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A B S T R A C T   

Automatic segmentation methods are an important advancement in medical image analysis. Machine learning 
techniques, and deep neural networks in particular, are the state-of-the-art for most medical image segmentation 
tasks. Issues with class imbalance pose a significant challenge in medical datasets, with lesions often occupying a 
considerably smaller volume relative to the background. Loss functions used in the training of deep learning 
algorithms differ in their robustness to class imbalance, with direct consequences for model convergence. The 
most commonly used loss functions for segmentation are based on either the cross entropy loss, Dice loss or a 
combination of the two. We propose the Unified Focal loss, a new hierarchical framework that generalises Dice 
and cross entropy-based losses for handling class imbalance. We evaluate our proposed loss function on five 
publicly available, class imbalanced medical imaging datasets: CVC-ClinicDB, Digital Retinal Images for Vessel 
Extraction (DRIVE), Breast Ultrasound 2017 (BUS2017), Brain Tumour Segmentation 2020 (BraTS20) and 
Kidney Tumour Segmentation 2019 (KiTS19). We compare our loss function performance against six Dice or 
cross entropy-based loss functions, across 2D binary, 3D binary and 3D multiclass segmentation tasks, demon
strating that our proposed loss function is robust to class imbalance and consistently outperforms the other loss 
functions. Source code is available at: https://github.com/mlyg/unified-focal-loss.   

1. Introduction 

Image segmentation involves partitioning an image into meaningful 
regions, based on the regional pixel characteristics, from which objects 
of interest are identified (Pal and Pal, 1993). This is a fundamental task 
in computer vision and has been applied widely in face recognition, 
autonomous driving, as well as medical image processing. In particular, 
automatic segmentation methods are an important advancement in 
medical image analysis, capable of demarcating structures across a 
range of imaging modalities including ultrasound (US), computed to
mography (CT) and magnetic resonance imaging (MRI). 

Classical approaches for image segmentation include direct region 
detection methods (such as the split-and-merge and region growing al
gorithms (Rundo et al., 2016)), graph-based methods (Chen and Pan, 

2018), active contour and level set models (Khadidos et al., 2017). Later 
approaches have focused on applying and adapting traditional machine 
learning techniques (Rundo et al., 2020b), such as support vector ma
chines (SVMs) (Wang and Summers, 2012), unsupervised clustering 
(Ren et al., 2019) and atlas-based segmentation (Wachinger and Gol
land, 2014). In recent years, however, significant progress has been 
achieved using deep learning (Ker et al., 2018; Rueckert and Schnabel, 
2019; Castiglioni et al., 2021). 

The most well-known architecture in image segmentation, the U-Net 
(Ronneberger et al., 2015), is a modification of the convolutional neural 
network (CNN) architecture into an encoder-decoder network, similar to 
SegNet (Badrinarayanan et al., 2017), which enables end-to-end feature 
extraction and pixel classification. Since its inception, many variants 
based on the U-Net architecture have been proposed (Y. Liu et al., 2020; 
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L. Liu et al., 2020; Rundo et al., 2019a)—including the 3D U-Net (Cicek 
et al., 2016), Attention U-Net (Schlemper et al., 2019) and V-Net (Mil
letari et al., 2016)—as well as integrated into conditional Generative 
Adversarial Networks (Kessler et al., 2020; Armanious et al., 2020). 

To train deep neural networks, backpropagation updates model pa
rameters in accordance with the optimisation goal defined by the loss 
function. The cross entropy loss is typically the most widely used loss 
function in classification problems (L. Liu et al., 2020; Y. Liu et al., 2020) 
and is applied in the U-Net (Ronneberger et al., 2015), 3D U-Net (Cicek 
et al., 2016) and SegNet (Badrinarayanan et al., 2017). In contrast, the 
Attention U-Net (Schlemper et al., 2019) and V-Net (Milletari et al., 
2016) leverage the Dice loss, which is based on the most commonly used 
metric for evaluating segmentation performance, and therefore repre
sents a form of direct loss minimisation. Broadly, loss functions used in 
image segmentation may be classified into distribution-based losses 
(such as the cross entropy loss), region-based losses (such as Dice loss), 
boundary-based losses (such as the boundary loss) (Kervadec et al., 
2019), and more recently compound losses. Compound losses combine 
multiple, independent loss functions, such as the Combo loss, which is 
the sum of the Dice and cross entropy loss (Taghanaki et al., 2019). 

A dominant issue in medical image segmentation is handling class 
imbalance, which refers to an unequal distribution of foreground and 
background elements. For example, automatic organ segmentation often 
involves organ sizes that are an order of magnitude smaller than the scan 
itself, resulting in a skewed distribution favouring background elements 
(Roth et al., 2015). This issue is even more prevalent in oncology, where 
tumour sizes are themselves often significantly smaller than the asso
ciated organ of origin. 

Taghanaki et al. (2019) distinguish between input and output 
imbalance, the former as aforementioned, and the latter referring to 
classification biases arising during inference. These include false posi
tives and false negatives, which respectively describe background pixels 
incorrectly classified as foreground objects, and foreground objects 
incorrectly classified as background. Both are particularly important in 
the context of medical image segmentation; in the case of image-guided 
interventions, false positives may result in a larger radiation field or 
excessive surgical margins, and conversely false negatives may lead to 
inadequate radiation delivery or incomplete surgical resection. There
fore, it is important to design a loss function that can be optimised to 
handle both input and output imbalances. 

Despite its significance, careful selection of the loss function is not 
widespread practice, and often suboptimal loss functions are chosen 
with performance repercussions. To inform loss function choice, it is 
important to perform large-scale loss function comparisons. Seven loss 
functions were compared on the CVC-EndoSceneStill (gastrointestinal 
polyp segmentation) dataset, with the best performance seen with 
region-based losses and conversely the worst performance with the cross 
entropy loss (Sánchez-Peralta et al., 2020). Similarly, a comparison of 
fifteen loss functions using the NBFS Skull-stripped dataset (Jadon, 
2020) (brain CT segmentation), which also introduces the log-cosh Dice 
loss, concluded that Focal Tversky loss and Tversky loss, both 
region-based losses, are generally optimal (Jadon, 2020). This is further 
supported by the most comprehensive loss function comparison to the 
date, with twenty loss functions compared across four datasets (liver, 
liver tumour, pancreas and multi-organ segmentation), which observed 
the best performance with compound-based losses, where the most 
consistent performance was observed with the DiceTopK and DiceFocal 
loss (Ma et al., 2021). It is apparent from these studies that region-based 
or compound losses are associated with consistently better performance 
than distribution-based losses. Less clear, however, is which of the 
region-based or compound losses to choose, with no agreement among 
the aforementioned. One major confounding factor is the degree of class 
imbalance in the datasets, with low class imbalance seen in the NBFS 
Skull-stripping dataset, moderate class imbalance in the 
CVC-EndoSceneStill dataset, and a combination of both low and high 
class imbalanced datasets present in (Ma et al., 2021). 

Among medical imaging datasets, those involving tumour segmen
tation are associated with high degrees of class imbalance. Manual 
tumour delineation is both time-consuming and operator-dependent. 
Automatic methods of tumour delineation aim to address these issues, 
and public datasets, such as the Breast Ultrasound 2017 (BUS2017) 
dataset for breast tumours (Yap et al., 2017), Kidney Tumour Segmen
tation 19 (KiTS19) dataset for kidney tumours (Heller et al., 2019) and 
Brain Tumour Segmentation 2020 (BraTS20) for brain tumours (Menze 
et al., 2014), have accelerated progress towards this goal. In fact, there 
has been recent developments for translating the BraTS20 dataset into 
clinical and scientific practice (Kofler et al., 2020). 

Current state-of-the-art models for the BUS2017 dataset incorporate 
attention gates, which may provide benefits in class imbalanced situa
tions by using contextual information from the gating signal to refine 
skip connections, highlighting the regions of interest (Abraham and 
Khan, 2019). In addition to attention gates, the RDAU-NET combines 
residual units and dilated convolutions to enhance information transfer 
and increase the receptive field, respectively, and was trained using the 
Dice loss (Zhuang et al., 2019). The multi-input Attention U-Net com
bines attention gates with deep supervision, and introduces the Focal 
Tversky loss, a region-based loss function designed to handle class 
imbalance (Abraham and Khan, 2019). 

For the BraTS20 dataset, a popular approach is to use a multi-scale 
architecture where different receptive field sizes allow for the inde
pendent processing of both local and global contextual information 
(Kamnitsas et al., 2017; Havaei et al., 2017). Kamnitsas et al. (2017) 
used a two-phase training process involving initial upsampling of 
under-represented classes, followed by a second-stage where the output 
layer is retrained on a more representative sample. Similarly, Havaei 
et al. (2017) used a sampling rule to impose equal probability of fore
ground or background pixels at the centre of a patch, and used the cross 
entropy loss for optimisation. 

For the KiTS19 dataset, the current state-of-the-art is the “no-new- 
Net” (nnU-Net) (Isensee et al., 2021, 2018), an automatically config
urable deep learning-based segmentation method involving the 
ensemble of 2D, 3D and cascaded 3D U-Nets. This framework was 
optimised using the Dice and cross entropy loss. Recently, an 
ensemble-based method obtained comparable results to nnU-Net, and 
involved initial independent processing of kidney organ and kidney 
tumour segmentation by 2D U-Nets trained using the Dice loss, followed 
by suppression of false positive predictions of the kidney tumour seg
mentation using the network trained for kidney organ segmentation 
(Fatemeh et al., 2020). When the dataset size is small, results from an 
active learning-based method using CNN-corrected labelling, also 
trained using the Dice loss, showed a higher segmentation accuracy over 
nnU-Net (Kim et al., 2020). 

It is apparent that for all three datasets, class imbalance is largely 
handled by altering either the training or input data sampling process, 
and rarely with adapting the loss function. However, popular method
s—such as upsampling the underrepresented class—are inherently 
associated with an increase in false positive predictions, and more 
complicated, often multi-stage training processes require more compu
tational resources. 

State-of-the-art solutions typically use unmodified versions of either 
the Dice loss, cross entropy loss or a combination of the two, and even 
when using available loss functions for handling class imbalance, such as 
the Focal Tversky loss, consistently improved performance has not been 
observed (Ma et al., 2021). Deciding which loss function to use is 
difficult because there is not only a significant number of loss functions 
available to choose from, but it is also unclear how each loss function 
relates to one another. Understanding the relationship between loss 
functions is the key for providing heuristics to inform loss function 
choice in class imbalanced situations. 

In this paper, we propose the following contributions: . 
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(a) We summarise and extend the knowledge provided by previous 
studies that compare loss functions to address the context of class 
imbalance, by using five class imbalanced datasets with varying 
degrees of class imbalance, including 2D binary, 3D binary and 
3D multi-class segmentation, across multiple imaging modalities.  

(b) We define a hierarchical classification of Dice and cross entropy- 
based loss functions, and use this to derive the Unified Focal loss, 
that generalises Dice-based and cross entropy-based loss func
tions for handling class imbalanced datasets.  

(c) Our proposed loss function consistently improves segmentation 
quality over six other related loss functions, is associated with a 
better recall-precision balance, and is robust to class imbalance. 

The manuscript is organised as follows. Section 2 provides a sum
mary of the loss functions used, including the proposed Unified Focal 
loss. Section 3 describes the chosen medical imaging datasets and de
fines the segmentation evaluation metrics used. Section 4 presents and 
discusses the experimental results. Finally, Section 5 provides conclusive 
remarks and future directions. 

2. Background 

The loss function defines the optimisation problem, and directly af
fects model convergence during training. This paper focuses on semantic 
segmentation, a sub-field of image segmentation where pixel-level 
classification is performed directly, in contrast to instance segmenta
tion where an additional object detection stage is required. We describe 
seven loss functions that belong to either distribution-based, region- 
based or compound losses based of a combination of the two. A graph
ical overview of loss functions in these categories, and how all are 
derivable from the Unified Focal loss, is provided in Fig. 1. First, the 
distribution-based functions are introduced, followed by region-based 
loss functions, and finally concluding with compound loss functions. 

2.1. Cross entropy loss 

The cross entropy loss is one of the most widely used loss functions in 

deep learning. With origins in information theory, cross entropy mea
sures the difference between two probability distributions for a given 
random variable or set of events. As a loss function, it is superficially 
equivalent to the negative log likelihood loss and, for binary classifica
tion, the binary cross entropy loss (L BCE) is defined as the following: 

L BCE(y, ŷ) = − (ylog(ŷ) + (1 − y)log(1 − ŷ)). (1) 

Here, y,ŷ ∈ {0,1}N, where ̂y refers to the predicted value and y refers 
to the ground truth label. This can be extended to multi-class problems, 
and the categorical cross entropy loss (L CCE) is computed as: 

L CCE(y, p) = −
1
N

∑N

i=1

∑C

c=1
yi,c⋅log

(
pi,c

)
, (2)  

where yi,c uses a one-hot encoding scheme of ground truth labels, pi,c is a 
matrix of predicted values for each class, and where indices c and i 
iterate over all classes and pixels, respectively. Cross entropy loss is 
based on minimising pixel-wise error, where in class imbalanced situa
tions, leads to over-representation of larger objects in the loss, resulting 
in poorer quality segmentation of smaller objects. 

2.2. Focal loss 

The Focal loss is a variant of the binary cross entropy loss that ad
dresses the issue of class imbalance with the standard cross entropy loss 
by down-weighting the contribution of easy examples enabling learning 
of harder examples (Lin et al., 2017). To derive the Focal loss function, 
we first simplify the loss in Eq. 1 as: 

CE(p, y) =
{

− log(p), if y = 1
− log(1 − p), if y = 0

}

. (3) 

Next, we define the probability of predicting the ground truth class, 
pt, as: 

pt =

{
p, if y = 1

1 − p, if y = 0

}

. (4) 

The binary cross entropy loss (L BCE) can therefore be rewritten as: 

Fig. 1. Our proposed framework unifying various distribution-based, region-based and compound loss functions. The arrows and associated hyperparameter values 
indicate the required hyperparameter value to set for the preceding loss function in order to recover the resulting loss function. 
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L BCE(p,y) = CE(pt) = − log(pt). (5) 

The Focal loss (L F) adds a modulating factor to the binary cross 
entropy loss: 

L F(pt) = α(1 − pt)
γ⋅L BCE(p,y), (6) 

The Focal loss is parameterised by α and γ, which control the class 
weights and degree of down-weighting of easy-to-classify pixels, 
respectively (Fig. 2). When γ = 0, the Focal loss simplifies to the binary 
cross entropy loss. 

For multi-class segmentation, we define the categorical Focal loss 
(L CF): 

L CF = α
(
1 −

(
pt,c

) )γ⋅L CCE, (7)  

where α is now a vector of class weights, pt,c is a matrix of ground truth 
probabilities for each class, and L CCE is the categorical cross entropy 
loss as defined in Eq. 2. 

2.3. Dice loss 

The Sørensen-Dice index, known as the Dice similarity coefficient 
(DSC) when applied to Boolean data, is the most commonly used metric 
for evaluating segmentation accuracy. We can define DSC in terms of the 
per voxel classification of true positives (TP), false positives (FP) and 
false negatives (FN): 

DSC =
2TP

2TP + FP + FN
. (8) 

The Dice loss (L DSC), can therefore be defined as: 

L DSC = 1 − DSC. (9) 

Other variants of the Dice loss include the Generalised Dice loss 
(Crum et al., 2006; Sudre et al., 2017) where the class weights are 
corrected by the inverse of their volume, and the Generalised Wasser
stein Dice loss (Fidon et al., 2017), which combines the Wasserstein 
metric with the Dice loss and is adapted for dealing with hierarchical 
data, such as the BraTS20 dataset (Menze et al., 2014). 

Even in its most simple formulation, the Dice loss is somewhat 
adapted to handle class imbalance. However, the Dice loss gradient is 
inherently unstable, most evident with highly class imbalanced data 
where gradient calculations involve small denominators (Wong et al., 
2018; Bertels et al., 2019). 

2.4. Tversky loss 

The Tversky index (Salehi et al., 2017) is closely related to the DSC, 
but enables optimisation for output imbalance by assigning weights α 
and β to false positives and false negatives, respectively: 

TI =
∑N

i=1p0ig0i
∑N

i=1p0ig0i + α
∑N

i=1p0ig1i + β
∑N

i=1p1ig0i
, (10)  

where p0i is the probability of pixel i belonging to the foreground class 
and p1i is the probability of pixel belonging to background class. g0i is 1 
for foreground and 0 for background and conversely g1i takes values of 1 
for background and 0 for foreground. 

Using the Tversky index, we define the Tversky loss (L T) for C 
classes as: 

L T =
∑C

c=1
(1 − TI). (11) 

When the Dice loss function is applied to class imbalanced problems, 
the resulting segmentation often exhibits high precision but low recall 
scores (Salehi et al., 2017). Assigning a greater weight to false negatives 
improves recall and results in a better balance of precision and recall. 
Therefore, β is often set higher than α, most commonly β = 0.7 and 
α = 0.3. 

The asymmetric similarity loss is derived from the Tversky loss, but 
uses the Fβ score and substitutes α for 1

1+β2 and β for β2

1+β2, adding the 
constraint that α and β must sum to 1 (Hashemi et al., 2018). In practice, 
α and β values for the Tversky loss are chosen such that they sum to 1, 
making both loss functions functionally equivalent. 

2.5. Focal Tversky loss 

Inspired by the Focal loss adaptation of the cross entropy loss, the 
Focal Tversky loss (Abraham and Khan, 2019) adapts the Tversky loss by 
applying a focal parameter. 

Using the definition of TI from Eq. 10, the Focal Tversky loss is 
defined (L FT) as: 

L FT =
∑C

c=1
(1 − TI)

1
γ , (12)  

where γ < 1 increases the degree of focusing on harder examples. The 
Focal Tversky loss simplifies to the Tversky loss when γ = 1. However, 
contrary to the Focal loss, the optimal value reported was γ = 4∕3, 
which enhances rather than suppresses the loss of easy examples. 
Indeed, near the end of training where the majority of the examples are 
more confidently classified and the Tversky index approaches 1, 
enhancing the loss in this region maintains a higher loss which may 
prevent premature convergence to a suboptimal solution. 

2.6. Combo loss 

The Combo loss (Taghanaki et al., 2019) belongs to the class of 
compound losses, where multiple loss functions are minimised in uni
son. The Combo loss (L combo) is defined as a weighted sum of the DSC in 
Eq. 8 and a modified form of the cross entropy loss (L mCE): 

L combo = α(L mCE) − (1 − α)⋅DSC, (13)  

where: 

L mCE = −
1
N

∑N

i=1
β(yiln(pi) ) + (1 − β)[(1 − yi)ln(1 − pi) ], (14)  

and α ∈ [0,1] controls the relative contribution of the Dice and cross 
entropy terms to the loss, and β controls the relative weights assigned to 

Fig. 2. Effect of changing γ with the Unified Focal loss. The top and bottom 
group of curves relate to the Focal Tversky loss and Focal loss respectively. The 
dashed lines represent different values of γ with the modified Focal Tversky loss 
and modified Focal loss components. 
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false positives and negatives. A value of β > 0.5 penalises false negative 
predictions more than false positives. 

Confusingly, the term “Dice and cross entropy loss” has been used to 
refer to both the sum of cross entropy loss and DSC (Taghanaki et al., 
2019; Isensee et al., 2018), as well as the sum of the cross entropy loss 
and Dice loss, such as in the DiceFocal loss and Dice and weighted cross 
entropy loss (Zhu et al., 2019b; Chen et al., 2019). Here, we decide to use 
the former definition, which is consistent with both Combo loss and the 
loss function used in the state-of-the-art for the KiTS19 dataset (Isensee 
et al., 2018). 

2.7. Hybrid Focal loss 

The Combo loss (Taghanaki et al., 2019) and DiceFocal loss (Zhu 
et al., 2019b) are two compound loss functions that inherit benefits from 
both Dice and cross entropy-based loss functions. However, neither ex
ploits the full benefits in the context of class imbalance. Both the Combo 
loss and the DiceFocal loss, with a tunable β and α parameter respec
tively in the cross entropy component losses, are partially robust to 
output imbalance. However, both lack an equivalent for the Dice 
component loss, where positive and negative examples remain equally 
weighted. Similarly, the Dice component of both losses are not adapted 
to handle input imbalance, although the DiceFocal loss is better adapted 
with its focal parameter in the Focal loss component. 

To overcome this, we previously proposed the Hybrid Focal loss 
function, which incorporates tunable parameters to handle output 
imbalance, as well as focal parameters to handle input imbalance, for 
both the Dice and cross entropy-based component losses (Yeung et al., 
2021). By replacing the Dice loss with the Focal Tversky loss, and the 
cross entropy loss with the Focal loss, the Hybrid Focal loss (L HF) is 
defined as: 

L HF = λL F + (1 − λ)L FT, (15)  

where λ ∈ [0,1] and determines the relative weighting of the two 
component loss functions. 

2.8. Unified Focal loss 

The Hybrid Focal loss adapts both the Dice and cross entropy based 
losses to handle class imbalance. However, there are two main issues 
associated with using the Hybrid Focal loss in practice. Firstly, there are 
six hyperparameters to tune: α and γ from the Focal loss, α / β and γ from 
the Focal Tversky loss, and λ to control the relative weighting of the two 
component losses. While this allows a greater degree of flexibility, this 
comes at the cost of a significantly larger hyperparameter search space. 
The second issue is common to all focal loss functions, where the 
enhancing or suppressing effect introduced by the focal parameter is 
applied to all classes, which may affect the convergence towards the end 
of training. 

The Unified Focal loss addresses both issues, by grouping function
ally equivalent hyperparameters together and exploiting asymmetry to 
focus the suppressive and enhancing effects of the focal parameters in 
the modified Focal loss and Focal Tversky loss components, respectively. 

Firstly, we replace α in the Focal loss and α and β in the Tversky Index 
with a common δ parameter to control output imbalance, and refor
mulate γ to enable simultaneous Focal loss suppression and Focal 
Tversky loss enhancement, naming these the modified Focal loss (L mF) 
and modified Focal Tversky loss (L mFT), respectively: 

L mF(pt) = δ(1 − pt)
1− γ⋅L BCE(p,y), (16)  

L mFT =
∑C

c=1
(1 − mTI)γ

, (17) 

where, 

mTI =
∑N

i=1p0ig0i
∑N

i=1p0ig0i + δ
∑N

i=1p0ig1i + (1 − δ)
∑N

i=1p1ig0i
. (18) 

The symmetric variant of the Unified Focal loss (L sUF) is therefore 
defined as: 

L sUF = λL mF + (1 − λ)L mFT, (19) 

where λ ∈ [0,1] and determines the relative weighting of the two 
losses. By grouping functionally equivalent hyperparameters, the six 
hyperparameters associated with the Hybrid Focal loss are reduced to 
three, with δ controlling the relative weighting of positive and negative 
examples, γ controlling both suppression of the background class and 
enhancement of the rare class, and finally λ determining the weights of 
the two component losses. 

Although the Focal loss achieves suppression of the background 
class, the focal parameter is applied to all classes and therefore the loss 
contributed by the rare class is also suppressed. Asymmetry enables 
selective enhancement or suppression using the focal parameter by 
assigning different losses to each class, and this overcomes both the 
harmful suppression of the rare class and enhancement of the back
ground class. The modified asymmetric Focal loss (L maF) removes the 
focal parameter for the component of the loss relating to the rare class r, 
while retaining suppression of the background elements (Li et al., 2019): 

L maF = −
δ
N

yi:rlog
(
pt,r

)
−

1 − δ
N

∑

c∕=r

(
1 − pt,c

)γlog
(
pt,r

)
. (20) 

In contrast, for the modified Focal Tversky loss, we remove the focal 
parameter for the component of the loss relating to the background, 
retaining enhancement of the rare class r, and define the modified 
asymmetric Focal Tversky loss (L maFT) as: 

L maFT =
∑

c∕=r
(1 − mTI) +

∑

c=r
(1 − mTI)1− γ

. (21) 

The asymmetric variant of the Unified Focal loss (L aUF), is therefore 
defined as: 

L aUF = λL maF + (1 − λ)L maFT. (22) 

The issue of loss suppression associated with the Focal loss is miti
gated by complementary pairing with the Focal Tversky loss, with the 
asymmetry enabling simultaneous background loss suppression and 
foreground loss enhancement, analogous to increasing the signal to 
noise ratio (Fig. 2). 

By incorporating ideas from previous loss functions, the Unified 
Focal loss generalises Dice-based and cross entropy-based loss functions 
into a single framework. In fact, it can be shown that all Dice and cross 
entropy based loss functions described so far are special cases of the 
Unified Focal loss (Fig. 1). For example, by setting γ = 0 and δ = 0.5, the 
Dice loss and the cross entropy loss are recovered when λ is set to 0 and 1 
respectively. By clarifying the relationship between the loss functions, 
the Unified Focal loss is much easier to optimise than separately trialling 
the different loss functions, and it is also more powerful because it is 
robust to both input and output imbalances. Importantly, given that the 
Dice loss and cross entropy loss both are efficient operations, and 
applying the focal parameter adds negligible time complexity, the Uni
fied Focal loss is not expected to significantly increase training time over 
its component loss functions. 

In practice, optimisation of the Unified Focal loss can be further 
simplified to a single hyperparameter. Given the different effect of the 
focal parameter on each component loss, the role of λ is partially 
redundant, and therefore we recommend settings λ = 0.5, which assigns 
equal weight to each component loss and is supported by empirical 
evidence (Taghanaki et al., 2019). Furthermore, we recommend setting 
δ = 0.6, to correct the Dice loss tendency to produce high precision, low 
recall segmentations with class imbalance. This is less than δ = 0.7 in the 
Tversky loss, to account for the effect from the cross entropy-based 
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component. This heuristic reduction of the hyperparameter search space 
to the single γ parameter makes the Unified Focal loss both powerful and 
easy to optimise. We provide further empirical evidence behind these 
heuristics for the Unified Focal loss in the Supplementary Materials. 

3. Materials and methods 

3.1. Dataset descriptions and evaluation metrics 

We select five class imbalanced medical imaging datasets for our 
experiments: CVC-ClinicDB, DRIVE, BUS2017, KiTS19 and BraTS20. To 
assess the degree of class imbalance, the percentage of foreground 
pixels/vowels were calculated per image and averaged over the entire 
dataset (Table 1). 

3.1.1. CVC-ClinicDB dataset 
Colonoscopy is the gold-standard screening tool for colorectal can

cer, but is associated with significant polyp miss rates, presenting an 
opportunity to leverage computer-aided systems to support clinicians in 
reducing the number of polyps missed (Kim et al., 2017). We use the 
CVC-ClinicDB dataset, which consists of 612 frames containing polyps 
with image resolution 288 × 384 pixels, generated from 23 video se
quences from 13 different patients using standard colonoscopy in
terventions with white light (Bernal et al., 2015). 

3.1.2. DRIVE dataset 
Degenerative retinal diseases display characteristic features on fun

doscopy that may be used to aid diagnosis. In particular, retinal vessel 
abnormalities such as changes in tortuosity or neovascularisation pro
vide important clues for staging and treatment planning. We select the 
DRIVE dataset (Staal et al., 2004), which consists of 40 coloured fundus 
photographs obtained from diabetic retinopathy screening in the 
Netherlands, captured using 8 bits per colour plane of resolution 
768 × 584. 33 photographs display no signs of diabetic retinopathy, 
while 7 photographs show signs of mild diabetic retinopathy. 

3.1.3. BUS2017 dataset 
The most commonly used screening tool for breast cancer assessment 

is digital mammography. However, dense breast tissue, often seen in 
younger patients, is poorly visualised on mammography. An important 
alternative is US imaging, which is an operator-dependent procedure 
requiring skilled radiologists, but has the advantage of no radiation 
exposure unlike mammography. BUS2017 dataset B consists of 163 ul
trasound images and associated ground truth segmentations with mean 
image size of 760 × 570 pixels collected from the UDIAT Diagnostic 
Centre of the Parc Taulí Corporation, Sabadell, Spain. 110 images are 
benign lesions, consisting of 65 unspecified cysts, 39 fibroadenomas and 
6 from other benign types. The other 53 images depict cancerous masses, 
with the majority invasive ductal carcinomas. 

3.1.4. BraTS20 dataset 
BraTS20 dataset is currently the largest, publicly available and fully- 

annotated dataset for medical image segmentation (Nazir et al., 2021), 
and comprises of 494 multimodal scans of patients with either low-grade 
glioma or high-grade glioblastoma (Menze et al., 2014; Bakas et al., 
2017, 2018). The BraTS20 dataset provides images for the following 

MRI sequences: T1-weighted (T1), T1-weighted contrast-enhanced 
using gadolinium contrast agents (T1-CE), T2-weighted (T2) and fluid 
attenuated inverse recovery (FLAIR) sequence. Images were manually 
annotated, with regions associated with the tumour labelled as: necrotic 
and non-enhancing tumour core, peritumoural oedema or 
gadolinium-enhancing tumour. From the 494 scans provided, 125 scans 
are used for validation with reference segmentation masks withheld 
from public access, and therefore are excluded. To define a binary seg
mentation task, we further exclude T1, T2 and FLAIR sequences to focus 
on gadolinium-enhancing tumour segmentation using the T1-CE 
sequence (Rundo et al., 2019b; Han et al., 2019), which not only ap
pears to be the most difficult class to segment (Henry et al., 2020), but is 
also the most clinically relevant for radiation therapy (Rundo et al., 
2017, 2018). We further exclude another 27 scans without enhancing 
tumour regions, leaving 342 scans, with image resolution 
240 × 240 × 155 voxels, for use. 

3.1.5. KiTS19 dataset 
Kidney tumour segmentation is a challenging task due to the wide

spread presence of hypodense tissue, as well as highly heterogeneous 
appearance of tumours on CT (Linguraru et al., 2009; Rundo et al., 
2020a). To evaluate our loss functions, we select the KiTS19 dataset 
(Heller et al., 2019), a highly class imbalanced, multi-class classification 
problem. Briefly, this dataset consists of 300 arterial phase abdominal 
CT scans from patients who underwent partial removal of the tumour 
and surrounding kidney or complete removal of the kidney including the 
tumour at the University of Minnesota Medical Center, USA. The image 
size is 512 × 512 pixels in the axial plane, with an average of 216 slices 
in coronal plane. Kidney and tumour boundaries were manually delin
eated by two students, with class labels of either kidney, tumour or 
background assigned to each voxel resulting in a semantic segmentation 
task (Heller et al., 2019). 210 scans and their associated segmentations 
are provided for training, with the segmentation masks for the other 90 
scans withheld from public access for testing. We therefore exclude the 
90 scans without segmentation masks, and further exclude another 6 
scans (case 15, 23, 37, 68, 125 and 133) due to concern over ground 
truth quality (Heller et al., 2021), leaving 204 scans for use. 

3.1.6. Evaluation metrics 
To assess segmentation accuracy, we use four commonly used met

rics (Wang et al., 2020): DSC, Intersection over Union (IoU), recall and 
precision. DSC is defined in Eq. 8, and IoU, recall and precision are 
similarly defined per pixel/voxel and according to Eqs. 23, 24 and 25, 
respectively: 

IoU =
TP

TP + FP + FN
, (23)  

Recall =
TP

TP + FN
, (24)  

Precision =
TP

TP + FP
. (25)  

3.2. Implementation details 

All experiments are programmed using Keras with TensorFlow 

Table 1 
Details of datasets and training setup used for our experiments.  

Dataset Segmentation #Images Input size #Training #Validation #Test %Foreground 

CVC-ClinicDB Colorectal polyp  612 288 × 384 × 3  392  98  122 9.3 
DRIVE Retinal vessel  40 512 × 512 × 3  16  4  20 8.7 
BUS2017 Breast tumour  163 128 × 128 × 3  104  26  33 4.8 
BraTS20 Enhancing tumour  342 96 × 96 × 96  219  55  68 0.2 
KiTS19 Kidney / Tumour  204 80 × 160 × 160  130  33  41 0.8 / 0.2  
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backend and run on NVIDIA P100 GPUs. We made use of the Medical 
Image Segmentation with Convolutional Neural Networks (MIScnn) 
open-source Python library (Müller and Kramer, 2019). 

Images from the CVC-ClinicDB, DRIVE and BUS2017 datasets are 
provided in an anonymised tiff, jpeg and png file formats respectively. 
For both the KiTS19 and BraTS20 dataset, images and ground truth 
segmentation masks are provided in an anonymised NIfTI file format. 
For all datasets, except for the DRIVE dataset which is originally parti
tioned into 20 training images and 20 testing images, we randomly 
partitioned each dataset into 80% development and 20% test set, and 
further divided the development set into 80% training set and 20% 
validation set. All images were normalised to [0,1] using the z-score. We 
made use of the ‘batchgenerators’ library to apply on-the-fly data 
augmentation with probability 0.15, including: scaling (0.85 − 1.25 × ), 
rotation (− 15∘ to +15∘), mirroring (vertical and horizontal axes), elastic 
deformation (α ∈ [0,900] and σ ∈ [9.0, 13.0]) and brightness (0.5 − 2 ×

). 
For 2D binary segmentation, we used the CVC-ClinicDB, DRIVE and 

BUS2017 datasets and perform full-image analysis, with images resized 
as described in (Table 1). For 3D binary segmentation, we used the 
BraTS20 dataset. Here, images were pre-processed, with the skull 
stripped and images interpolated to the same isotropic resolution of 
1 mm3, and we performed patch-wise analysis using random patches of 
size of 96 × 96 × 96 voxels for training with patch-wise overlap of 
48 × 48 × 48 voxels for inference. For 3D multiclass segmentation, we 
used the KiTS19 dataset. Hounsfield units (HU) were clipped to [ − 79, 
…, 304] HU and voxel spacing resampled to 3.22 × 1.62 × 1.62 mm3 

(Müller and Kramer, 2019). We performed patch-wise analysis using 
random patches of size of 80 × 160 × 160 voxels for training and 
patch-wise overlap of 40 × 80 × 80 voxels for inference. 

For the 2D segmentation tasks, we used the original 2D U-Net ar
chitecture (Ronneberger et al., 2015), and for the 3D segmentation 
tasks, we used the 3D U-Net (Cicek et al., 2016). Model parameters were 
initialised using Xavier initialisation (Glorot and Bengio, 2010), and we 
added instance normalisation and a final softmax activation layer (Zhou 
and Yang, 2019). We trained using the stochastic gradient descent 
optimiser with a batch size of 2 and initial learning rate of 0.1. For 
convergence criteria, we used ReduceLROnPlateau to reduce the 
learning rate by 0.1 if the validation loss did not improve after 10 
epochs, and the EarlyStopping callback to terminate training if the 
validation loss did not improve after 20 epochs. Validation loss was 
evaluated after each epoch, and the model with the lowest validation 
loss was selected as the final model. 

We evaluate the following loss functions: cross entropy loss, Focal 
loss, Dice loss, Tversky loss, Focal Tversky loss, Combo loss, and sym
metric and asymmetric variants of the Unified Focal loss. We used 
optimal hyperparameters for each loss function as reported in the 
original studies. Specifically, we set α = 0.25 and γ = 2 for the Focal loss 
(Lin et al., 2017), α = 0.3, β = 0.7 for the Tversky loss (Salehi et al., 
2017), α = 0.3, β = 0.7 and γ = 4∕3 for the Focal Tversky loss (Abraham 
and Khan, 2019) and α = β = 0.5 for the Combo loss. For the Unified 
Focal loss, we set λ = 0.5, δ = 0.6, and performed hyperparameter 
tuning with γ ∈ [0.1, 0.9] for the 2D segmentation tasks, and set γ = 0.5 
for the 3D segmentation tasks. 

To test for statistical significance, we used the Wilcoxon rank-sum 
test. A statistically significant difference was defined as p < 0.05. 

4. Experimental results 

In this section, we first describe the results from the 2D binary seg
mentation using the CVC-ClinicDB, DRIVE and BUS2017 datasets, fol
lowed by 3D binary segmentation using the BraTS20 dataset, and 
conclude with 3D multiclass segmentation with the KiTS19 dataset. 

Table 2 
Results on the CVC-ClinicDB dataset. Values are in the form mean ± 95% con
fidence intervals. Numbers in boldface denote the highest values for each metric. 
The best values for the Unified Focal losses are reported from the hyper
parameter tuning.  

Loss 
function 

DSC IoU Precision Recall 

CE 0.889 ± 0.025 0.820 ± 0.029 0.921 ± 0.026 0.878 ± 0.026 
Focal 0.868 ± 0.027 0.790 ± 0.031 0.844 ± 0.032 0.933 

± 0.017 
DSC 0.867 ± 0.029 0.792 ± 0.034 0.895 ± 0.030 0.875 ± 0.031 
Tversky 0.874 ± 0.025 0.796 ± 0.030 0.864 ± 0.029 0.909 ± 0.025 
Focal 

Tversky 
0.894 ± 0.026 0.831 ± 0.030 0.896 ± 0.026 0.919 ± 0.023 

Combo 0.895 ± 0.025 0.831 ± 0.030 0.927 
± 0.023 

0.885 ± 0.028 

Unified 
Focal 
(Sym) 

0.909 
± 0.024 

0.852 
± 0.028 

0.917 ± 0.026 0.919 ± 0.020 

Unified 
Focal 
(Asym) 

0.909 
± 0.023 

0.851 ± 0.028 0.910 ± 0.026 0.932 ± 0.016  

Table 3 
Results on the DRIVE dataset. Values are in the form mean ± 95% confidence 
intervals. Numbers in boldface denote the highest values for each metric. The 
best values for the Unified Focal losses are reported from the hyperparameter 
tuning.  

Loss 
function 

DSC IoU Precision Recall 

CE 0.789 ± 0.008 0.652 ± 0.011 0.874 
± 0.017 

0.742 ± 0.021 

Focal 0.781 ± 0.008 0.642 ± 0.011 0.724 ± 0.019 0.853 
± 0.016 

DSC 0.799 ± 0.007 0.666 ± 0.009 0.817 ± 0.018 0.787 ± 0.021 
Tversky 0.794 ± 0.007 0.658 ± 0.009 0.750 ± 0.019 0.848 ± 0.018 
Focal 

Tversky 
0.798 ± 0.007 0.664 ± 0.010 0.765 ± 0.020 0.839 ± 0.019 

Combo 0.796 ± 0.007 0.661 ± 0.010 0.836 ± 0.017 0.763 ± 0.021 
Unified 

Focal 
(Sym) 

0.801 ± 0.006 0.669 ± 0.009 0.816 ± 0.018 0.792 ± 0.021 

Unified 
Focal 
(Asym) 

0.803 
± 0.006 

0.671 
± 0.008 

0.793 ± 0.018 0.818 ± 0.020  

Table 4 
Results on the BUS2017 dataset. Values are in the form mean ± 95% confidence 
intervals. Numbers in boldface denote the highest values for each metric. The 
best values for the Unified Focal losses are reported from the hyperparameter 
tuning.  

Loss 
function 

DSC IoU Precision Recall 

CE 0.751 ± 0.086 0.653 ± 0.090 0.730 ± 0.098 0.851 ± 0.075 
Focal 0.603 ± 0.092 0.480 ± 0.090 0.659 ± 0.113 0.710 ± 0.102 
DSC 0.767 ± 0.085 0.672 ± 0.088 0.788 ± 0.094 0.808 ± 0.075 
Tversky 0.808 ± 0.070 0.716 ± 0.078 0.780 ± 0.081 0.904 ± 0.039 
Focal 

Tversky 
0.799 ± 0.081 0.712 ± 0.085 0.758 ± 0.090 0.912 ± 0.062 

Combo 0.759 ± 0.087 0.665 ± 0.092 0.746 ± 0.094 0.849 ± 0.073 
Unified 

Focal 
(Sym) 

0.814 ± 0.063 0.716 ± 0.070 0.768 ± 0.076 0.923 
± 0.027 

Unified 
Focal 
(Asym) 

0.824 
± 0.063 

0.731 
± 0.071 

0.797 
± 0.074 

0.908 ± 0.037  
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4.1. 2D binary segmentation 

The results for the 2D binary segmentation experiments are shown in  
Tables 2, 3, and 4. 

Across all three datasets, the best performance was consistently 
observed with the asymmetric variant of the Unified Focal loss, 
achieving a DSC of 0.909 ± 0.023, 0.803 ± 0.006 and 0.824 ± 0.063 on 
the CVC-ClinicDB, DRIVE and BUS2017 datasets respectively. This was 
followed by the symmetric variant of the Unified Focal loss, which 
achieved the best IoU score of 0.852 ± 0.028 on the CVC-ClinicDB 
dataset, and comparable DSC scores to the asymmetric variant with a 
DSC of 0.909 ± 0.024, 0.801 ± 0.006 and 0.814 ± 0.063 on the CVC- 
ClinicDB, DRIVE and BUS2017 datasets. No statistically significant dif
ference in performance was observed between the two variants of the 
Unified Focal loss on these datasets. Generally, the worst performance 
was observed with cross entropy-based loss functions, with the Focal loss 
performing significantly worse than the cross entropy loss on the CVC- 
ClinicDB (p = 0.04) and BUS2017 (p = 0.004) datasets, and signifi
cantly worse than the asymmetric variant of the Unified Focal loss across 
the three datasets (CVC-ClinicDB: p = 2×10− 6, DRIVE: p = 110− 4 and 
BUS2017: p = 5×10 − 5). No significant differences were observed be
tween the Dice-based losses. 

To evaluate the performance stability of the γ hyperparameter, we 
display the DSC performance for each value of γ ∈ [0.1, 0.9] for the three 
datasets in Fig. 3. 

For both the symmetric and asymmetric variants, the Unified Focal 
loss displays consistently strong performance across the range of γ ∈
[0.1, 0.9]. This is most evident with the CVC-ClinicDB dataset, where 
improved performance over the other loss functions is observed across 
the entire range of hyperparameter values. The worst performance 
occurred at high values such as γ = 0.9, while middle values, such as 
γ = 0.5, provided robust performance benefits across datasets. 

To enable a qualitative comparison, example segmentations are 
shown in Fig. 4. 

There is a clear visual difference between the segmentations 

generated using different loss functions. The segmentations from cross 
entropy-based loss functions are associated with a greater proportion of 
false negative predictions compared to the Dice-based loss functions. 
The highest quality segmentations were produced by the compound loss 
functions, with the best segmentations produced using the Unified Focal 
loss. This is particularly clear with the asymmetric variant of the Unified 
Focal loss in the CVC-ClinicDB example. 

4.2. 3D binary segmentation 

The results for the 3D binary segmentation experiments are shown in  
Tables 5. 

The best performance was observed with the Unified Focal loss, 
specifically the asymmetric variant with a DSC of 0.787 ± 0.049, IoU of 
0.683 ± 0.050, precision of 0.795 ± 0.048 and recall of 0.800 ± 0.056. 
This was followed by the symmetric variant of the Unified Focal loss, 
with no significant difference between the two loss functions. In 
contrast, the asymmetric Unified Focal loss displayed significantly 
improved performance compared to all the other loss functions (cross 
entropy loss: p = 0.02, Focal loss: p = 0.03, Dice loss: p = 6×10− 10, 
Tversky loss: p = 5×10− 11, Focal Tversky loss: p = 0.02 and Combo 
loss: p = 1×10− 4). 

Axial slices taken from an example segmentation are shown in Fig. 5. 
From the results, there is a clear recall bias on this dataset, and this is 

reflected by the proportion of false positive predictions with each seg
mentation prediction. The compound loss functions displayed the best 
recall-precision balance, and this is evident by the significantly reduced 
false positive predictions visible in the segmentations produced using 
these loss functions. 

4.3. 3D multiclass segmentation 

The results for the 3D multiclass segmentation experiments are 
shown in Tables 6. 

The Unified Focal loss achieves the best performance, with DSC of 

Fig. 3. Evaluating the stability of γ with the Unified Focal loss on the DSC performance for each dataset. The solid lines represent the symmetric and asymmetric 
variants of the Unified Focal loss, and for reference, the dashed lines represent the DSC performance of the other loss functions. 
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0.943 ± 0.011 and 0.634 ± 0.079 with the asymmetric variant, and DSC 
of 0.943 ± 0.013 and 0.614 ± 0.079 with the symmetric variant, for the 
kidney and kidney tumour segmentation respectively. For kidney seg
mentation, the asymmetric variant of the Unified Focal loss achieves 
significantly improved performance compared to the cross entropy loss 
(p = 0.03), Focal loss (p = 0.004), Tversky loss (p = 0.001), and Focal 
Tversky loss (p = 0.03). The worst performance for kidney segmentation 
was observed using Dice-based losses, with the Tversky loss followed by 
the Focal Tversky loss. In contrast, the worst performance for kidney 
tumour segmentation was observed using cross entropy-based losses, 
with significantly better DSC performance using the Dice loss compared 
to the cross entropy loss (p = 0.01). For kidney tumour segmentation, 
the asymmetric variant of the Unified Focal loss achieves significantly 
better DSC performance compared to the cross entropy loss (p = 6×10 −
5), Focal loss (p = 1×10 − 4), Dice loss (p < 0.05) and Tversky loss 
(p = 4×10 − 4). 

Axial slices taken from an example segmentation are shown in Fig. 5. 

While the kidneys are generally well segmented with only subtle 
differences between the loss functions, the tumour segmentations vary 
considerably in quality. The low tumour recall scores with the cross 
entropy-based loss functions are reflected in the segmentations, where 
the boundary between the tumour and kidney are shifted in favour of 
kidney prediction. The highest quality segmentation is observed with 
the Unified Focal loss, with visibly the most accurate contour of the 
tumour. 

5. Discussion and conclusions 

In this study, we proposed a new hierarchical framework to 
encompass various Dice and cross entropy-based loss functions, and 
used this to derive the Unified Focal loss, which generalises Dice and 
cross entropy-based loss functions for handling class imbalance. We 
compared the Unified Focal loss against six other loss functions on five 
class imbalanced datasets with varying degrees of class imbalance (CVC- 

Fig. 4. Example segmentations, for each loss function for each of the three datasets. The image and ground truth are provided for reference. The false positive are 
highlighted in magenta, and the false negatives are highlighted in green. The yellow arrows highlight example areas where segmentation quality differs. 
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ClinicDB, DRIVE, BUS2017, BraTS20 and KiTS19) involving 2D binary, 

3D binary and 3D multiclass segmentation. The Unified Focal loss 
consistently achieved the highest DSC and IoU scores across the five 
datasets, with slightly better performance observed using the asym
metric variant over the symmetric variant. We demonstrated that the 
optimisation of the Unified Focal loss can be simplified to tuning a single 
γ hyperparameter, which we observed is stable and therefore easy to 
optimise (Fig. 3). 

The significant difference in model performance using different loss 
functions highlights the importance of the loss function choice in class 
imbalanced image segmentation tasks. Most noticeable is the poor per
formance using distribution-based loss functions with the segmentation 
of the kidney tumour class on the highly class imbalanced KiTS19 
dataset (Table 6). This susceptibility to class imbalance is expected given 
the greater representation of classes occupying a larger region in cross 
entropy-based losses. Generally, the Dice-based and compound loss 
functions performed better with class imbalanced data, but one notable 
exception was the BraTS20 dataset, where the Dice loss and Tversky loss 
performed significantly worse than the other loss functions. This likely 
reflects the unstable gradient issue associated with the Dice loss, 
resulting in suboptimal convergence and resulting poor performance. 
Compound loss functions such as the Combo loss and Unified Focal loss 

Table 5 
Results on the BraTS20 dataset. Values are in the form mean ± 95% confidence 
intervals. Numbers in boldface denote the highest values for each metric. γ = 0.5 
for the Unified Focal losses.  

Loss 
function 

DSC IoU Precision Recall 

CE 0.716 ± 0.061 0.604 ± 0.058 0.826 
± 0.055 

0.682 ± 0.068 

Focal 0.738 ± 0.055 0.623 ± 0.052 0.706 ± 0.055 0.805 ± 0.063 
DSC 0.620 ± 0.054 0.482 ± 0.049 0.629 ± 0.064 0.683 ± 0.058 
Tversky 0.580 ± 0.056 0.443 ± 0.051 0.525 ± 0.061 0.740 ± 0.062 
Focal 

Tversky 
0.747 ± 0.052 0.632 ± 0.050 0.717 ± 0.056 0.822 

± 0.053 
Combo 0.686 ± 0.056 0.563 ± 0.055 0.668 ± 0.063 0.757 ± 0.056 
Unified 

Focal 
(Sym) 

0.780 ± 0.049 0.673 ± 0.049 0.803 ± 0.049 0.792 ± 0.056 

Unified 
Focal 
(Asym) 

0.787 
± 0.049 

0.683 
± 0.050 

0.795 ± 0.048 0.800 ± 0.056  

Fig. 5. Axial slice from an example segmentation for each loss function for the BraTS20 dataset. The image and ground truth are provided for reference. The false 
positive are highlighted in magenta, and the false negatives are highlighted in green. The yellow arrows highlight example areas where segmentation quality differs. 

Table 6 
Results on the KiTS19 dataset. Values are in the form mean ± 95% confidence intervals. Numbers in boldface denote the highest values for each metric. γ = 0.5 for the 
Unified Focal losses.   

Kidney Tumour 

Loss function DSC IoU Precision Recall DSC IoU Precision Recall 

CE 0.928 ± 0.016 0.869 ± 0.024 0.933 ± 0.010 0.928 ± 0.026 0.336 ± 0.107 0.262 ± 0.091 0.585 ± 0.133 0.303 ± 0.103 
Focal 0.928 ± 0.011 0.868 ± 0.019 0.907 ± 0.011 0.952 ± 0.018 0.349 ± 0.110 0.276 ± 0.094 0.556 ± 0.136 0.317 ± 0.105 
DSC 0.931 ± 0.015 0.875 ± 0.024 0.936 ± 0.012 0.930 ± 0.024 0.536 ± 0.074 0.402 ± 0.069 0.594 ± 0.089 0.585 ± 0.077 
Tversky 0.914 ± 0.017 0.846 ± 0.026 0.894 ± 0.023 0.940 ± 0.016 0.420 ± 0.087 0.308 ± 0.075 0.411 ± 0.097 0.616 ± 0.087 
Focal Tversky 0.926 ± 0.013 0.864 ± 0.022 0.909 ± 0.017 0.946 ± 0.017 0.520 ± 0.089 0.401 ± 0.081 0.513 ± 0.095 0.619 ± 0.095 
Combo 0.935 ± 0.015 0.881 ± 0.024 0.954 ± 0.008 0.920 ± 0.025 0.554 ± 0.081 0.425 ± 0.074 0.616 ± 0.091 0.586 ± 0.088 
Unified Focal (Sym) 0.943 ± 0.013 0.894 ± 0.020 0.949 ± 0.007 0.940 ± 0.021 0.614 ± 0.079 0.488 ± 0.077 0.667 ± 0.082 0.657 ± 0.084 
Unified Focal (Asym) 0.943 ± 0.011 0.894 ± 0.019 0.942 ± 0.015 0.946 ± 0.014 0.634 ± 0.079 0.510 ± 0.078 0.656 ± 0.083 0.695 ± 0.084  
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performed consistently well across datasets, benefiting from the 
increased gradient stability with the cross entropy-based component, 
and the robustness to class imbalance from the Dice-based component. 
The qualitative assessment correlates with the performance metrics, 
with the highest quality segmentations observed using the Unified Focal 
loss (Fig. 4–6). As expected, no difference in training time was observed 
between any of the loss functions used in these experiments. 

There are several limitations associated with our study. Firstly, we 
have restricted our framework and comparisons to include only a subset 
of the most popular variants of the Dice-based and cross entropy-based 
loss functions. However, it should be noted that the Unified Focal loss 
also generalises other loss functions that were not included, such as the 
DiceFocal loss (Zhu et al., 2019b) and Asymmetric similarity loss 
(Hashemi et al., 2018). One major class of loss functions that were not 
included were boundary-based loss functions (Kervadec et al., 2019; Zhu 
et al., 2019a), which are another class of loss functions that instead use 
distance-based metrics to optimise contours rather than distributions or 
regions used by cross entropy and Dice-based losses, respectively. Sec
ondly, it is not immediately clear how to optimise the γ hyperparameter 
in multiclass segmentation tasks. In our experiments, we treated both 
the kidney and the kidney tumour as the rare class and assigned γ = 0.5. 
Better performance may be observed by assigning different γ values to 
each class, given that for example the kidney class in the KiTS19 dataset 
is four times more prevalent than the tumour class. However, we still 
achieved improved performance using the Unified Focal loss over the 
other loss functions even with this simplification. 

We conclude by highlighting several areas for future research. To 
inform the loss function choice for class imbalanced segmentation, it is 
important to compare a greater number and variety of loss functions, 
especially from other loss function classes and with different class 
imbalanced datasets. We use the original U-Net architecture to simplify 
but also highlight the importance of loss functions on performance, but 
it would be useful to assess whether the performance gains generalise to 
state-of-the-art deep learning methods—such as the nnU-Net (Isensee 
et al., 2021)—and whether this is able to complement or even replace 

alternatives, such as training or sampling-based methods for handling 
class imbalance. 
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