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Abstract Anthropogenic forcing is increasing the likelihood and severity of
certain extreme weather events, which may catalyze outbreaks of climate-sensitive
infectious diseases. Extreme precipitation events can promote the spread of
mosquito-borne illnesses by creating vector habitat, destroying infrastructure,
and impeding vector control. Here, we focus on Cyclone Yaku, which caused
heavy rainfall in northwestern Peru from March 7th - 20th, 2023 and was fol-
lowed by the worst dengue outbreak in Peru’s history. We apply generalized
synthetic control methods to account for baseline climate variation and unob-
served confounders when estimating the causal effect of Cyclone Yaku on dengue
cases across the 56 districts with the greatest precipitation anomalies. We es-
timate that 67 (95% CI: 30 - 87) % of cases in cyclone-affected districts were
attributable to Cyclone Yaku. The cyclone significantly increased cases for over
six months, causing 38,209 (95% CI: 17,454 - 49,928) out of 57,246 cases. The
largest increases in dengue incidence due to Cyclone Yaku occurred in districts
with a large share of low-quality roofs and walls in residences, greater flood risk,
and warmer temperatures above 24◦C. Analyzing an ensemble of climate model
simulations, we found that extremely intense March precipitation in northwest-
ern Peru is 42% more likely in the current era compared to a preindustrial
baseline due to climate forcing. In sum, extreme precipitation like that asso-
ciated with Cyclone Yaku has become more likely with climate change, and
Cyclone Yaku caused the majority of dengue cases across the cyclone-affected
districts.

Significance Statement

Anthropogenic climate change is increasing the risk of extreme events that can
lead to infectious disease epidemics, but few studies have directly measured this
health cost of climate change. We do so by focusing on Cyclone Yaku, which
affected northwestern Peru in March 2023, and was immediately followed by a
dengue epidemic. Cyclone Yaku caused 67% of cases reported over six months
in the affected region. Industrial-era climate forcing has increased the likelihood
of extreme March precipitation like that associated with Cyclone Yaku by 42%.
Assessing the linkages between climate change, extreme weather, and outbreaks
of dengue and other infectious diseases is crucial for understanding the impact
that climate change has already had and preparing for future health risks.

1 Introduction

Human activities are driving major changes to the climate system, including
more frequent and intense extreme weather events such as heat waves, droughts,
and cyclones (Seneviratne et al. 2021; National Academies of Sciences, Engineer-
ing, and Medicine 2016). Climate change may increase risk of an array of adverse
health outcomes including heat-related deaths, Lyme disease, and foodborne ill-
ness connected to the bacteria Vibrio vulnificus (Vezzulli et al. 2016). (National

3

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2024. ; https://doi.org/10.1101/2024.10.23.24309838doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.23.24309838
http://creativecommons.org/licenses/by-nc/4.0/


Academies of Sciences, Engineering, and Medicine 2016; Ebi et al. 2020; Hegerl
et al. 2010; Vicedo-Cabrera et al. 2021; Chapman et al. 2022; Ogden et al. 2014;
McPherson et al. 2017; Vezzulli et al. 2016). Mosquito-borne diseases may be
particularly sensitive to climate change because several transmission-relevant
biological rates (e.g., biting rate and development time) vary with temperature,
while aquatic vector breeding habitat is associated with precipitation (Mordecai
et al. 2019, 2017; Shocket et al. 2020).

Assessing linkages between anthropogenic climate change and health out-
comes may guide adaptation efforts while ensuring that the social and envi-
ronmental costs of fossil fuel emissions are weighed accurately in litigation and
climate policy (Stuart-Smith et al. 2021; Burger et al. 2020; Limaye et al. 2020;
Ebi et al. 2020; Scovronick et al. 2019). However, very few studies have at-
tempted to quantify the contribution of historical climate change to mosquito-
borne disease burden (e.g., (Carlson et al. 2023; Childs et al. 2024)), and these
studies focused on the contribution of long-term increases in mean temperature
to vector-borne disease burden. As a result, a critical gap remains with respect
to the contribution of anthropogenic climate change-driven extreme weather
to vector-borne disease outbreaks, though extreme weather has been shown to
trigger and exacerbate infectious disease outbreaks (Alcayna et al. 2022; Mora
et al. 2022; Carlson et al. 2024).

Reported cases of dengue, a virus transmitted by Aedes aegypti and Aedes
albopictus, have surged to unprecedented levels in recent years, with a total of
over five million cases and 5,000 associated deaths reported globally in 2023, and
over ten million cases reported in 2024 with large epidemics across the Americas
(World Health ORganization 2023; Pan American Health Organization / World
Health Organization 2024). There has been some speculation that extreme
weather (particularly heavy rainfall and flooding) is a primary driver of this ex-
pansion in transmission (World Health ORganization 2023), given that dengue
outbreaks are strongly associated with favorable temperature and precipitation
conditions (Caldwell et al. 2021; Nova et al. 2021; Lowe et al. 2018). Previous
studies found that heavy rainfall and tropical cyclone exposure were associated
with increased risk of dengue, but these studies applied non-causal methods,
which may not accurately capture the contribution of a specific event to a given
outbreak (Li et al. 2022; Lowe et al. 2018; Adeola et al. 2017). Isolating the
effects of particular weather phenomena requires accounting for multiple time-
varying drivers that influence dengue transmission (e.g., strain introductions,
immunity, mobility, vector control, and urbanization), which are often inade-
quately captured by existing data sources and modeling approaches (Zhang et al.
2020; Nova et al. 2021; Giesen et al. 2020; Ogden 2017). A generalized synthetic
control approach can overcome these methodological challenges by accounting
for time trends that may vary across space with unobserved covariates to isolate
the effects of an exposure (i.e., extreme weather event) across impacted areas
(Xu 2017). Generalized synthetic controls and related quasi-experimental meth-
ods have previously been applied in diverse epidemiological and environmental
contexts (Bruhn et al. 2017; Shioda et al. 2021; Nyathi et al. 2019; Sheridan
et al. 2022; Schwarz et al. 2023), but these methods have not yet been applied
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to assess how extreme weather events contribute to infectious disease outbreaks.
Here, we use generalized synthetic control methods to quantify the causal

contribution of extreme precipitation to an unprecedented dengue outbreak in
Peru. In March of 2023, Peru experienced anomalously heavy precipitation due
to a coastal El Niño and Cyclone Yaku, a severe cyclone that primarily affected
northwestern coastal Peru (Peng et al. 2024; Munayco et al. 2024; Bagcchi 2023).
The cyclone had extensive impacts, with 460,000 people affected by flooding,
approximately 40,000 people left without homes, and 83 people reported dead
(United Nations Office for the Coordination of Humanitarian Affairs 2023).
Shortly after, Peru experienced the worst dengue outbreak in the country’s
history. By the end of July 2023, cases exceeded the five-year average by a factor
of ten and 381 dengue-related deaths had been reported (Munayco et al. 2024).
It has been postulated that this outbreak was linked to anomalous precipitation,
but the causal contribution of Cyclone Yaku to dengue cases in Peru has not
been examined, limiting estimates of the true scope of damage caused by this
particular extreme weather event.

Additional climate and socioeconomic factors may moderate the effects of
extreme weather on dengue incidence. For example, built environment (e.g.,
water infrastructure and housing quality) and human behavior (e.g., water
storage practices) may mediate the relationship between extreme weather and
dengue transmission (Gibb et al. 2023; Mulligan et al. 2015; Alcayna et al.
2022; Reiter et al. 2003). Housing built from low-quality materials and infor-
mal settlements may both facilitate contact between humans and mosquitoes
and increase vulnerability to damage from extreme weather (Mulligan et al.
2015; Borbor-Cordova et al. 2020). The relationship between extreme precipi-
tation and dengue risk is also nonlinear and context-dependent: flooding may
promote vector breeding habitat, but can reduce transmission by flushing out
vector habitat (Caldwell et al. 2021). Dry settings with limited water access
may promote transmission as people store water near their residences (Lowe
et al. 2018; Stewart Ibarra et al. 2013; Lowe et al. 2021). Temperature may
also moderate the effects of extreme precipitation on outbreak potential, given
known temperature-sensitivity of mosquitoes and evidence that large epidemics
of mosquito-borne disease may only occur within a range of suitable tempera-
tures (25− 29◦C) (Mordecai et al. 2017; Caldwell et al. 2021; Skaff et al. 2020).
Identifying factors associated with greater risk of large dengue outbreaks fol-
lowing extreme weather events may help guide vector control and public health
emergency preparedness (Udayanga et al. 2020).

Finally, quantifying the extent to which historical anthropogenic climate
forcing has influenced the likelihood of extreme precipitation in northwest Peru
is an important step toward tracing potential linkages between climate change
and human health. In general, extreme weather events are becoming more
frequent and intense as anthropogenic climate change accelerates (Seneviratne
et al. 2021; National Academies of Sciences, Engineering, and Medicine 2016).
Attribution studies have quantified the contribution of anthropogenic forcing
to particular extreme weather conditions, including heat waves, heavy rainfall,
hurricanes, and droughts (Trok et al. 2024; Diffenbaugh et al. 2015; Van Old-
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enborgh et al. 2017; Diffenbaugh et al. 2017; Emanuel 2017). Although most
places are likely to experience increases in precipitation intensity at higher levels
of climate forcing, the influence of historical climate change on the likelihood
of extreme precipitation events varies between regions, underscoring the impor-
tance of tailoring attribution analyses to particular geographic areas (Chand
et al. 2022; Reed et al. 2022; Murakami et al. 2017; Seneviratne et al. 2021;
Diffenbaugh et al. 2017). Climate model simulations suggest that both human
activity and coastal El Niño conditions increased the likelihood of extreme pre-
cipitation across the entire country of Peru in March 2017 (Christidis et al.
2019), but no such analysis has focused on observed conditions in the region of
northwestern Peru associated with Cyclone Yaku.

This study contributes to both our understanding of the drivers and impacts
of Cyclone Yaku and the relationships between anthropogenic forcing, extreme
weather, and human health more broadly. First, we construct a generalized
synthetic control model to estimate how many additional dengue cases were
caused by Cyclone Yaku across the cyclone-affected districts in Peru. Next, we
examine associations between cyclone-attributable dengue burden and district-
level characteristics to identify factors that may moderate dengue risk following
extreme precipitation. Finally, we conduct a climate attribution analysis to test
whether anthropogenic forcing has increased the risk of extreme precipitation
events like Cyclone Yaku in northwestern Peru. These analyses may inform
context-specific public health and risk reduction measures for dengue and other
weather-sensitive diseases.

2 Methods

We used a quasi-experimental generalized synthetic control approach to esti-
mate the number of cyclone-attributable cases by comparing observed cases
in cyclone-affected districts to a hypothetical counterfactual estimate of cases
without the cyclone. Our model accounted for weather conditions and latent
trends estimated from a control group of cyclone-unaffected districts with simi-
lar baseline climate. Analyses were conducted in R version 4.2.1 (R Core Team
2022). The Stanford University Institutional Review Board determined that
this project does not involve human subjects. Code to conduct analyses are
available on Github at https://github.com/mjharris95/yaku-dengue.

2.1 Climate, case, and vulnerability index data

Mean temperature and total precipitation reported hourly in the ECMWF
ERA5-Land Hourly reanalysis dataset were extracted at the district level using
Google Earth Engine (Copernicus Climate Change Service (C3S) 2017). Given
evidence of negative bias in this dataset compared to weather stations, par-
ticularly at high elevations, we debiased hourly temperature following Childs
et al. (2024) (see subsubsection 6.1.1). We then calculated the daily average
temperature and total precipitation across each district by taking a population-
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weighted average (e.g., weighting by the proportion of the total population living
in a given 100m x 100m grid cell, estimated for 2020 by WorldPop (Edwards
et al. 2021)).

Weekly case reports (probable and confirmed) by district (administrative
division 3) in Peru from 2010 - 2023 were provided by CDC Peru. The main
analysis spanned 2016 through 2023, and a sensitivity analysis included all obser-
vations from 2010 onward (subsubsection 6.2.4). We additionally conducted an
analysis at the region level (administrative division 1) with matching to regions
in other countries (subsubsection 6.2.9). Incidence was calculated by dividing
reported cases by population size, estimated annually by the Oficina General de
Tecnoloǵıas del Ministerio de Salud (OGTI, General Office of Information Tech-
nology of the Ministry of Health) based on census data. Vulnerability indices
for cyclone-affected districts were accessed through CDC Peru, which compiled
data from other sources (Table 5).

2.2 Identifying cyclone-affected districts

We constrained our analysis to the 561 districts that reported cases of dengue
in 2023. Cyclone Yaku, which was first detected by El Servicio Nacional de
Meteoroloǵıa e Hidroloǵıa del Perú (the National Service of Meteorology and
Hydrology of Peru, SENAMHI) on March 7th, 2023 and dissipated on March
20th, primarily impacted the northernwestern coast of Peru (from Tumbes in
the north to La Libertad in the south, Figure 1A) (SENAMHI 2023).

Given that there was no map of districts most affected by Cyclone Yaku,
we defined cyclone-affected districts as those that received anomalously high
precipitation between March 7 - 20, 2023. Anomalies were defined as the dif-
ference between mean daily precipitation across this time period in 2023 com-
pared to the historic reference years 1993 - 2022 excluding 2017, another year
with extreme El Niño conditions. We plotted the distribution of precipitation
anomalies across all districts to identify a cutoff value to distinguish cyclone-
affected districts from cyclone-unaffected control districts. Specifically, districts
with anomalies exceeding 8 mm/day were cyclone-affected and districts with
anomalies below 7.5 mm/day were cyclone-unaffected.

2.3 Matching

There are several distinct climatic zones within Peru (from west to east: the
dry Pacific coastline, the cool Andes mountains, and the warm and wet Ama-
zon rainforest (Figure 1B,C), which may exhibit substantially different dengue
dynamics (Chowell et al. 2011). If the control pool includes cyclone-unaffected
districts with baseline climate conditions that are substantially different from
those of the cyclone-affected districts, the generalized synthetic control model
may overfit to latent trends that are not relevant to the cyclone-affected area.
We therefore used matching to further filter down the set of cyclone-unaffected
districts to a control pool with recent temperature and precipitation trends most
similar to the cyclone-affected districts. We aggregated daily temperature and
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precipitation to four-week averages to smooth over short-term variation and
conducted matching across the 67 observations from the beginning of 2018 until
Cyclone Yaku. Using the PanelMatch package we identified the ten cyclone-
unaffected districts most similar climatically to each cyclone-affected district
based on Mahalanobis distance, a metric that favors units where the relationship
between temperature and precipitation is similar to that in the cyclone-affected
districts (Imai et al. 2023; Kim et al. 2022; R Core Team 2022; Mahalanobis
1936). We tested whether the analysis was affected by the number of control
districts to which each cyclone-affected district was matched or including all
cyclone-unaffected districts in the control pool without matching (Figure 23).

Cyclone-unaffected districts that were matched to at least one cyclone-affected
district were included in the control pool used to construct the generalized syn-
thetic control (Figure 8), effectively filtering out cyclone-unaffected districts
with climate conditions least similar to those across the cyclone-affected dis-
tricts. In a sensitivity analysis, we examined the effects of limiting the potential
control pool to districts in coastal regions (Figure 16). To evaluate alignment
between the cyclone-affected districts and the matched control districts, we cal-
culated standardized difference as the difference between each cyclone-affected
district and its matched control districts at a given time point divided by the
standard deviation of the corresponding climate variable across all observations.

2.4 Generalized synthetic control

We estimated the effect of Cyclone Yaku on dengue cases in the cyclone-affected
districts using a generalized synthetic control model (Xu 2017).

The dengue incidence (Y ) in a given spatial unit (i) at each four-week time
period (t) was estimated as:

Yi,t = δi,tDi,t + ẋ⊺
i,tβ̇ + λ̇⊺

i ḟt + eit

where δ is the effect of the cyclone and D is a dummy variable indicating
cyclone-affected districts following the cyclone; ẋ is a vector of climate covariates
(precipitation and temperature) with coefficients β̇; ḟ and λ̇ are latent factors
and factor loadings, respectively, comprise interactive fixed effects (explained in
further detail below); and e is an error term.

We used interactive fixed effects to control for unobserved time-varying con-
founders like strain-specific immunity, vector control, and human movement,
which may have different trends and influence across space. A set of n latent
factors are defined where each latent factor is a time series of constants across
the study period. In turn, each spatial unit is assigned a factor loading, or vec-
tor that weights each latent factor. In other words, the interactive fixed effects
term for each spatial unit (i = I) is a weighted sum across all latent factors k
in 1 to n (λ̇⊺

I ḟt =
∑n

k=1 λI,kfk,t).
The model is fit to estimate the effects of the cyclone in each district over

time (δi,t) in three steps. First, observations from the control districts alone are

used to estimate coefficients (β̇) for the climate variables, latent factors (ḟ), and
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factor loadings (λ̇) for the control districts based on entire time series (including
the post-cyclone period). Next, factor loadings are estimated for the cyclone-
affected units such that the mean squared prediction error during the pre-cyclone
period is minimized. Because the aim of the generalized synthetic control was to
minimize prediction error with respect to cases, factor loadings were determined
without any consideration of which control districts were matched to which
cyclone-affected districts in the prior step. Finally, the effect of the cyclone
on cases for a given cyclone-affected district i in each time period t following
the cyclone (δit) is estimated as the difference between observed incidence and
indicence predicted by the synthetic control (Ŷi,t):

δi,t = Yi,t − Ŷi,t = Yi,t − ẋ⊺
i,tβ̇ − λ̇⊺

i ḟt

Analysis was conducted using the R package fect: Fixed Effects Counterfac-
tual Estimators (Liu et al. 2022). The number of latent factors to use in the
model was selected to minimize mean squared prediction error. For each number
of latent factors from zero to five, ten rounds of cross-validation were conducted
by withholding 10% of the control units when fitting the model and calculating
the mean squared prediction error across the testing units. The number of la-
tent factors that minimized the mean squared prediction error was then selected.
Nonparametric confidence intervals for the proportion of cases attributable to
the cyclone were calculated across 1000 bootstrap runs. We conducted sensi-
tivity analyses to examine the effects of varying the number of latent factors
(Figure 24) and excluding climate covariates from the model (Figure 15).

2.5 Examining associations between climate, vulnerability
indices and cyclone-attributable incidence

We examine the relationship between cyclone-attributable dengue incidence ro-
tated components that combine climate covariates with vulnerability indices
related to housing quality and water access, all of which may moderate the ef-
fect of extreme precipitation on dengue. We took population-weighted averages
of manzana (block)- level vulnerability indices across each district (see Table 5
for a full list and description of vulnerability indices). We also calculated average
daily mean temperature and cumulative precipitation during Cyclone Yaku. We
used the psych package in R to load the vulnerability indices across four prin-
cipal components after determining that four principal components would best
balance interpretability against capturing variation across the districts by opti-
mizing very simple structure (VSS) complexity 1 (Revelle 2007). The principal
components were rotated using Varimax rotation, which rotates the principal
components so that they more strongly correlate with the variables of interest,
improving interpretability (Keith E. Dilbeck 2017). Next, we fit a linear regres-
sion of the cyclone-attributable dengue incidence per thousand people in each
district (summed from April 22nd - November 3rd, 2023) against the rotated
components (RCs).
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δi = α1RC1 + α2RC2 + α3RC3 + α4RC4 + γ

We bootstrapped our estimates of the coefficients (α) and intercept (γ), incor-
porating uncertainty with respect to cyclone-attributable incidence, by sam-
pling with replacement across districts and their corresponding distributions
of cyclone-attributable incidence estimates, interactively fitting parameters and
thereby estimating distributions of coefficient and intercept values. We also vi-
sually examined the relationship between cyclone-attributable cases and mean
temperature during Cyclone Yaku.

2.6 Quantifying the influence of historical climate forcing
on the probability of extreme March precipitation in
northwestern Peru

To test whether historical climate forcing has significantly increased the likeli-
hood of extreme precipitation in northwestern Peru, we analyzed climate model
simulations from Phase 6 of the Coupled Model Intercomparison Project (CMIP6)
database, which is archived by the Earth System Grid Federation and can be
downloaded from their website at https://esgf-node.llnl.gov/search/cmip6/. To
incorporate uncertainty arising from both differences in climate model structure
and internal climate variability, we downloaded simulations from seven different
climate models (ACCESS-ESM1-5, CanESM5, CNRM-CM6-1, IPSL-CM6A-
LR, MIROC6, MIROC-ES2L, and NorCPM1) that archived at least 29 real-
izations in the CMIP6 historical forcing experiment (which spans 1850-2014).
Our ensemble thus consists of a total of 203 simulations, each of which provides
a unique realization of possible weather conditions that could have occurred
during 1850-2014, consistent with the pathway of natural and anthropogenic
emissions found in observational data. We then compared the likelihood of ex-
treme monthly precipitation in March across simulations for three periods: 1850
- 1899 (preindustrial baseline), 1900 - 1964 (early historical), and 1964 - 2014
(late historical).

For each of these simulations, we extracted the March precipitation data and
calculated the area-weighted average monthly precipitation values over north-
western Peru, defined as -3 N to -9 N and -82 E to -76 E (Figure 14). During
Cyclone Yaku, March precipitation in cyclone-affected regions exceeded the 85th
percentile of observations from 1973 - 2022 according to the population-weighted
ERA5 precipitation data (Figure 6). To reflect these conditions, we define ex-
treme precipitation as a month that exceeds the 85th percentile for monthly
mean precipitation during the last 30 years of the historical forcing experi-
ment (1985 - 2014). We calculated the 85th percentile precipitation threshold
separately for each climate model to account for biases in the mean and stan-
dard deviation of precipitation across different models. To estimate changes in
the frequency of extreme March precipitation, we calculated the percentage of
simulations with extreme March conditions for each calendar year. We then
conducted a Kolmogorov-Smirnov test to examine the likelihood that the prob-
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ability distributions in each of the two respective later periods came from the
same distribution as the preindustrial baseline. This null hypothesis reflects the
assumption that extreme precipitation events would have been as likely in the
early and late historical periods compared to the preindustrial baseline without
historical anthropogenic emissions.

3 Results

3.1 Districts with the most anomalous precipitation dur-
ing Cyclone Yaku generally had warm, dry climates

We defined cyclone-affected districts as those with precipitation anomalies ex-
ceeding 8.5 mm/day while the control pool was comprised of districts with
precipitation anomalies below 7.0 mm/day, noting that the latter districts may
still have experienced some impacts of Cyclone Yaku, although likely to a lesser
extent. The cutoff of 8.5 mm/day corresponded to the 90th percentile of precipi-
tation anomalies across districts reporting dengue in 2023, a threshold that both
corresponded to an extreme value for precipitation anomalies during this time in
Peru and ensured that a sufficient number of cyclone-unaffected districts could
be included in the control pool Figure 7. There were 56 cyclone-affected districts
predominantly located in the regions of Tumbes, Piura, and Lambayeque, which
others have also identified as the regions that experienced the greatest impacts
of Cyclone Yaku (Table 1, Figure 1B, Figure 7A) (SENAMHI 2023; MapAction).
There were 463 districts with precipitation anomalies below 7.0 mm/day that
reported dengue cases in 2023, which we designated as cyclone-unaffected (Fig-
ure 8). We additionally tested the sensitivity of the generalized synthetic control
analysis to different thresholds for cyclone-affected and cyclone-unaffected dis-
tricts (subsection 2.2).

Following matching, 194 districts predominantly in the eastern rainforest
and the northern coast were included in the control pool (Figure 8). Matching
selected for a set of districts that, on average, more closely reflected the rela-
tionship between temperature and precipitation in the cyclone-affected districts,
where relatively hotter temperatures (exceeding 23◦C) coincided with moder-
ate to heavy precipitation (exceeding 3 mm/day) (Figure 9). Matching also
eliminated periods of especially large imbalance with respect to precipitation
between cyclone-affected and control districts (i.e., much heavier precipitation
in the cyclone-unaffected districtsFigure 10A, B). However, the standardized
difference between the cyclone-affected districts and the matched control dis-
tricts repeatedly exceeded one standard deviation for both climate covariates
(approximately 3◦C and 4 mm/day of precipitation), indicating considerable
remaining imbalance (Figure 10, see discussion in subsubsection 6.1.2).
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Figure 1: Historic climate conditions across districts in Peru compared to
during Cyclone Yaku. In all panels, the bold outline encompasses districts included
in cyclone-affected group. (A) Precipitation anomalies (mm/day), calculated as the
difference between the mean daily precipitation between March 7-20, 2023 and the
mean daily precipitation during the same time period across the reference years 1993
- 2022, excluding 2017. (B) Average daily precipitation (mm/day) across the historic
reference period. (C) Average temperature (in degrees Celsius) across the historic
reference period.

3.2 Cyclone Yaku caused 67% of dengue cases in the cyclone-
affected districts

We estimated positive effects of both temperature and precipitation on cases
(Table 3) . Models with five latent factors minimized prediction error during
cross-validation (Figure 12; see Figure 13 for corresponding factor loadings).
The generalized synthetic control model generally predicted cases well across
cyclone-affected districts in the pre-cyclone period (R2 = 0.60) (Figure 2A),
including during the large outbreak in 2017.

Dengue cases were significantly elevated in cyclone-affected districts com-
pared to the synthetic control (p < 0.05) for over six months (April 22nd
- November 3rd). During that time period, 38,209 (95% confidence interval:
17,454 - 49,928) out of 57,246 total cases in cyclone-affected districts were at-
tributable to Cyclone Yaku. In other words, 67% (95% confidence interval: 30%
- 87%) of cases were attributable to the cyclone. The percentage of cases at-
tributable to the cyclone was largely consistent across this six-month period,
while the number of cyclone-attributable cases peaked between May 20th and
June 16th, when 12,518 (95% confidence interval: 5,081 - 16,457) of cases were
attributable to Cyclone Yaku (Figure 2B, Table 4).

Our main estimate of dengue cases attributable to Cyclone Yaku is robust.
The percentage of cases attributable to the cyclone did not change substantially
when climate covariates were excluded from the model or transformed, when the
time series was extended to include observations prior to 2016, or when obser-
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vations from the peak of the COVID-19 pandemic (2020 - 2021) were removed
(Figure 15, Figure 17, Figure 19, Figure 20, Figure 21). The percentage of cases
attributable to the cyclone was robust to changes in the threshold for cyclone-
affected districts but varied and became more uncertain with changes in the
threshold for cyclone-unaffected districts (Figure 22). We estimated a smaller
percentage of cyclone-attributable cases (41%) when the control pool included
only coastal districts (although these districts may have been partially affected
by the cyclone, Figure 16) and a larger percentage of cyclone-attributable cases
(97%) when we conducted the analysis at the region level rather than the finer
district level (Figure 25). Estimates were generally robust to the number of
control districts to which each cyclone-affected district was matched and to the
number of latent factors included in the model (Figure 23, Figure 24).
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Figure 2: Main results of generalized synthetic control analysis across all
control districts over time. (A) Total observed cases (black) across all cyclone-
affected districts over time compared to the total cases in the synthetic control districts
(red). (B) The difference between observed cases in the cyclone-affected districts versus
in the synthetic controls over time, where the period after the dashed line indicates
the effect of the cyclone. The grey ribbon corresponds to the 95% confidence interval.
The dashed horizontal line indicates no effect and the dashed vertical line indicates
when the cyclone occurred, meaning the only the difference in cases to the right of
this vertical line is attributable to Cyclone Yaku.

3.3 Cyclone-attributable incidence varied with housing qual-
ity, hydrology, and temperature

There was considerable variation in the number of cyclone-attributable cases
per thousand people across the cyclone-affected districts, with the greatest at-
tributable incidence reported in Salitral, Piura (74.9 cyclone-attributable cases
per thousand) (Figure 3). The northwestern regions of Tumbes, Piura, and
Lambayeque that were most impacted by the cyclone had several districts where
more than 20 cases of dengue per thousand people were caused by Cyclone Yaku
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(Figure 3, Figure 7B). Cyclone-attributable incidence peaked several months
earlier in cyclone-affected districts in Lambayeque and Piura compared to those
in Tumbes and La Libertad. Cyclone Yaku did not have a large impact on
dengue cases in cyclone-affected districts in San Martin and Cajamarca regions,
which were both farther east.

A single cyclone-affected district (Lancones, Piura) was excluded from the
following analysis of factors correlated with cyclone-attributable incidence be-
cause data on its vulnerability indices were unavailable. We summarized mul-
tivariate socio-environmental variation among districts using a principal com-
ponents analysis with rotated components aimed at increasing interpretability.
Each of the rotated components was strongly positively associated with one to
two climate or vulnerability indices (standardized loading > 0.7): low-quality
roofs and low-quality walls (RC1), low-quality floors and precipitation during
Cyclone Yaku (RC2), temperature during Cyclone Yaku and flood risk (RC3),
and non-public water sources (RC4). No components had strong negative as-
sociations (standardized loading < -0.7). Based on the positive associations of
cyclone-attributable cases with RC1 and RC3 (p = 0.012 and p < 0.001 respec-
tively, Figure 4, Table 6), the largest cyclone-attributable dengue cases occurred
in districts with greater proportions of low-quality roofs and walls, flood sus-
ceptibility, and warmer temperatures. Separate from the RCs, we find that
significantly positive cyclone-attributable incidence only occurred in districts
where mean temperature exceeded 24◦C during Cyclone Yaku (Figure 4B).
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Figure 3: Spatial heterogeneity in the number of cyclone-attributable cases
per thousand people. In the center, a map of the number of cyclone-attributable
cases per thousand people across districts (calculated from April 22nd – November 3,
2023), zoomed into the region of Peru where the cyclone had the greatest impact. Each
cyclone-affected district is outlined and shaded according to the estimated number of
attributable cases, with darker red indicating a larger positive effect and blue indicating
a negative effect. The dark outlines show borders of regions. The left and right
columns of plots display cyclone-attributable dengue cases per thousand people over
time following Cyclone Yaku (in the year 2023), with each facet corresponding to
a different region. Grey lines connect faceted plots to their geographic location on
the map and the top label gives the region name. Within the faceted plots, each line
corresponds to a different cyclone-affected district within the region and the horizontal
dashed red lines indicate the baseline of zero cyclone-attributable cases.
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Figure 4: The number of cyclone-attributable cases per thousand people
varies across districts with hydrological factors, housing quality, and mean
temperature. (A) Estimates and 95% confidence intervals for the association be-
tween vulnerability indices (rotated components, RCs) and cyclone-attributable cases
per thousand people at the district level from April 22nd - November 3, 2023. Labels
at the top of the plot give the names of the variables most strongly associated with
each rotated component (| standardized loading | > 0.7) (see Table 5). The standard-
ized loading is given in parentheses (where | standardized loading | = 1 is the strongest
possible association). (B) The number of cyclone-attributable cases per thousand peo-
ple (April 22nd - November 3, 2023) is plotted for each district with 95% confidence
intervals against the mean temperature in that district during Cyclone Yaku. The red
horizontal line indicates no effect of Cyclone Yaku on cases, while the red vertical line
indicates 24◦C.
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3.4 Extreme precipitation in March in northwestern Peru
is 42% more likely due to historical climate forcing

Climate model simulations of the historical period (1850-2014) suggest that
anthropogenic emissions have increased the likelihood of extreme monthly pre-
cipitation during the month of March over northwestern Peru. Across an en-
semble of 203 total realizations from 7 different climate models, we find that
10.76% of the simulated March precipitation values from the 1850-1899 period
were extreme. The frequency increased to 13.00% in the early historical period
(1900-1964) and to 15.30% in the late historical period (1965-2014). In other
words, extreme precipitation events were 21% more likely in the early histor-
ical period and 42% more likely in the late historical period compared to the
preindustrial baseline. Based on the Kolmogorov-Smirnov test, the frequency
of extreme precipitation events is significantly higher across both the early and
late historical periods compared to the pre-industrial period (p < 0.001 for
both, Figure 5). The frequency of extreme precipitation events also increased
significantly by 18% from the early to late historical periods (p = 0.011).
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Figure 5: The frequency of extreme March monthly precipitation values
in northwestern Peru has increased significantly compared to the pre-
industrial baseline. Annual values show the percentage of 203 climate model simula-
tions exhibiting extreme March precipitation during each calendar year of the CMIP6
historical forcing experiment, which is available from 1850 to 2014. The percentage of
climate model simulations is calculated from the 7 climate models that have archived
at least 29 realizations in the CMIP6 historical forcing experiment, generating an
ensemble of 203 realizations. Based on the precipitation quantiles associated with Cy-
clone Yaku (see Methods), extreme monthly precipitation is defined to have occurred
when the March monthly precipitation averaged over northwestern Peru exceeds the
85th percentile threshold for the recent climate (calculated from the last 30 years of
the CMIP6 historical forcing experiment, or 1985-2014). Solid lines show the mean
frequency for the preindustrial (1850-1899, blue), early historical (1900-1964, gray),
and late historical (1965-2014, red) periods. Boxplots show the distribution of an-
nual values for each time period. P-values show the probability that the distributions
for 1900-1964 and 1965-2014 come from the same distribution as 1850-1899 using a
Kolmogorov-Smirnov Test.

4 Discussion

Anthropogenic climate change is increasing the likelihood and intensity of ex-
treme weather events, which may in turn trigger outbreaks of infectious diseases
(Alcayna et al. 2022; Mora et al. 2022). Here, we conducted one of the first anal-
yses to connect a climate attribution analysis with a causal assessment of how
much a particular extreme weather event contributed to an infectious disease
outbreak (Carlson et al. 2024; Ebi and Hess 2020). Across six months, 38,209
(95% CI: 17,454 - 49,928) dengue cases were attributable to Cyclone Yaku in the
56 districts of Peru with the greatest precipitation anomalies (Figure 2). For the
cyclone-affected districts, this corresponds to 67 (95% CI: 30 - 87) % of reported
cases and 17.8 (95% CI: 8.1 - 23.3) cyclone-attributable cases per thousand peo-
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ple. Further, we find that extreme monthly precipitation during March like that
associated with Cyclone Yaku has become 42% more likely in northwestern Peru
because of climate forcing since the preindustrial era (Figure 5).

This work demonstrates how synthetic control methods, which have already
been used in similar epidemiological context (Sheridan et al. 2022; Schwarz et al.
2023; Bruhn et al. 2017; Shioda et al. 2021; Nyathi et al. 2019; Jones et al. 2020),
can facilitate causal estimates of the effects of extreme weather on infectious dis-
ease. Using interactive fixed effects, we controlled for the effects of confounders
that vary across time and space and may not be readily measured or may influ-
ence dengue transmission in ways that are not well-understood (e.g., immunity,
vector control, mobility, and strain type), a notable methodological advance
given that studies focused on dengue have often been limited by their inability
to account for important covariates (Laureano-Rosario et al. 2017; Minh An
and Rocklöv 2014; Giesen et al. 2020). Although the COVID-19 pandemic
likely disrupted dengue dynamics through its impacts on health systems and
human behavior, we found no effect of excluding the years 2020 - 2021 from
the model, which suggests that our estimates are robust (Brady and Wilder-
Smith 2021; Chen et al. 2022). Substantial imbalance with respect to baseline
climate remained between the cyclone-affected and cyclone-unaffected districts
after matching (Figure 11 ,Figure 10). However, matching generally selected for
districts where warmer temperatures coincided with more intense precipitation
(reflecting conditions that may favor larger dengue outbreaks) (Figure 9) and
improved the fit of the model to actual cases (Figure 23). Given the positive
association between both mean precipitation and mean temperature and cases
(Table 3), comparing the cyclone-affected districts to a set of cyclone-unaffected
districts that tended to be more warm and wet on average (Table 2, Figure 11)
biases us toward underestimating the effects of Cyclone Yaku on cases. We were
able to further control for weather factors that were not caused by the cyclone
(e.g., coastal El Niño conditions) both by including temperature and precipita-
tion as covariates in the model and by including coastal districts affected by the
coastal El Niño in the control pool. These adjustments also likely cause us to
underestimate the true of extent to which precipitation anomalies contributed
to Peru’s outbreak, both because the model removes the estimated linear effect
of rainfall on dengue cases and because we intentionally exclude coastal El Niño
effects (Figure 15). In other words, our estimated effect captures the effects of
Cyclone Yaku (as defined by precipitation anomalies) on dengue cases above and
beyond the linear effects of increased rainfall and suitable temperature and the
effects of El Niño. This makes even our large estimate of cyclone-attributable
dengue cases conservative.

While this study adds to the body of work linking epidemics to cyclones
and other extreme events (Alcayna et al. 2022; Mora et al. 2022; Ivers and
Ryan 2006), it is important to note that this connection is neither ubiquitous
nor inevitable. Vector-borne disease outbreaks are only possible when extreme
weather events occur in environments that can facilitate sustained transmission,
which timely interventions may preclude. Instances where extreme weather ap-
peared to have little or no effect on transmission may be instructive both for
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forecasting epidemics and identifying effective preventative measures to apply
following of extreme events (Beatty et al. 2007; Nosrat et al. 2021). The ef-
fects of Cyclone Yaku on dengue incidence varied across districts, a result that
may help clarify risk factors associated with large outbreaks after extreme pre-
cipitation (Figure 3). In particular, districts with poor housing quality (i.e.,
residences built with low-quality roof and wall materials) tended to have higher
cyclone-attributable dengue incidence (Figure 4A), a result consistent with our
hypothesis that such dwellings increase human contact with mosquitoes and
experience more damage following an extreme weather event (Mulligan et al.
2015; Borbor-Cordova et al. 2020). Importantly, this analysis does not neces-
sarily imply that low-quality roofs and walls are the most important covariates
compared to other vulnerability indices. Rather, our model only considered
a set of rotated factors that best captured the differences in measured covari-
ates between districts, meaning that other potentially important variables that
may be associated with outbreak risk but were not measured or were highly
correlated with other variables were not analyzed. However, dengue exposure
and disease risk is associated with many social determinants of health such
as reduced access to healthcare, water insecurity, and poverty (Carabali et al.
2015; Vincenti-Gonzalez et al. 2017). Efforts to improve infrastructure and re-
duce social inequalities may reduce vulnerability to both extreme weather and
vector-borne disease (Gibb et al. 2023; Mulligan et al. 2015). Further, expanded
testing in under-resourced and crisis settings remains critical, as biases in epi-
demiological data could lead to uneven and incomplete estimates of the true
health costs of extreme weather (Kakkar 2012; Clarke et al. 2024).

We did not detect a significant linear association between cyclone-attributable
dengue incidence and absolute precipitation, which may be because our model
explicitly accounts for a linear effect of precipitation on cases, or may reflect
the nonlinear and complicated relationship between precipitation and dengue
risk (Figure 4A). Heavy rainfall can create vector breeding habitat, but exces-
sive precipitation may flush out larvae and reduce vector abundance (Shocket
et al. 2020; Caldwell et al. 2021; Lowe et al. 2018). Methods have not yet been
developed for studying continuous treatment effects using generalized synthetic
controls and directly estimating exposure-response relationships. Therefore, we
defined cyclone-affected units using a relatively conservative threshold of precip-
itation anomalies greater than 8.5 mm/day to ensure a sufficiently large control
pool. However, the proportion of cases that were cyclone attributable was ap-
proximately equivalent (68%; 95% confidence interval: 45% - 83%) in a sensitiv-
ity analysis using a lower threshold of 7 mm/day (Figure 22), meaning that our
analysis likely underestimates the total number of cyclone-attributable dengue
cases by excluding impacted districts from the cyclone-affected pool. These
methods may be applied to other instances when extreme weather preceded
infectious disease outbreaks to help identify the threshold at which anomalous
precipitation can trigger outbreaks and examine how the characteristics of a
weather events (e.g., wind speed, total rainfall, and event duration) relate to its
impact on transmission.

Warmer districts with greater flood risk (defined by topographic features
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and vegetation cover) also had greater cyclone-attributable dengue incidence
(Figure 4A), suggesting that the relationship between dengue and extreme pre-
cipitation is context-dependent. Anomalous precipitation poses the greatest risk
in settings where environmental factors promote flooding, which can create vec-
tor breeding habitat, disrupt water and wastewater services, displace residents,
and impede vector control efforts (Lowe et al. 2018; Coalson et al. 2021). The
co-occurrence of Cyclone Yaku with warmer temperatures that are suitable for
transmission by Aedes aegypti may have exacerbated outbreak risk (Mordecai
et al. 2019). Significant increases in dengue due to Cyclone Yaku were only
observed in districts where mean temperature exceeded 24◦C during Cyclone
Yaku (Figure 4B). Further analysis across multiple extreme events may deter-
mine whether outbreak size is proportional to temperature-dependent trans-
mission risk inferred from mosquito biology or whether outbreak size is largely
independent of temperature within a certain range across which outbreaks can
be sustained (Skaff et al. 2020; Caldwell et al. 2021). Although March of 2023
was not an anomalously hot period in northwestern Peru, warming has likely
increased the likelihood that extreme precipitation will co-occur with suitable
temperature conditions. Indeed, historical and future warming are expected to
increase dengue burden in many parts of the world by increasing temperatures
toward the thermal optimum for dengue transmission of 29◦C (estimated by
Mordecai et al. (2019), see Figure 18) (Giesen et al. 2020; Colón-González et al.
2021; Messina et al. 2019). Historical warming is estimated to have caused a
relatively large share of dengue cases in Peru compared to other countries, sug-
gesting that anthropogenic climate change has disproportionately exacerbated
dengue burden in Peru (Childs et al. 2024), both through warming and more
frequent extreme precipitation events.

Extremely high monthly precipitation in March, like that associated with
Cyclone Yaku, are significantly more likely in northwestern Peru in the present-
day climate (relative to the 1850-1899 preindustrial baseline) as a result of his-
torical climate forcing (Figure 5). Our estimate of a 42% increase in likelihood
is consistent with a prior attribution analysis, which found that anthropogenic
forcing increased the likelihood of extreme rainfall across Peru in March of 2017
by 50% during similar coastal El Niño events (Christidis et al. 2019). Although
our attribution analysis was generally designed to analyze the influence of an-
thropogenic forcing on precipitation intensity for districts heavily impacts by
Cyclone Yaku (Figure 6), we average our results over a broader region of North-
west Peru through the entire month of March to avoid issues caused by the
limited spatial and temporal resolution of available CMIP6 model simulations.
Since CMIP6 simulations using observed historical climate forcings only extend
to 2014, we use the period 1965-2014 as an estimate of the present-day climate.
The fact that greenhouse gas emissions and global warming continued over the
subsequent decade make this a conservative choice. We note that the CMIP6
climate models are somewhat limited in their ability to realistically simulate
extreme precipitation (Donat et al. 2023). Since fine-scale processes can modify
extreme event risk (Diffenbaugh et al. 2005), the causal contribution of anthro-
pogenic forcing to precipitation intensity during Cyclone Yaku may be studied
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more precisely using a high-resolution storyline attribution approach that incor-
porates the specific atmospheric conditions leading up to this event (e.g., Reed
and Wehner (2023)). Still, the two-part analysis presented here is an important
step in investigating the linkages between climate change and human health.
We found that anthropogenic forcing has likely increased the risk of extremely
wet conditions like those associated with Cyclone Yaku, which in turn caused
the majority of dengue cases during an unprecedented dengue outbreak in Peru
(Ebi et al. 2020; Hegerl et al. 2010; Carlson et al. 2024).

Comprehensive assessments of the benefits of reducing greenhouse gas emis-
sions and the scope of loss and damages from existing climate change are nec-
essary to guide climate justice efforts and inform planning for future climate
scenarios (Scovronick et al. 2019). Studies like ours build understanding of the
health costs of climate change, particularly the connections between climate
change-driven extreme weather and infectious diseases, which are understudied
(Ebi and Hess 2020; Carlson et al. 2024). Many projections of dengue burden
under climate change focus only on trends in endemic areas due to long-term
changes in mean temperature, often neglecting to incorporate changes in precip-
itation altogether (Childs et al. 2024; Ryan et al. 2019). Impacts of precipitation
on mosquito biology are also relatively complex, context-dependent, and less
well-understood compared to those of temperature (Shocket et al. 2020). How-
ever, capturing the extent to which disease burden will increase with climate
change requires models that are capable of forecasting large outbreaks driven
by extreme weather, as well as enhanced disease surveillance and meteorologi-
cal monitoring in sites vulnerable to large epidemics of climate-sensitive disease.
Understanding the connection between climate change and dengue may also of-
fer new opportunities for proactive dengue prevention activities. Dengue control
policy often centers on technical, localized interventions that, while critical, are
typically costly, short-term, and deployed reactively (Espinoza 2021; The Lancet
Infectious Diseases 2023). Given the connections that we have demonstrated
between historical human activity and the type of extreme precipitation event
that can drive large dengue epidemics, mitigating further global warming and
building climate-resilient infrastructure may help prevent epidemics and protect
human health against further increases in dengue risk (Childs et al. 2024).
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I. Brettar, R. R. Colwell, and C. Pruzzo. Climate influence on Vibrio and
associated human diseases during the past half-century in the coastal North
Atlantic. Proceedings of the National Academy of Sciences, 113(34), Aug.
2016. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1609157113. URL
https://pnas.org/doi/full/10.1073/pnas.1609157113.

A. M. Vicedo-Cabrera, N. Scovronick, F. Sera, D. Royé, R. Schneider, A. To-
bias, C. Astrom, Y. Guo, Y. Honda, D. M. Hondula, R. Abrutzky, S. Tong,
M. d. S. Z. S. Coelho, P. H. N. Saldiva, E. Lavigne, P. M. Correa, N. V.
Ortega, H. Kan, S. Osorio, J. Kyselý, A. Urban, H. Orru, E. Indermitte,
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6.1 Main methods and results

6.1.1 Debiasing temperature data

We compared remotely sensed hourly temperature from ERA5 to monthly av-
erage temperatures between 1970 and 2000 reported by the high resolution
climatology WorldClim (Fick and Hijmans 2017) following Childs et al. (2024),
using the equation:

̂ERA5ihmy = ERA5ihmy − ERA5im +WorldClimim

̂ERA5ihmy is the debiased ERA5 hourly temperature in a given district
(where subscripts i, h, m, and y designate the district, hour, month, and year, re-
spectively), ERA5ihmy is the raw ERA5 hourly temperature in the correspond-
ing district, ERA5im and WorldClimim are the mean monthly temperatures
for a given district from 1970 - 2000 from ERA5 and WorldClim, respectively.
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Figure 6: Cyclone-affected districts exceeded the 85th percentile for precip-
itation during Cyclone Yaku. Precipitation was defined as the average population-
weighted total precipitation for each district in the month of March. Precipitation in
2023 (i.e., during Cyclone Yaku) was compared to observations from 1973 - 2022.
White indicates regions where precipitation did not exceed the 85th percentile during
Cyclone Yaku (i.e., non-extreme), whereas shades of red correspond to precipitation
above the 85th percentile, where darker shades of red indicate more extreme precipi-
tatoin.
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Figure 7: The distribution of precipitation anomalies (mm/day) during
Cyclone Yaku at the (A) district and (B) region levels.

Figure 8: A map of districts in Peru displaying the cyclone-affected (pur-
ple) and matched control (blue) districts. Eligible cyclone-unaffected units that
were not included in the matched control are shown in yellow. Those excluded from the
control set because they did not report cases in 2023 are indicated in light grey while
those excluded from the control set because they experienced precipitation anomalies
above 7.0 mm/day but below 8.5 mm/day (i.e. buffer districts) are indicated in dark
grey. Regional boundaries are indicated with thick black lines.

Region Province District
CAJAMARCA CHOTA LLAMA
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CAJAMARCA CUTERVO QUEROCOTILLO
CAJAMARCA JAEN SAN JOSE DEL ALTO
CAJAMARCA SAN IGNACIO SAN IGNACIO
CAJAMARCA SAN IGNACIO CHIRINOS
CAJAMARCA SAN IGNACIO LA COIPA
CAJAMARCA SAN IGNACIO NAMBALLE
CAJAMARCA SAN IGNACIO TABACONAS
LA LIBERTAD ASCOPE ASCOPE
LAMBAYEQUE CHICLAYO CHICLAYO
LAMBAYEQUE CHICLAYO JOSE LEONARDO ORTIZ
LAMBAYEQUE CHICLAYO LA VICTORIA
LAMBAYEQUE CHICLAYO MONSEFU
LAMBAYEQUE CHICLAYO PICSI
LAMBAYEQUE CHICLAYO PIMENTEL
LAMBAYEQUE CHICLAYO REQUE
LAMBAYEQUE CHICLAYO SANTA ROSA

LAMBAYEQUE CHICLAYO SAÑA
LAMBAYEQUE CHICLAYO POMALCA
LAMBAYEQUE CHICLAYO TUMAN

LAMBAYEQUE FERREÑAFE FERREÑAFE

LAMBAYEQUE FERREÑAFE MANUEL ANTONIO MESONES MURO

LAMBAYEQUE FERREÑAFE PUEBLO NUEVO
Table 1: Cyclone-affected district names (continued on next page). Across
each row, the columns indicate the region, province, and district names for each
cyclone-affected unit.

Region Province District
LAMBAYEQUE LAMBAYEQUE LAMBAYEQUE
LAMBAYEQUE LAMBAYEQUE ILLIMO
LAMBAYEQUE LAMBAYEQUE MOCHUMI
LAMBAYEQUE LAMBAYEQUE MORROPE
LAMBAYEQUE LAMBAYEQUE OLMOS
LAMBAYEQUE LAMBAYEQUE PACORA
LAMBAYEQUE LAMBAYEQUE SAN JOSE
LAMBAYEQUE LAMBAYEQUE TUCUME
PIURA PIURA TAMBO GRANDE
PIURA HUANCABAMBA HUANCABAMBA
PIURA HUANCABAMBA CANCHAQUE
PIURA HUANCABAMBA SAN MIGUEL DE EL FAIQUE
PIURA MORROPON CHULUCANAS
PIURA MORROPON BUENOS AIRES
PIURA MORROPON LA MATANZA
PIURA MORROPON MORROPON
PIURA MORROPON SALITRAL
PIURA MORROPON SAN JUAN DE BIGOTE
PIURA MORROPON SANTA CATALINA DE MOSSA
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PIURA MORROPON YAMANGO
PIURA SULLANA SULLANA
PIURA SULLANA BELLAVISTA
PIURA SULLANA LANCONES
PIURA SULLANA MARCAVELICA
PIURA SULLANA QUERECOTILLO
PIURA SULLANA SALITRAL
SAN MARTIN RIOJA ELIAS SOPLIN VARGAS
SAN MARTIN RIOJA PARDO MIGUEL
TUMBES TUMBES TUMBES
TUMBES TUMBES SAN JUAN DE LA VIRGEN
TUMBES ZARUMILLA ZARUMILLA
TUMBES ZARUMILLA AGUAS VERDES
TUMBES ZARUMILLA PAPAYAL

Table 1: Cyclone-affected district names (continued from previous page).

6.1.2 Comparing imbalance between cyclone-affected and control
districts before and after matching

Prior to matching, heavier precipitation were associated with relatively hotter
temperatures in cyclone-affected districts compared to cyclone-unaffected dis-
tricts. On average, matching favored cyclone-unaffected districts where moder-
ate precipitation (e.g., precipitation exceeding 3 mm/day) coincided with hot-
ter temperatures (above 23◦C). Matching is therefore important biologically
given that dengue risk depends on the co-occurence of suitable temperature and
precipitation conditions – particularly heavy rainfall and warm temperatures.
The cyclone-affected units tended to experience greater fluctuations in tempera-
ture compared to the cyclone-unaffected districts, although seasonal fluctuations
peaked at similar times in both groups (Figure 11B, Table 2). After matching,
cyclone-affected districts generally had colder winters compared to the matched
control districts but annual maximum temperatures were more similar (meaning
that cyclone-affected and control districts had similar temperatures during Cy-
clone Yaku). Cyclone-affected districts had less precipitation than the control
districts, a tendency that remained (and was slightly worsened) after matching
(Figure 11A, Table 2). During the cyclone, precipitation in both the cyclone-
affected and matched control districts surged but, by definition, deviation from
typical conditions was greatest in the cyclone-affected districts (Figure 11A).
Given remaining imbalance, we additionally controlled for climate within the
generalized synthetic control models. A sensitivity analysis demonstrated that
matching did substantially improve alignment between predicted and observed
incidence (R2 = 0.26 without matching and R2 = 0.60 with matching, see
Figure 23).
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Figure 9: On average, matching selects for districts where the relationship
between temperature and precipitation most closely resembles that in the
cyclone-affected districts. Each point gives the mean temperature and precipi-
tation at a given pre-cyclone time step across the cyclone-affected districts (purple),
matched control pool of cyclone-unaffected districts (blue), and cyclone-unaffected
districts prior to matching (purple). The black trendline indicates the linear relation-
ship between temperature and precipitation in the cyclone-affected districts. For the
matched control districts, a weighted average of the climate covariates was calculated
with weights corresponding to the number of cyclone-affected districts to which a given
control district was matched. These values are plotted as a time series in Figure 11.

Group
Mean Temp.

(◦C)
Sd. Temp.

(◦C)

Mean Precip.
(mm
day

)
Sd. Precip

(mm
day

)
n

Cyclone-affected 22.6 3.2 2.4 3.7 56
Cyclone-unaffected

(Full)
21.4 4.8 4.4 4.3 463

Cyclone-unaffected
(Matched)

23.6 (24.3) 4.2 (3.5) 6.5 (6.2) 4.4 (4.4) 194

Table 2: Covariate balance between the cyclone-affected group (first row) and the
cyclone-unaffected group before and after matching (second and third rows respec-
tively). The mean and standard deviation of temperature ((◦C)) and precipitation
(mm/day) are provided. Note, in parentheses, values for the matched control group are
weighted by the number of cyclone-affected districts to which each cyclone-unaffected
control district was matched.
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Figure 10: Covariate balance with respect to precipitation (top) and tem-
perature (bottom) before (left) and after (right) matching. Within each panel,
each line corresponds to a different cyclone-affected district, comparing its climate co-
variate values over time to those of either the entire cyclone-unaffected pool prior
to matching or the ten cyclone-unaffected control districts to which it was matched.
The y-axis corresponds to standardized difference, calculated at each time point as
the difference between the value of a given covariate in the cyclone-affected districts
compared to the mean value across its corresponding control districts divided by the
standard deviation of each climate covariate over the study period. The horizontal
dashed line indicates y = 0, or perfect balance. Observations below the line indicate
that the value for a given climate covariate in the control units generally exceeds the
value for the cyclone-affected units (i.e., hotter or wetter conditions in the control
units). The thick black line corresponds to the mean standardized difference across
all cyclone-affected districts over time.
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Figure 11: Climate in the cyclone-affected districts (purple) compared to
the control pool before (yellow) and after (blue) matching. The top panel
shows temperature (◦C) and precipitation (mm

day
) aggregated to 4-week periods from

2018 - 2023, with the x-axis indicating time in years. The grey rectangle indicates the
time period when the cyclone occurred in March 2023. Lines display the mean value
of precipitation and temperature across the cyclone-affected and cyclone-unaffected
districts and a weighted average of the climate covariates across the matched control
districts, with weights corresponding to the number of cyclone-affected districts to
which a given control district was matched.
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Figure 12: Latent factors estimated from trends in the control districts,
accounting for climate covariates. The value of each latent factor (calculated
across four-week periods) is plotted over time (x-axis) and each of the five latent
factors is indicated in a different color.
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Figure 13: Maps of factor loadings across districts included in the analysis.
Panels are maps of Peru with thick lines indicating regions and thin lines indicating
districts included in the analysis. Each panel displays the factor loadings for a different
latent factor, numbered according to Figure 12, Darker shades of green indicate greater
positive values whereas darker shades of purple indicate greater negative values.

Covariate Coefficient p-value
Temperature (◦C) 6.60 ∗ 10−5 (3.64 ∗ 10−5 – 9.55 ∗ 10−5) 0.000

Precipitation (mm/day) 2.38 ∗ 10−5 (8.13 ∗ 10−6 – 3.95 ∗ 10−5) 0.003
Table 3: Coefficients (β) estimated for mean temperature and precipita-
tion. We additionally provide bootstrapped 95% confidence intervals and p-values for
estimates.
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Dates Percent
Attributable
Cases

Number
Attributable
Cases

Obs.
Cases

p-
value

Pre-cyclone
Dec 31 - Jan 27 -35 (-374, 75) -113 (-1224 - 246) 327 0.789
Jan 28 - Feb 24 -24 (-178, 12) -156 (-1135 - 76) 638 0.910
Feb 25 - Mar 24 -17 (-105, 60) -268 (-1694 - 969) 1613 0.717
Post-cyclone
Mar 25 - Apr 21 40 (-33, 77) 2207 (-1789 - 4221) 5493 0.108
Apr 22 - May 19 66 (15, 84) 10303 (2331 - 13110) 15623 0.009
May 20 - Jun 16 67 (27, 88) 12518 (5081 - 16457) 18659 0.002
Jun 17 - Jul 14 64 (28, 90) 6089 (2713 - 8607) 9526 0.002
Jul 15 - Aug 11 65 (13, 92) 3714 (768 - 5247) 5720 0.013
Aug 12 - Sep 08 73 (17, 94) 3149 (753 - 4073) 4317 0.012
Sep 09 - Oct 06 77 (37, 97) 1761 (836 - 2210) 2283 0.003
Oct 07 - Nov 03 60 (-4, 90) 675 (-49 - 1009) 1118 0.037
Nov 04 - Dec 01 47 (-16, 98) 448 (-152 - 930) 947 0.056
Dec 02 - Dec 29 24 (-89, 83) 125 (-456 - 426) 513 0.325

Table 4: Estimated effects of the cyclone on dengue over time across
cyclone-affected districts. In order, the columns indicate: the start and end date of
the time period (in 2023) across which the cyclone effects were estimated (note that the
first time period begins on December 31, 2022) with three pre-cyclone periods included
for comparison; the percent of total cases in the cyclone-affected districts attributable
to the cyclone with the 95% confidence interval in parentheses; the estimated number
of additional cases of dengue across cyclone-affected districts caused by the cylone
with the 95% confidence interval in parentheses (negative values indicate cyclone-
attributable decreases in cases); the total observed cases across the cyclone-affected
districts during the corresponding period; and the p-value of the estimated cyclone
effect.
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Name Description Source
Distance to
roads (meters)

50 m resolution raster. Continuous variable. If
less than 500 m from the nearest road, 1. If
greater than 3000, 0.

MTC. 2020.

Distance to
bodies of water
and rivers (me-
ters)

50 m resolution raster. Continuous variable. If
less than 500 m from the nearest road, 1. If
greater than 1500, 0.

MTC. 2023.

Non-public wa-
ter source

Manzana-level. Proportion of residences not
connected to the public water network.

INEI. 2017
National
Census.

Inconsistent
water access

Manzana-level. Proportion of residences with-
out access to water two or more days per week.

INEI. 2017
National
Census.

Household over-
crowding

Manzana-level. Proportion of residences with
overcrowding (i.e., the of people to rooms in a
dwelling is greater than or equal to 3).

INEI. 2017
National
Census.

Low-quality
walls

Manzana-level. Proportion of residences with
walls made from low-quality materials (e.g., ply-
wood, corrugated iron, stone with mud).

INEI. 2017
National
Census.

Low-quality
floors

Manzana-level. Proportion of residences with
floors made from low-quality materials (e.g.,
dirt).

INEI. 2017
National
Census.

Low-quality
roofs

Manzana-level. Proportion of residences with
roofs made from low-quality materials (e.g., ply-
wood, straw, palm leaf).

INEI. 2017
National
Census.

Low-quality
residences

Manzana-level. Proportion of residences that
were low-quality (e.g., hut or cabin, improvised
residence, premises not intended for human res-
idents).

INEI. 2017
National
Census.

Susceptibility
to flooding

200 m resolution raster. Categorical variable.
Forecast for Jan - March 2024. Greatest in ar-
eas with steep slopes and little vegetation cover.
Values can be: very low (0), low (1), medium
(2), high (3), very (high).

CENEPRED.
2023.

Table 5: Vulnerability indices. Each row corresponds to a different vulnerabil-
ity index, provided by CDC Peru. The first column gives the names of the indices.
The second gives descriptions of the indices, including units, resolution, and infor-
mation on how they were calculated. The third column gives the abbreviated name
of the Peruvian agency that provided data for a given index and the year for which
it was defined (for the final row, flood risk in 2024 was calculated based on 2023
data). Agency names are abbreviated as following: MTC (Ministerio de Transportes
y Comunicaciones, Minister of Transport and Communications); INEI (Instituto Na-
cional de Estadistica e Informatica, National Institute of Statistcs and Information);
CENEPRED (Centro Nacional de Estimación Prevención y Reducción del Riesgo de
Desastres, The National Center for Estimation, Prevention and Reduction of Disaster
Risk).
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Rotated Component Coefficient p-value
Low-quality roofs, low-quality walls (RC1) 5.56 (0.69 - 12.94) 0.12
Low-quality floors, precipitation (RC2) -2.53 (-6.57 - 1.45) 0.91
Flood susceptibility, temperature (RC3) 9.30 (5.92 - 12.95) 0.00

Non-public water source (RC4) -0.68 (-6.83 - 4.02) 0.68
Y-intercept (α3) 13.27 (8.84 - 17.33) 0.00

Table 6: Values estimated for coefficients of the rotated components (de-
rived from vulnerablity indices and climate) and y-intercept. The factors
most strongly associated with each rotated components are listed in the first column.
We additionally provide bootstrapped 95% confidence intervals and p-values for esti-
mates.
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Figure 14: Map of the region of Northwestern Peru used in the climate
attribution analysis. A map of Peru is displayed with national borders indicated
with thick lines and regional borders indicated with thin lines. The red box indicates
the region of northwestern Peru used in the attribution analysis.
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6.2 Sensitivity analyses

6.2.1 Sensitivity to exclusion of climate covariates in model

We repeated the main analysis for districts in Peru without including climate
covariates in the generalized synthetic control model. Cases were significantly
increased by Cyclone Yaku from April 22nd - November 3rd, as was the case for
the main model. Overall, we estimate 41,643 (95% confidence interval: 20,398 –
52,228) dengue cases were attributable to Cyclone Yaku, or 73% (95% confidence
interval: 36% - 91%) of all cases reported across the cyclone-affected districts
during this time period (Figure 15, Figure 17B). Unlike the main model, this
model does not generally predict continued fluctuations in case counts during
periods of low incidence (Figure 15). The R2 of this model was equivalent to
that of the main model (Figure 17A).
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Figure 15: Results of generalized synthetic control analysis without ac-
counting for climate covariates. (A) Shows the total observed cases (black) across
all cyclone-affected districts over time compared to the total cases in the synthetic con-
trol (red). (B) Shows the effect of the cyclone over time, estimated as the difference
between observed cases and synthetic control cases, with the grey ribbon correspond-
ing to the 95% confidence interval. The dashed horizontal line indicates no effect and
the dashed vertical line indicates when the cyclone occurred.
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6.2.2 Sensitivity to exclusion of non-coastal districts from control
pool

In this analysis, the control pool was limited to districts within coastal depart-
ments (Tumbes, Piura, Lambayeque, Cajamarca, La Libertad, Ancash, Callao,
Lima, Ica, Arequipa, Moquegua, and Tacna) (Figure 8). The cyclone-affected
pool was reduced to 54 districts because districts in San Martin that were identi-
fied as cyclone-affected in the main text were dropped from this analysis. There
were 234 cyclone-unaffected districts and 68 matched control districts in this
analysis.

The effect of Cyclone Yaku on cases was significant (p < 0.05) from May
20th - June 16th and August 12 - October 6th. At many timepoints in the post-
cyclone period, the estimated effect of the cyclone on cases was not significant
and confidence intervals encompassed negative values. Across the period that
cases were elevated because of the cyclone in the main analysis (April 22nd
- November 3rd), we estimate 23,639 (95% confidence interval: 911 – 35,745)
cyclone-attributable cases constituting 41% (95% confidence interval: 16% -
62%) of all cases. This is likely a underestimate of the effects of Cyclone Yaku
because many coastal districts experienced anomalous precipitation during the
cyclone, worsening the control. Further, there may have also been considerable
importation of cases from the cyclone-affected districts into neighboring coastal
districts. This model had a similar R2 compared to the model fit to districts
across all of Peru (R2 = 0.59) and there was a negligible effect of additionally
excluding climate covariates on R2 (R2 = 0.60) (Figure 17A).

Including climate covariates in the coastal model reduced estimates of the
cyclone’s effects both by controlling for the fact that 2023 was also unusually
rainy because of the coastal El Niño and the tendency of the cyclone-affected
provinces in the northwest to have greater precipitation than control provinces
along the southern coast (Figure 17B). When climate covariates were excluded,
we estimated significant effects of the cyclone on cases from May 20th - July
24th and August 12th - October 6th. Between April 22nd and November 3rd,
a total of 24,797 (95% confidence interval: 688 - 40,205) cyclone-attributable
cases (43% of cases; 95% confidence interval: 1% - 70%) (Figure 17B).
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Figure 16: Results of generalized synthetic control analysis across coastal
districts. (A) Shows the total observed cases (black) across all cyclone-affected dis-
tricts over time compared to the total cases in the synthetic control (red). (B) Shows
the effect of the cyclone on cases over time, estimated as the difference between ob-
served cases and synthetic control cases, with the grey ribbon corresponding to the
95% confidence interval. The dashed horizontal line indicates no effect and the dashed
vertical line indicates when the cyclone occurred.
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Figure 17: Comparing synthetic control model fit and results depending
on whether coastal districts were included in the control pool and whether
climate covariates were included in the model. In both panels, we compare
models with: all cyclone-unaffected districts in the control pool and no climate covari-
ates (red), all cyclone-unaffected districts in the control pool and climate covariates
(green, main model), only coastal cyclone-unaffected districts in the control pool and
no climate covariates (blue), and only coastal cyclone-unaffected districts in the control
pool and climate covariates (purple). (A) Shows the R2of the generalized synthetic
control model depending on model specifications. (B) Shows the estimated effect of
the cyclone on cases over time across the cyclone-affected districts (beginning in late
March 2023), with the 95% confidence interval. The black line indicates actual cases
reported over time in all cyclone-affected districts, including two that are not coastal.
The dashed vertical line indicates no effect of the cyclone on cases.
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6.2.3 Sensitivity to use of temperature-dependent R0 as climate co-
variate in model

Prior work has used laboratory measurements of transmission-relevant traits
across a thermal gradient to identify a nonlinear relationship between tempera-
ture and relative transmission intensity for dengue (Mordecai et al. 2017). We
repeated the main analysis for districts in Peru using temperature-dependent
relative R0 instead of mean temperature as a covariate in the generalized syn-
thetic control model.

Cases were significantly increased by Cyclone Yaku from April 22nd - Decem-
ber 1st Figure 19. We estimate that 36,344 (95% confidence interval: 15,658 -
48,277) or 63% (95% confidence interval: 27% - 84%) of cases were attributable
to Cyclone Yaku between April 22nd and November 3rd. These results were
similar to those from the main analysis, likely because mean temperature in the
study region was generally between 20 and 26◦C, a range where the relationship
between temperature and relative R0 is expected to be approximately linear.
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Figure 18: The relationship between temperature (◦C) and relative R0.
Relative R0 is a unitless measure of relative transmission intensity. This relationship
was derived by Mordecai et al. (2017) based on laboratory experiments.
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Figure 19: Results of generalized synthetic control analysis using
temperature-dependent R0 instead of mean temperature as a covariate.
(A) Shows the total observed cases (black) across all cyclone-affected districts over
time compared to the total cases in the synthetic control (red). (B) Shows the effect
of the cyclone over time, estimated as the difference between observed cases and syn-
thetic control cases, with the grey ribbon corresponding to the 95% confidence interval.
The dashed horizontal line indicates no effect and the dashed vertical line indicates
when the cyclone occurred.

6.2.4 Sensitivity to including observations prior to 2016

We conducted the analysis including observations prior to 2016, starting in
2010. We find that cases were significantly increased by Cyclone Yaku across
the same period that cases were elevated because of the cyclone according to
the main analysis (April 22nd - November 3rd). Across that period, 35,664
(95% confidence interval: 7,175 - 47,047) cases were attributable to the cyclone,
or 62% (95% confidence interval: 13% - 82%) of cases, an estimate that is
similar to that in the main text. There is a substantial difference between the
synthetic control and observed cases during the 2015 outbreak, although this
difference is considerably smaller than that observed during the 2023 outbreak.
The synthetic control also regularly exceeds observed outbreaks prior to 2015.
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Figure 20: Results of generalized synthetic control analysis including obser-
vations prior to 2016. (A) Total observed cases (black) across all cyclone-affected
districts over time compared to the total cases in the synthetic control units (red). (B)
Effect of the cyclone over time, estimated as the difference between observed cases and
synthetic control cases. The dashed horizontal line indicates no effect and the dashed
vertical line indicates when the cyclone occurred.

6.2.5 Sensitivity to excluding observations from 2020 - 2021

We conducted the analysis excluding observations from 2020 - 2021 due to the
potential for substantial biases in reporting during the beginning of the COVID-
19 pandemic. To conduct this analysis, we additionally included observations
from 2010 - 2016 so that a sufficient number of years of observations were used
to fit the model. We find that cases were significantly increased by Cyclone
Yaku between April 22nd and December 1st (Figure 21). Between April 22nd
and November 3rd, 44,314 (95% confidence interval: 36,844 - 49,729) cases were
attributable to Cyclone Yaku, or 77% (95% confidence interval: 64% - 87%) of
all cases.

This estimate is similar to that from the main analysis, suggesting that
potential biases in case reporting during the COVID-19 pandemic did not sub-
stantially affect our results. Cases were generally low during this time period
across the cyclone-affected districts and variation in dengue cases over time con-
nected to the COVID-19 pandemic that were consistent across the study region
were accounted for by the latent factors (Figure 2).
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Figure 21: Results of generalized synthetic control analysis excluding ob-
servations from 2020 and 2021. (A) Total observed cases (black) across all cyclone-
affected districts over time compared to the total cases in the synthetic control units
(red). (B) Effect of the cyclone over time, estimated as the difference between observed
cases and synthetic control cases. The dashed horizontal line indicates no effect and
the dashed vertical line indicates when the cyclone occurred. Years excluded from the
analysis are shown as a gap in the plot.

6.2.6 Sensitivity to upper and lower precipitation anomaly thresh-
olds

We repeated the analysis varying the upper precipitation anomaly threshold
above which districts were included in the cyclone-affected group and the lower
precipitation anomaly threshold below which districts were included in the
cyclone-unaffected group. Note that more districts are included in the cyclone-
affected group when the upper threshold is lowered, increasing the number of
observed cases under consideration. All numbers and percentages of attributable
cases reported here were calculated from April 22nd to November 3rd to facili-
tate comparison with the main model.

When the upper threshold is fixed at 8.5 mm/day and the lower threshold
is increased to 8.5 mm/day, the balance with respect to precipitation and tem-
perature increased, while climate covariate balance decreased when the lower
threshold was reduced to 5.5 mm/day. In both cases, R2, our measure of model
fit (where greater values indicate better fit), decreases compared to the main
model (for lower thresholds of 8.5 mm/day: R2 = 0.34; for lower threshold of
5.5 mm/day: R2 = 0.31). The estimate of the percentage of cases attributable
to the cyclone decreases with a lower threshold of 8.5 mm/day to 41% (95%
confidence interval: -1% - 81%) and also decreases with a lower threshold of
5.5 mm/day to 41% (95% confidence interval: -7% - 121%). Notably, there is
considerably more uncertainty for both of these estimates.

When the upper threshold is increased to 10 mm/day, the percentage of
attributable cases is 71% (95% confidence interval: 21% - 107%), 76% (95%
confidence interval: 55% - 88%), 15% (95% confidence interval: -38% - 79%), and
-11% (95% confidence interval: -50% - 75%) for lower thresholds of 5.5, 7, 8.5,
and 10 mm/day, respectively. These estimates are slightly greater than those in
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the main analysis, potentially indicating that the cyclone had greater impacts in
districts with the greatest precipitation anomalies. R2 was considerably worse
or comparable to that of the main model for a greater upper threshold.

The estimate of the percent of cases attributable to the cyclone with an
upper threshold of 7 mm/day and lower threshold of 7 mm/day is similar to
that of the main model: 68% (95% confidence interval: 45% - 83%) of total
cases. When the lower threshold is reduce to 5.5 mm/day, we estimate that 45%
(95% confidence interval: 5% - 120%) of cases were attributable to the cyclone.
The large uncertainty on these estimates and fact that the latter exceeds 100%
suggests that there is an insufficient number of control districts to construct a
robust synthetic control for the larger set of 98 cyclone-affected districts. Indeed,
R2 was reduced for this model (R2 = 0.41).

The general pattern of an increase in the estimated cyclone effect when the
lower threshold is reduced suggests that cyclone effects may be observed in
districts with precipitation anomalies greater than 5.5 mm/day and that the
main analysis therefore underestimates the true number of cyclone attributable
cases, for several reasons. First, additional cyclone-affected districts were ex-
cluded from our main analysis. Second, the inclusion of these districts in the
control pool may bias our estimate of the cyclone effects downward. However,
decreasing the lower and upper thresholds reduces the number of control dis-
tricts while increasing the number of cyclone-affected districts, worsening the
balance and model fit.
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Figure 22: The effects of varying the upper and lower precipitation anomaly
threshold. The x-axis of each panel is the upper precipitation anomaly threshold.
The colors of the bars correspond to the lower precipitation anomaly threshold (legend
at bottom). (A) The balance between the cyclone-affected and matched control units
with respect to climate covariates and the prediction error of the resulting generalized
synthetic control model depending on upper and lower anomaly thresholds. The first
two graphs show balance with respect to temperature (left) and precipitation (middle).
Balance is the difference in climate conditions between the cyclone-affected and control
units, measured as the average absolute standardized difference across the study period
(Figure 10). The final graph (right) shows R2, a measure of the difference between the
observed and predicted (synthetic control) cases in the cyclone-affected districts prior
to Cyclone Yaku. (B) The size of the matched control (left) and cyclone-affected (right)
groups. (C) The estimated percentage of cases observed across all cyclone-affected
districts that were attributable to the cyclone between April 22nd and November 3rd.
The bars indicate 95% confidence intervals.
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6.2.7 Sensitivity to number of matched units

We repeated the main analysis varying the number of control units to which each
cyclone-affected unit was matched. Increasing or decreasing the number of units
to match to had little effect on the estimated percentage of cases attributable
to the cyclone (Figure 23). Including all cyclone-unaffected units in the control
pool for the generalized synthetic control model leads to a lower estimate of
attributable cases (48% of all cases from April 22nd to November 3rd), although
there is considerable uncertainty in this estimate (95% confidence interval: -4% -
76%) and reduced predictive accuracy compared to the main model (R2 = 0.26).

Figure 23: The effects of varying the number of control districts matched to
each cyclone-affected district (x-axis). Note that “all” indicates that no matching
was performed and all cyclone-unaffected districts were included in the generalized
synthetic control analysis. (A) The balance between the cyclone-affected and matched
control units with respect to climate covariates and the prediction error of the resulting
generalized synthetic control model depending on number of matched units. The first
two graphs show balance with respect to temperature (left) and precipitation (middle).
Balance is measured as the mean absolute value of the standardized difference across
the study period (Figure 10). The final graph (right) shows the R2, a measure of the
difference between the observed and predicted (synthetic control) cases in the cyclone-
affected districts prior to Cyclone Yaku. (B) The size of the matched control (left)
and cyclone-affected (right) groups. (C) The estimated percentage of cases observed
across all cyclone-affected districts that were attributable to the cyclone between April
22nd and November 3rd. The bars indicate 95% confidence intervals.
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6.2.8 Sensitivity to number of latent factors

We repeated the main analysis, varying the number of latent factors included
in the generalized synthetic control model from zero to five. As described in the
main text, the number of latent factors was selected to minimize mean squared
prediction error calculated through a cross-validation procedure and five latent
factors were therefore included in the main model. The estimated percentage of
attributable cases is relatively stable across different numbers of latent factors,
ranging from 63% with four latent factors to 82% with three latent factors.
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Figure 24: The effects of varying the number of latent factors (x-axis). (A)
The model fit depending on the number of latent factors. Graphs show the information
criterion (IC), proposed criterion (PC), and root mean squared error (RMSE). (B) The
estimated proportion of cases observed across all cyclone-affected districts that were
attributable to the cyclone (from April 22nd - November 3rd) depending on the number
of latent factors. The bars indicate 95% confidence intervals.

6.2.9 Analysis at the region level

We repeated the analysis at the region level to estimate cyclone effects at a
large scale. Because there are only 25 regions (plus a capital district) in Peru,
we expanded our dataset by compiling weekly case reports at administrative
division 1 across four additional countries in Latin America: Ecuador, Brazil,
Mexico, and Colombia. Data were obtained through public, online data portals
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except in the case of Ecuador, where data were provided by the Surveillance
and Epidemiological Office of the Ministry of Health (Table 7). Countries were
selected based on data availability and proximity to the cyclone-affected regions
in Peru.

Data were collected from the earliest date availability through the end of
2023 or the latest date in 2023 available. This analysis ends in late July 2023
because case data for Colombia and Ecuador were not yet available beyond
that time point. Because significant effects of Cyclone Yaku on cases were
detected through December in the main analysis, this represents an incomplete
estimate. Piura, Tumbes, and Lambayeque regions in Peru were identified as
cyclone-affected units given that their precipitation anomalies during Cyclone
Yaku above 7 mm/day were clear outliers compared to other departments in
Peru (Figure 7B). Regions across all countries with anomalies below 7 mm/day
were eligible to be included in the control pool.

Significant effects of Cyclone Yaku on cases were first detected in the period
from February 25 - March 24, during which the cyclone occurred. We estimate
that 85,946 (95% confidence interval: 81,342 - 87,143) cases were attributable
to Cyclone Yaku out of 88,373 cases, or 97% (95% confidence interval: 92% -
99%) of all cases from April 22nd - July 14th (the period across which data
were available and significant cyclone effects were detected). The synthetic
control may be a less appropriate predictor of cases at the region level because
dengue dynamics and associated covariates may vary considerably across regions
and countries, meaning that the generalized synthetic control model may fail
to capture latent trends relevant to the cyclone-affected departments based on
observations across the control pool.

Country Start Year End Month No. units No. units with data Source
Brazil 2014 Dec 27* 27* online
Colombia 2013 Jul 33* 33* online
Ecuador 2014 Aug 24 24 MoH
Mexico 2003 Dec 32* 30 online
Peru 2000 Dec 26* 25 online

Table 7: Data sources for administrative division 1. Columns indicate the
country name, starting year of data available (with all datasets starting in epiweek
one), ending month of data for 2023 available, the number of spatial units in the
country, the number of spatial units with data available, and the data source (with
hyperlinks to online web portals). * indicates counts that include a capital district.
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Figure 25: Results of generalized synthetic control analysis at the region
level. (A) Shows the total observed cases (black) across all cyclone-affected depart-
ments over time compared to the total cases in the synthetic control (red). (B) Shows
the effect of the cyclone over time, estimated as the difference between observed cases
and synthetic control cases, with the grey ribbon corresponding to the 95% confidence
interval. The dashed horizontal line indicates no effect and the dashed vertical line
indicates when the cyclone occurred.
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