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Abstract 

Background:  Despite the rapid expansion of electronic health records, the use of computer mouse and keyboard, 
challenges the data entry into these systems. Speech recognition software is one of the substitutes for the mouse and 
keyboard. The objective of this study was to evaluate the use of online and offline speech recognition software on 
spelling errors in nursing reports and to compare them with errors in handwritten reports.

Methods:  For this study, online and offline speech recognition software were selected and customized based on 
unrecognized terms by these softwares. Two groups of 35 nurses provided the admission notes of hospitalized 
patients upon their arrival using three data entry methods (using the handwritten method or two types of speech 
recognition software). After at least a month, they created the same reports using the other methods. The number 
of spelling errors in each method was determined. These errors were compared between the paper method and the 
two electronic methods before and after the correction of errors.

Results:  The lowest accuracy was related to online software with 96.4% and accuracy. On the average per report, the 
online method 6.76, and the offline method 4.56 generated more errors than the paper method. After correcting the 
errors by the participants, the number of errors in the online reports decreased by 94.75% and the number of errors in 
the offline reports decreased by 97.20%. The highest number of reports with errors was related to reports created by 
online software.

Conclusion:  Although two software had relatively high accuracy, they created more errors than the paper method 
that can be lowered by optimizing and upgrading these softwares. The results showed that error correction by users 
significantly reduced the documentation errors caused by the software.

Keywords:  Documentation, Electronic medical record, Errors, Speech recognition software, Voice recognition, Nurses, 
Nursing note, Paper note
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Background
Clinical documentation is the most important source of 
information about the patient and is used to assess the 
patient’s problems and to manage his clinical conditions 
[1, 2]. These documents are also important in matters of 
patient safety [3–7], quality assurance [7–9], legal pro-
cesses [7, 10, 11], financial issues [5, 10–12], and medical 
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education [13–15]. Paper documents have several prob-
lems, including illegibility and incompleteness [16]. Stud-
ies have shown that illegible handwriting can increase 
medication errors by 75% [17, 18]. To overcome these 
problems, electronic medical records are being devel-
oped and replace paper documents worldwide. Because 
of the advantages of the electronic health record includ-
ing better readability and accessibility of data [19], health 
organizations have become more interested in using 
computers to create records than making paper records. 
Despite the advantages of electronic records, they require 
more eye-hand coordination due to the simultaneous use 
of mouse and keyboard while looking at the computer 
screen [20]. The use of a mouse and keyboard is also dif-
ficult for users with low typing skills or speed [21].

One of the data entry methods is the speech recogni-
tion method. This method, which converts audio to text 
can be an alternative to typing by mouse and keyboard 
and reduce user fatigue. In recent years, the use of this 
software has increased due to its ease of use among 
health care providers [22, 23]. Previous studies have 
shown that this software has been used successfully for 
recording radiology reports [24]. Today, physicians and 
nurses are commonly using speech recognition soft-
ware for documentation [25]. When using this software 
to create nursing reports, due to access to oral data, less 
information is lost and misinterpretations are reduced 
[26]. Also in a study, this software increased the quality 
of nursing reports because of direct and on-time record-
ing of data as opposed to handwritten reports which may 
be recorded hours later [27]. However, few studies have 
examined the effect of using speech recognition soft-
ware on nursing reports [22, 23, 25, 26, 28]. In addition, 
to our knowledge, none of the studies has compared the 
number of errors between paper nursing reports and 
electronic reports created by different types of speech 
recognition software. The objective of this study was 
evaluation and comparison of errors including spelling 
errors, missing words, and added words (words typed 
without being uttered by the user) on nursing notes cre-
ated by online and offline speech recognition technology 
and handwritten.

Methods
This interventional study was carried out on nurses 
working in inpatient wards of three educational hospi-
tals affiliated to Kerman University of Medical Sciences. 
Nurses were randomly selected from 10 clinical wards 
of three hospitals including gynecology, gastroenterol-
ogy, midwifery, general surgery, orthopedics, ENT sur-
gery, reconstructive surgery, cardiac surgery, eye surgery, 
and cardiology. Intensive care units and operating room 
wards were not included in the study due to the difference 

in nursing reports between these wards and other wards, 
as well as their high workload compared to other wards 
resulting in lower cooperation of their nurses. Criteria for 
the inclusion of nurses in the study were having at least 
6  months of work experience in the studied wards and 
participation in generating daily nursing reports.

A sample of 70 nurses was recruited to participate and 
evaluate the errors generated by speech recognition soft-
ware. This sample size was calculated based on the data 
of a previous study that was conducted to examine the 
accuracy of the medical report generated by the speech 
recognition system and the experience of physicians in 
hospitals [29], using the following formula and consider-
ing (µ1 − µ2 = 10) d = 10 and (1 − β = 0.80).

The significant level was 0.05.
We used a crossover study design to discard the learn-

ing effect, and divided participants into two groups of 
35 nurses randomly. The participants in each group 
were asked to provide the admission nursing note upon 
arrival of one of the recently hospitalized patients using 
the paper or two online and offline speech recognition 
methods. The reason for selecting admission notes was 
that these notes have identical structures in all wards, 
and are the most comprehensive nursing notes for each 
patient. After at least 1 month, nurses were asked to pro-
vide the same reports using the opposite method. All 
reports were created in the real workplace of nurses in 
the inpatient wards. To somewhat manage working place 
noises, reports were not created at patient’s bedside and 
all reports were created in nursing stations.

Selection and customization of speech recognition 
software
In this study, the professional version (3.2) of Nevisa, an 
offline speech recognition software, and Speechtexter, an 
online speech recognition software were used. Both of 
these software programs are compatible with Windows 
operating system and support the Persian language. It 
is also possible to add an unlimited number of words to 
them. To use the offline software, a hardware lock was 
required to connect to the system. An external sound 
card (to transmit sound transparently to software) and 
Andrea (NC-8) Head Mounted microphone was also 
used.

Since these two software only use general non-special-
ized terms and do not support the recognition of medi-
cal terms, terms that could not be recognized by them 
were added to the software. For this purpose, on average 
10 patient records from each of the studied wards were 
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randomly retrieved. From which 80 records were selected 
and their admission nursing notes were reviewed. Then, 
one of the researchers read each of these reports verbally 
once to the online speech recognition software and once 
to the offline software. The terms that could not be rec-
ognized by the software were added to their dictionary.

Nevisa was offline and required training of the user’s 
voice to the software. To do this, each user was asked to 
read 120 predefined sentences determined by the system 
developers. To train to nurses’ voices for the software 
reading at least 40 of the 120 sentences is required, as 
defined by the developer. This took about 20–30 min per 
user.

Speechtexter was online and did not require user voice 
training. In order to create nursing reports by speech 
recognition software, an electronic form of the nursing 
report was created using Access software.

When the reports were created by the participants, 
they were asked to review the reports and correct any 
potential errors. Then one of the researchers reviewed 
the initial reports (pre-correction reports) and identi-
fied their errors. The reports and the errors were checked 
and confirmed by a nurse who was not among the par-
ticipant and gained knowledge about how to evaluate 
the reports and what to considered as error. After it, the 
same researcher reviewed the corrected reports again 
and identified their errors.

Data analysis
The collected data were analyzed using Minitab 18. Since 
we used a crossover design, a nested ANOVA was used 
to compare the number of errors among three methods 
of documenting nursing reports. Moreover, in order to 
find the difference between the number of errors among 
the three methods, the Tukey statistical test was used. 
Moreover, the analysis of the values related to the accu-
racy of each method was expressed descriptively and as 
a percentage.

Results
A total of 70 nurses participated in the study. Most of the 
participants were female (n = 60). The age range of the 
participants was from 22 to 45 years. Based on the review 
of the nursing reports in inpatient records, a total of 521 
words were added to the offline and 695 words to the 
online software. On average, 6 words were added to the 
offline and 8 words to the online software per report. The 
accuracy of nursing reports generated by the online and 
offline software was 96.4% and 97.52% respectively. After 
correcting the errors by nurses, the accuracy of online 
software reached 99.81% and the accuracy of offline 
software reached 99.93%. Table  1 shows the descriptive 
information obtained from this step:

Errors were found in three out of the 70 reports gener-
ated by the paper method. From the reports generated by 
online and offline software, 69 and 68 reports had errors, 
respectively. There was more than one error in 94% of 
reports created with online and in 91% of reports created 
with offline software. On average, the rate of errors per 
report was 0.04 errors in the handwritten reports, 6.80 
errors in online reports, and 4.60 errors in offline reports.

The results of nested ANOVA to compare the three 
methods of documenting nursing reports in terms of the 
number of errors are summarized in Table 2:

The results of this test showed statistically significant 
differences between these three methods (P = 0.00). To 
examine the difference between the numbers of errors 
made by the three methods, the Tukey test was used 
and all three methods were compared with each other in 
pairs. The results of this test are shown in Table 3:

As shown in Table  3, there was a statistically signifi-
cant difference between all three methods of document-
ing nursing reports in terms of the number of errors 
(P = 0.00). On average, the number of errors per report 
in the online method was 6.76 errors, and in the offline 

Table 1  Number of reports with errors in three methods of 
documenting nursing reports

Methods of 
documentation

Number of errors (%)

Reports 
without 
error

Reports 
with an 
error

Reports with 
more than one 
error

Total

Paper 67 (95.71) 3 (4.28) 0 (0) 70

Online 1 (1.43) 3 (4.28) 66 (94.28) 70

Offline 2 (2.86) 4 (5.71) 64 (91.43) 70

Table 2  Comparison of errors made in the three methods of 
documenting nursing reports

* P < .05
a Number of degrees of freedom
b Adjusted sum of squares
c Adjusted mean squares
d Consisting of two groups, each group of 35 participants in one course has 
created its reports by paper method and in another course by electronic method
e Three intervention methods include paper method, online software method, 
offline software method

Source DFa Adj SSb Adj MSc F-Value P Value

Period 1 8.57 8.571 1.27 0.26

Sequenced 1 12.34 12.343 1.24 0.26

Intervene 2 1662.89 831.443 123.20 0.00*

Nurse(Sequence) 68 701.09 10.310 1.53 0.01

Error 137 924.54 6.748

Total 209 3319.76
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method 4.56 errors higher than in the paper method. The 
number of errors in online reports was on average 2.2 
higher than in the offline reports. The highest error rate 
was generated by the online speech recognition method 
with an average of 6.8 errors per report and the lowest 
rate was generated by the paper method with an average 
of 0.04 errors per report.

The results showed that only 4% of handwritten reports 
had errors, while 98% of online reports and 97% of offline 
reports had at least one error.

Among the online reports, only 1 report was error-free, 
and the maximum number of errors was 9 in one report. 
Also, the lowest number of errors in the offline reports 
was 0 and the highest number was 16 in one report. In 
general, the paper method had fewer errors than the elec-
tronic methods.

After correcting the errors by the participants, the 
number of errors in the online reports decreased by 
94.75% to 25 errors in the total reports (on average 0.35 
errors per report) and the number of errors in the offline 
reports decreased by 97.20% to 9 errors (on average 0.12 
errors per report). Also, the total number of erroneous 
reports after correction were reduced to 20 reports in 
the online method (28.57% all online reports) and to 7 
reports in the offline method (10% of all offline reports).

Discussion
The present study was conducted to evaluate speech rec-
ognition software on the number of spelling errors in 
admission nursing notes. The results showed a significant 
difference among the three methods of documenting 
nursing reports in terms of the number of errors. Reports 
created with online speech recognition software had the 
highest and handwritten reports had the lowest number 
of errors. The results of this study showed that the error 
rate was significantly reduced after editing the reports 
created by the two speech recognition software. Also, 
the number of errors in online reports was significantly 
higher than in the offline reports. One of the reasons for 
the higher number of errors in online reports compared 
to offline reports is the dependence of online software on 
the speed of the Internet and consequently failure to type 

some words when slowing down the Internet. This was 
the cause of many errors related to this software.

Consistent with our results, other studies [24, 30, 31] 
have shown that the number of errors in radiology reports 
created by speech recognition software was higher than 
in paper-based radiology reports. Zhou et  al. [32] also 
examined the effect of this software on medical reports 
and, similar to our results, reported that the error rate 
after correction of reports is greatly reduced. However, in 
their study, after corrections 40% of reports still had errors 
while in our study this number decrease to 28% for online 
reports and to 10% for offline reports. Errors in medi-
cal records can affect the quality of patient care [33–36] 
and reduce productivity [24]. According to the literature, 
among the studies conducted on speech recognition soft-
ware, only one study on pathology reports indicated a 
reduction in the errors of software reports compared to 
handwritten reports [37]. The error may occur due to sev-
eral factors such as the type of software, user accent, and 
experience, speed of speaking, and environmental factors 
such as crowded conditions [29]. The amount of error can 
also be related to the complexity of the report [30]. The 
use of common terms in recording reports can reduce 
documentation errors. In addition, using macros and 
new versions of speech recognition software can reduce 
these errors [38]. Use of artificial intelligence in this soft-
ware reduces the number of errors over time due to soft-
ware learning [37]. One of the most important reasons for 
higher errors in the speech recognition method compared 
to the handwritten method in this study was the use of 
general and non-specialized software. At the beginning 
and before adding medical words, these software programs 
were unable to recognize medical terms. Despite adding a 
large number of medical terms for customizations, these 
software programs could not recognize some of these 
terms. Another reason was the use of Persian speech rec-
ognition software, which has been developed recently 
and still need time to improve their diagnostic engines. In 
addition, Persian language users do not have much experi-
ence working with speech recognition software.

Our results showed that the accuracies of online (96%) 
and offline methods (97%), are lower than the accuracy 
of the handwritten method (99.99%). Congruent to our 
results Hammana et  al.[24] found that the accuracy of 
speech recognition software for generating radiology 
reports is lower than the handwritten method. The accu-
racy of speech recognition software has been reported 
between 80 and 98% by other studies [39–45]. Speech 
disorders such as stuttering, pauses, and interruptions, 
which are part of human nature, are among the reasons 
for the lower accuracy of speech recognition software 
compared to traditional and handwritten methods. The 
sounds emerge due to these disorders are interpreted by 

Table 3  The differences of the average number of errors per 
report among the three methods of documenting nursing 
reports

* P < 0.05

Compared 
methods

Mean ± SD CI 95% T-Value P Value

Online and paper 6.76 ± 0.44 (5.72, 7.80) 15.39 0.00*

Offline and paper 4.56 ± 0.44 (3.52, 5.60) 10.38 0.00*

Offline and online − 2.20 ± 0.44 (− 3.24, − 1.16) − 5.01 0.00*
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the software as words [24]. Speech recognition software 
has the potential to be improved in the future and conse-
quently reduce errors, just as the development of this soft-
ware over the past 20 years has significantly reduced errors 
compared to the original speech recognition software [46].

Despite studies investigating the impact of speech 
recognition technology on nursing reports, so far no 
research has used this software in the real world and at 
the point of care. This research is the first study for evalu-
ation of this software on nursing reports by creating real 
reports related to patients. The results of this study can 
help health policymakers to make proper decisions for 
replacing the handwritten method with the speech rec-
ognition method and to select the appropriate software. 
These results also provide a broader perspective to the 
developers of these systems to carefully address their 
shortcomings and design accurate software. The results 
of this study can be used to develop medical speech rec-
ognition software. This study was conducted to evaluate 
speech recognition software on admission nursing notes 
due to the uniform structure of these reports in all wards. 
It is suggested that in future studies, the impact of this 
software on other reports be examined.

Limitations
This study had four limitations. First, due to the lack 
of medical speech recognition software with Persian 
language support, software with general and non-spe-
cialized terms recognition was used. To eliminate this 
limitation, a large number of medical records were 
reviewed to extract specialized terms and add them 
to the software. Moreover, some nurses used to apply 
abbreviations and shorthand notations to record their 
notes, that need to be added to the software. Second, 
to work with offline software, it was necessary to train 
the user’s voice to the software, while some nurses were 
reluctant to participate in the research due to a short-
age of time. Therefore, this was done during the hours of 
the day when there was less workload in the study area. 
Also, nurses who did not want to spend their time doing 
this were not included in the study. Third, since the use 
of online software requires the use of the Internet, due 
to the low-speed Internet in some wards, the software 
had problems in recognizing some terms leading to 
errors. Fourth, although it was better to compare speech 
recognition technology with mouse and keyboard, but 
in Iran, medical records are still recorded manually and 
on paper. Forth, one of the limitations of this study was 
that users have different technological literacy and each 
of them needs different time to reach an acceptable 
level. This can affect the results. Moreover, our results 
may be affected by proficiency of the users as users have 
never worked with this software before.

Conclusion
The present study showed that although the use of speech 
recognition software for recording nursing reports may 
lead to errors, the review of reports by users could greatly 
result in the correction of errors. In addition, the results 
showed that offline software has a lower rate of errors in 
recording reports than online software. This study pro-
vided a good insight for health policymakers, designers, 
and developers of these systems to select and develop 
appropriate and efficient software.
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