the
presence of substantially altered auditory spatial cues.
This has been demonstrated in humans by placing
moulds into the external ears in order to alter the
spectral cues corresponding to different directions in
space (Hofman et al. 1998; Van Wanrooij & Van Opstal
2005). As expected, this manipulation immediately
impaired localization in the vertical plane. However,
response accuracy subsequently recovered over the
course of a few weeks. No after-effect was observed
following removal of the moulds, indicating that this
recalibration in the neural processing of spectral cues
did not interfere with the capacity of the brain to use the
cue values previously experienced by the subjects. In a
similar vein, Kacelnik et al. (2006) showed that altering
binaural cues by reversible occlusion of one ear greatly
reduces the accuracy with which adult ferrets can
localize sounds in the horizontal plane. Again, per-
formance rapidly improved over the next week or so,
but only if the animals received auditory localization
training after the earplug had been introduced. Indeed,
the extent and rate of improvement were determined by
the frequency of training (figure 4). Compared with the
initial pattern of errors induced by the earplug, a very
small and transient after-effect was seen following its
removal. This indicates that plasticity in this task is
Phil. Trans. R. Soc. B (2009)
unlikely to be attributed to the animals learning a new
association between the altered binaural cues and
directions in space. Instead, it appears that the brain
is capable of reweighting the different auditory cues
according to how reliable or consistent they are in a
manner that resembles the optimal integration of
multisensory cues in ventriloquism.

Given the evidence that vision can recalibrate
auditory localization both during infancy and in later
life, it seems reasonable to assume that visual cues
provide a possible source of sensory feedback about the
accuracy of acoustically guided behaviour, which might
therefore guide the plasticity observed when local-
ization cues are altered. Indeed, if they are also
deprived of vision, smaller adaptive changes occur in
the tuning of midbrain neurons in owls raised with one
ear occluded (Knudsen & Mogdans 1992). Moreover,
normally sighted birds that have adapted to monaural
occlusion fail to recover normal localization behaviour
following earplug removal if vision is prevented at the
same time (Knudsen & Knudsen 1985).

However, visual feedback is neither sufficient nor
required for recalibrating auditory space in response to
altered binaural cues in adult mammals. Kacelnik et al.
(2006) found that ferrets with unilateral earplugs do
not recover auditory localization accuracy if they are
trained on a visual, rather than an auditory, localization
task (figure 4b), highlighting the requirement for
modality-specific training, while normal plasticity was
seen in response to auditory training in animals that
had been visually deprived from infancy (figure 5). It
has been suggested that these results can be accounted
for by unsupervised sensorimotor learning, in which
the dynamic acoustic inputs associated with an animal’s
own movements help build up a stable representation
of auditory space (Aytekin et al. 2008). Although vision
is not essential for the relearning of accurate sound
localization by monaurally occluded ferrets, it is
certainly possible that training with congruent multi-
sensory cues might result in faster learning than that
with auditory cues alone, as recently demonstrated in
humans for a motion detection task (Kim et al. 2008).
7. VISUAL–AUDITORY INTERACTIONS
FOLLOWING SENSORY DEPRIVATION:
IMPLICATIONS FOR COCHLEAR IMPLANTATION
There is both behavioural and physiological evidence
that early loss of vision can interfere with the
maturation of certain aspects of auditory spatial
processing (Withington-Wray et al. 1990; King &
Carlile 1993; Zwiers et al. 2001; Wallace et al.
2004b). Nevertheless, there is no doubt that accurate
sound localization can develop in the absence of vision
(figure 5) and, in some cases, even surpass the
performance of individuals with normal sight (King &
Parsons 1999; Röder et al. 1999; Gougoux et al. 2005;
Lewald 2007). Enhanced auditory capacities could
result from changes within the auditory pathway
(Korte & Rauschecker 1993; Elbert et al. 2002),
perhaps reflecting the greater attention paid to the
auditory modality. However, the recruitment of visual
cortex also seems to be involved in the superior
auditory localization performance of blind individuals
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(Weeks et al. 2000; Gougoux et al. 2005), which is
presumably made possible either by establishing novel
functional connections from auditory to visual brain
areas or by unmasking connections that are now known
to exist normally.

Although the emergence of heightened abilities in
the use of the remaining senses in the blind or deaf is
Phil. Trans. R. Soc. B (2009)
clearly advantageous, this has important implications
for the capacity of the brain to process inputs from the

missing sense, should these be restored, and to

coordinate those inputs with the intact sensory
modalities. Thus, while cross-modal reorganization

of auditory cortex appears to facilitate the perception
of visual speech in the deaf, it may limit the capacity of

these individuals to make use of restored auditory

inputs provided by cochlear implants (Doucet et al.
2006; Lee et al. 2007). Another important consider-

ation is the effect of early sensory deprivation on the
subsequent capacity to bind visual and auditory signals.

Early loss of vision has been reported to impair the
ability of the central nervous system to combine and

integrate multisensory cues (Wallace et al. 2004b;
Putzar et al. 2007). Synthesis of auditory and visual
information can be achieved, however, if sensory

function is restored early enough. Thus, congenitally
deaf children fitted with cochlear implants within the

first two and a half years of life exhibit the McGurk
effect, whereas, after this age, auditory and visual

speech cues can no longer be fused (Schorr et al. 2005).

Interestingly, patients with cochlear implants received
following postlingual deafness—who presumably ben-

efitted from multisensory experience early in life—are
better than listeners with normal hearing at fusing

visual and auditory signals, thereby improving speech
intelligibility in situations where both sets of cues are

present (Rouger et al. 2007).

While cochlear implantation has enabled many
profoundly deaf patients to recover substantial auditory

function, including an ability to converse by telephone,
they usually have difficulty in localizing sounds and
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perceiving speech in noisy conditions. This is because,
in the vast majority of cases, only one ear is implanted.
However, if hearing is restored bilaterally by implanting
both ears, these functions can be recovered or, in the
case of the congenitally deaf, established for the first
time (Litovsky et al. 2006; Long et al. 2006). On the
basis of the highly dynamic way in which auditory
spatial information is processed in the brain, it seems
certain that the capacity of patients to interpret the
distorted signals provided by bilateral cochlear
implants will be enhanced by experience and by
training strategies that encourage their use in local-
ization tasks. Moreover, provided that they can
integrate multisensory inputs, training with congruent
auditory and visual stimuli should be particularly useful
for promoting adaptive plasticity in the auditory system
of these individuals.

The author is supported by a Wellcome Trust Principal
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