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Abstract: Alcohol-soluble comb copolymers were synthesized from rubbery poly(oxyethylene
methacrylate) (POEM) and glassy polyacrylamide (PAcAm) via economical and facile free-radical
polymerization. The synthesis of comb copolymers was confirmed by Fourier-transform infrared and
proton nuclear magnetic resonance spectroscopic studies. The bicontinuous microphase-separated
morphology and amorphous structure of comb copolymers were confirmed by wide-angle X-ray
scattering, differential scanning calorimetry, and transmission electron microscopy. With increasing
POEM content in the comb copolymer, both CO2 permeability and CO2/N2 selectivity gradually
increased. A mechanically strong free-standing membrane was obtained at a POEM:PAcAm ra-
tio of 70:30 wt%, in which the CO2 permeability and CO2/N2 selectivity reached 261.7 Barrer
(1 Barrer = 10−10 cm3 (STP) cm cm−2 s−1 cmHg−1) and 44, respectively. These values are greater
than those of commercially available Pebax and among the highest separation performances reported
previously for alcohol-soluble, all-polymeric membranes without porous additives. The high per-
formances were attributed to an effective CO2-philic pathway for the ethylene oxide group in the
rubbery POEM segments and prevention of the N2 permeability by glassy PAcAm chains.

Keywords: comb copolymer; microphase-separation; polymer membrane; CO2 separation

1. Introduction

Growing concerns about global warming resulting from accelerated industrializa-
tion has led to the increasing demand for advanced gas purification and CO2 separation
technologies [1]. Compared to other gas separation technologies, such as adsorption, ab-
sorption, and cryogenics, membrane technology has many advantages, including high
energy efficiency, low operating costs, small footprint, and easy scale-up [2–7]. Poly-
mers are attractive materials for preparing membranes because of their diversity, simple
manufacturing methods, good processability, and high separation performance [8]. Fur-
thermore, it is possible to fabricate various membranes for different applications owing to
the diverse monomers available and the polymers that are synthesized from them with
different structural properties. In recent years, membrane technology for CO2 separation
has attracted significant research interest [9–12]. In particular, studies have reported on
CO2/N2, CO2/CH4, and CO2/H2 separation techniques [13–17]. However, conventional
polymeric membranes suffer from a tradeoff between permeability and selectivity [18,19];
high selectivity is usually accompanied by low permeability and vice versa. Therefore,
it is important to develop innovative membranes that show high permeability and high
selectivity simultaneously.

Gas molecules permeate through a polymeric membrane via a solution-diffusion
mechanism, in which the permeability of the gas is expressed as the product of its solubility
and diffusivity [20]. Thus, an improvement in the solubility or diffusivity leads to increased
permeability. Because diffusivity is a kinetic factor, it is mainly affected by the kinetic
diameter of the permeant gas and the free volume of the polymeric membrane [21,22]. On
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the other hand, solubility is a thermodynamic factor, which is related to the interactions
between gas molecules and the polymer [23,24]. It is well known that the presence of polar
groups, such as ether oxygen (–C–O–C–) in polymer chains, results in high CO2 solubility
because of their strong affinity toward CO2 gas molecules due to dipole–quadrupole
interactions [25–27].

Poly(ethylene oxide) (PEO) is a representative rubbery polymer containing polar
ether groups, which can enhance CO2 solubility based on the Lewis acid–base interactions
between the CO2 molecule (acid) and the ether oxygen (base) [28,29]. However, it is difficult
to prepare gas separation membranes using high-molecular-weight PEO owing to their
high crystallinity, which leads to structural defects and low permeability [8]. To overcome
this problem, PEO-based block copolymers have been investigated, such as poly(amide-b-
ethylene oxide) (PA-b-PEO, well known as Pebax), which is covalently bonded to different
polymer chains at a single point [30–33]. However, the synthesis of block copolymers is
sensitive to impurities, resulting in high processing costs [34]. Comb copolymers have
been considered as alternatives to block copolymers because of their easy synthesis and
low cost. Poly(oxyethylene methacrylate) (POEM), analogous to PEO with an amorphous
nature, has been investigated [35–37]. However, POEM has liquid-like properties and poor
mechanical strength, which limits its application to gas separation membranes.

In this study, we report the synthesis of poly(oxyethylene methacrylate)-g-poly(acrylamide)
(POEM-g-PAcAm) comb copolymer via facile free-radical polymerization for application as
a CO2 separation membrane. The POEM content was varied from 50% to 100% to optimize
the CO2/N2 gas separation performance. We expected that the POEM segments would form
an efficient CO2-philic pathway to enhance the solubility of the CO2 gas molecules, while the
rigid poly(acrylamide) (PAcAm) segments would compensate for the liquid-like properties
of the POEM chains. The POEM-g-PAcAm free-standing membranes were fabricated by the
solution casting method, and they were investigated by Fourier-transform infrared (FT–IR)
spectroscopy and proton nuclear magnetic resonance (1H NMR) spectroscopy. The structural
and thermal properties of the comb copolymers were characterized by X-ray diffraction (XRD)
analysis, differential scanning calorimetry (DSC), and transmission electron microscopy (TEM).
The CO2/N2 gas separation performances were analyzed using a time-lag method at 35 ◦C.

2. Materials and Methods
2.1. Materials

Monomers for polymerization such as acrylamide (AcAm, Mn = 71.08 g/mol) and
poly(oxyethylene methacrylate) (POEM, Mn = 500 g/mol) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). The initiator of the free radical polymerization, 2,2-azobis(2-
methylpropionitrile) (AIBN, 98%), was obtained from Acros Organics. N,N-Dimethylformamide
(DMF), isopropyl alcohol (IPA), hexane (n-hexane, 95%), and absolute ethanol were purchased
from J. T. Baker (Phillipsburg, NJ, USA). All solvents and chemicals were of reagent grade and
were used without further purification.

2.2. Synthesis of POEM-g-PAcAm Comb Copolymers

A series of POEM-g-PAcAm copolymers were synthesized by free radical polymeriza-
tion. The total amount of the POEM macromonomer and AcAm monomers was fixed at
10 g. First, different amounts of POEM and AcAm were dissolved in DMF (50 mL) in a
round-bottom flask. Subsequently, 0.002 g of AIBN was added to the polymer solution to
initiate polymerization. After N2 purging, the mixture was heated to 70 ◦C for 18 h. The
polymer solution was then precipitated using an excessive amount of a mixture of IPA
and n-hexane (3:7). The precipitation process was repeated thrice to remove unreacted
monomers, and the obtained polymer was dried in a vacuum oven overnight at 25 ◦C.
Various weight ratios of POEM:AcAm were used, including 1:0, 7:3, 6:4, 5:5, and 0:1, which
were referred to as PPOEM, PAA73, PAA64, PAA55, and PAcAm, respectively.
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2.3. Preparation of POEM-g-PAcAm Membranes

The POEM-g-PAcAm free-standing membranes were prepared via a solution casting
method. A 10 wt% POEM-g-PAcAm solution was prepared by dissolving the copolymer
in pure ethanol at room temperature. The prepared solutions were cast onto circular
glass dishes and slowly dried at room temperature for three days. The membranes were
further dried at 50 ◦C in a vacuum oven to completely eliminate any residual solvents to
obtain the free-standing POEM-g-PAcAm membranes with a thickness of 70–80 µm. Pure
polyPOEM (POEM homopolymer) membrane could not be prepared because of its poor
mechanical strength.

2.4. Characterization

FTIR spectra of the synthesized polymers were obtained in the frequency range
4000–600 cm−1. Polymerization was further confirmed by 1H NMR analysis. The POEM-
g-PAcAm comb copolymers were dissolved in deuterium oxide (D2O), and the 1H NMR
spectra were obtained using a 400-MHz FT-BNR spectrometer (ADVANCE III HD 400,
Bruker Biospin, North Billerica, MA, USA. A field-emission scanning electron microscope
(FE-SEM, JSM-7001F, JEOL Ltd., Tokyo, Japan) was used to characterize the surface and
cross-sectional morphology of the polymeric membranes. For high-resolution transmission
electron microscopy (HR-TEM, JEM-3010, JEOL Ltd., Tokyo, Japan), 0.5 wt% polymer
solution in ethanol was directly cast onto a TEM grid and dried in a vacuum oven at room
temperature for 1 day to completely remove the solvent. Wide-angle X-ray scattering
(WAXS) analysis was carried out using a Rigaku 18 kW rotating anode X-ray generator
with Cu-Kα radiation (λ = 1.5405 nm) operated at 40 kV and 300 mA. The thermal behavior
of the copolymers was analyzed using a differential scanning calorimeter (DSC8000, Perkin
Elmer, Waltham, MA, USA) operated at a heating rate of 10 ◦C/min in air. The polymer
sample was first heated from –70 ◦C to 100 ◦C, then cooled to −70 ◦C, and again heated
from −70 ◦C to 100 ◦C. The second scanning data were used to determine the thermal
transition of the copolymer.

2.5. Gas Permeation Measurement

The pure gas permeation properties of the membranes were investigated by a time-lag
method using a constant volume/variable pressure apparatus (Airrane Co. Ltd., Cheongju,
Korea), according to a previously reported procedure. The downstream pressure was main-
tained at less than 2 Torr, which was much lower than the upstream pressure (760 Torr). The
gas permeability was calculated from the steady-state rate of increase in the downstream
pressure while the volume was kept constant. Five replicates of each membrane were tested
for reproducibility, and the average error was approximately ± 5%. The gas permeability (P)
was calculated using the following equation:

P =
1

760
·V
A
·273.15

T
· l
∆p

·dp
dt

(1)

where P is the gas permeability in Barrer (1 Barrer = 10−10 cm3 (STP) cm cm−2 s−1 cm Hg−1),
A is the effective membrane area (cm2), V is the volume of the chamber (cm3), T is the
experimental temperature (K), p is the transmembrane pressure difference (cmHg), l is the
membrane thickness (cm), and dp/dt is the steady-state rate of pressure rise (mmHg/s) on
the downstream side. The CO2/N2 selectivity (α) of the membrane was calculated using the
ratio of the permeabilities of the two pure gases under the same conditions:

αCO2/N2 = PCO2 /PN2 (2)
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3. Results and Discussion
3.1. Synthesis of POEM-g-PAcAm Copolymer

The copolymerization of POEM and AcAm is illustrated in Scheme 1. A series of
POEM-g-PAcAm comb copolymers with different POEM to AcAm ratios were synthesized
via facile one-pot free radical polymerization. The physicochemical properties of the POEM-
g-PAcAm comb copolymer stem from the combination of the flexible hydrophilic POEM
and rigid PAcAm chains. The rigid PAcAm segments in the comb copolymer compensate
for the liquid-like properties of the POEM chains and endow the copolymer with good
mechanical stability. The ethylene oxide segments of POEM with high chain mobility could
improve the CO2 affinity of the membrane and also prevent excessive densification of the
polymer matrix. Additionally, PAcAm chains contain secondary amine groups, which
possess high capacity for CO2 loading due to specific interactions between the basic amines
and acidic CO2.
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Scheme 1. Synthesis procedure of POEM-g-PAcAm comb copolymer via free-radical polymerization.

The physical properties of the POEM-g-PAcAm comb copolymers were highly de-
pendent on their composition. As shown in Figure 1a, a rigid solid state was observed
for PAA73, PAA64, and PAA55, while PPOEM showed highly viscous liquid-like proper-
ties. These results indicate that the solid-like properties of the copolymers increased with
increasing acrylamide content. The rigidity of the PAcAm segments can enhance the me-
chanical properties of the copolymers and help to form free-standing membranes. Pictures
depicting the good mechanical strength of the POEM-g-PAcAm (PAA73) membrane are
shown in Figure 1b,c. When the membrane was stretched to both sides, the horizontal
length of the membrane increased over two times while maintaining the membrane form,
indicating good mechanical strength.
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Figure 1. Photos of (a) as-synthesized POEM-g-PAcAm comb copolymers with different compositions,
and (b,c) POEM-g-PAcAm comb copolymer membrane (PAA73).

The successful polymerization of the POEM-g-PAcAm comb copolymers was con-
firmed by FTIR and 1H NMR spectroscopy, as shown in Figure 2. The FTIR spectra of the
two monomers (POEM, AcAm) and the POEM-g-PAcAm comb copolymer are shown in
Figure 2a. For the AcAm monomer, two absorption bands at 3340 and 1425 cm−1 were
observed, which are assigned to the –NH2 stretching and C–N stretching vibrations, re-
spectively. Strong bands at 2866 and 1717 cm−1, attributed to the stretching vibrations of
–CH3 and C=O groups, respectively, were observed in the POEM macromonomer. A sharp
band at 1662 cm−1 was observed in the AcAm monomer and POEM-g-PAcAm comb
copolymer owing to the stretching vibration mode of C=O in acrylamide [38]. In the
POEM-g-PAcAm comb copolymers, characteristic absorption bands of both AcAm and
POEM monomers were observed, indicating that POEM-g-PAcAm comb copolymers were
synthesized successfully. The 1H NMR spectra of the POEM-g-PAcAm comb copolymer is
shown in Figure 2b. The composition of the comb copolymers was calculated by integrating
each of the corresponding chemical shifts, i.e., –CH2– (c) and OCH3 (d) protons of POEM
at 3.6 and 3.3 ppm, respectively [37,39], and –CH– (b) and –NH2– (e) protons of acryl
amide at 1.6 and 7.8 ppm, respectively [40,41]. As shown in Table 1, the compositions of
the synthesized copolymers were consistent with the feed ratio of the monomers used,
indicating a controlled polymerization reaction.

Table 1. Compositions of POEM-g-PAcAm comb copolymers as calculated by 1H NMR spectroscopy.

Sample
Feed Ratio Determined by 1H NMR

POEM (wt%) AcAm (wt%) POEM (wt%) AcAm (wt%)

PAA73 70 30 71.7 28.3
PAA64 60 40 61.1 38.9
PAA55 50 50 50.8 49.2
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3.2. Structural and Morphological Properties

DSC analysis was carried out to investigate the glass transition temperature (Tg) of
the POEM-g-PAcAm comb copolymers (Figure 3a). No endothermic crystalline melting
peaks were observed for any of the polymers, indicating their amorphous nature. All
the POEM-g-PAcAm comb copolymers had similar Tg values at approximately −55 ◦C,
which was attributed to the segmental motion of the rubbery POEM chains [42]. The weak
Tg value observed at approximately 134 ◦C was attributed to the motion of the glassy
PAcAm chain [43]. The two distinct Tg values demonstrate that POEM-g-PAcAm comb
copolymers have microphase-separated nanostructures with rubbery POEM as well as
glassy PAcAm characteristics.
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Figure 3. (a) DSC curves and (b) WAXS patterns of POEM-g-PAcAm comb copolymers with differ-
ent compositions.

The structures of the homopolymers and comb copolymers with various ratios were
investigated using WAXS analysis. Figure 3b shows the WAXS curves of pure PPOEM
(POEM homopolymer), PAA73, PAA64, PAA55, and PAcAm (acrylamide homopolymer).
No sharp crystalline peaks were observed for any of the polymers, indicating a completely
amorphous nature, which is in good agreement with the DSC analysis. Peaks centered at
2θ = 20.8◦ in PAcAm and at 2θ = 20.2◦ in PPOEM were observed [44–46]. Using Bragg’s
law (2d sin θ = nλ), Law (2d sin θ = nλ), the d-spacing values were determined to be 4.5
and 4.4 Å for PAcAm and PPOEM, respectively.

The microstructures of the POEM-g-PAcAm comb copolymer were characterized
by TEM (Figure 4). In TEM images, domains with higher electron density appear dark,
while those with lower electron density appear bright. In the PAA55 membrane, dark,
isolated POEM domains were uniformly dispersed in the bright PAcAm matrix (Figure 4a).
With increasing amount of POEM segments, the area of isolated POEM regions increased
(Figure 4b,c). Bicontinuous microphase-separated structures were observed in PAA73
and PAA64 copolymers, which is consistent with the two Tg values observed in the DSC
analysis. To confirm the distribution of the nitrogen elements (from PAcAm segments)
across the membrane, EDS spectra and scanning transmission electron microscopy (STEM)
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of the membrane were collected and are shown in Figure 5. A large amount of nitrogen
was observed in the EDS image of PAA55, which gradually decreased with the increase in
POEM content in the copolymer. In both PAA73 and PAA64, both domains (dark POEM
and yellow PAcAm for EDS images; bright POEM and dark PAcAm for STEM images)
were observed to be bicontinuous and microphase-separated, which is consistent with the
TEM images above. This morphology may provide an effective pathway for efficient CO2
gas transport through the membranes.

Polymers 2021, 13, x FOR PEER REVIEW 8 of 13 
 

 

were observed to be bicontinuous and microphase-separated, which is consistent with the 
TEM images above. This morphology may provide an effective pathway for efficient CO2 
gas transport through the membranes. 

 
Figure 4. TEM images of POEM-g-PAcAm comb copolymers with different compositions. (a) PAA55, (b) PAA64, (c) 
PAA73. 

 
Figure 5. EDS mapping images (nitrogen element) and STEM images of POEM-g-PAcAm comb copolymer with different 
compositions: (a,d) PAA55, (b,e) PAA64, and (c,f) PAA73. 

3.3. CO2/N2 Separation Performance 
Figure 6 and Table 2 show the CO2/N2 separation performance of the POEM-g-PA-

cAm comb copolymer membranes using the time-lag method at 35 °C and 760 Torr (1 bar). 
As mentioned earlier, the permeability of gas molecules through a polymeric membrane 
is determined based on solubility and diffusivity. Because CO2 is more condensed than N2 

(critical temperatures of 195 and 71 K, respectively), the solubility of CO2 is higher than 
that of N2. Furthermore, the kinetic diameter of CO2 (3.30 Å) is smaller than that of N2 (3.64 
Å), which means that the diffusivity of CO2 gas molecules is always higher [47]. Therefore, 
the permeability of CO2 is higher than that of N2 because of the dual effect of higher solu-
bility and higher diffusivity. With increasing POEM content, both the CO2 and N2 perme-

Figure 4. TEM images of POEM-g-PAcAm comb copolymers with different compositions. (a) PAA55, (b) PAA64, (c) PAA73.

Polymers 2021, 13, x FOR PEER REVIEW 8 of 13 
 

 

were observed to be bicontinuous and microphase-separated, which is consistent with the 
TEM images above. This morphology may provide an effective pathway for efficient CO2 
gas transport through the membranes. 

 
Figure 4. TEM images of POEM-g-PAcAm comb copolymers with different compositions. (a) PAA55, (b) PAA64, (c) 
PAA73. 

 
Figure 5. EDS mapping images (nitrogen element) and STEM images of POEM-g-PAcAm comb copolymer with different 
compositions: (a,d) PAA55, (b,e) PAA64, and (c,f) PAA73. 

3.3. CO2/N2 Separation Performance 
Figure 6 and Table 2 show the CO2/N2 separation performance of the POEM-g-PA-

cAm comb copolymer membranes using the time-lag method at 35 °C and 760 Torr (1 bar). 
As mentioned earlier, the permeability of gas molecules through a polymeric membrane 
is determined based on solubility and diffusivity. Because CO2 is more condensed than N2 

(critical temperatures of 195 and 71 K, respectively), the solubility of CO2 is higher than 
that of N2. Furthermore, the kinetic diameter of CO2 (3.30 Å) is smaller than that of N2 (3.64 
Å), which means that the diffusivity of CO2 gas molecules is always higher [47]. Therefore, 
the permeability of CO2 is higher than that of N2 because of the dual effect of higher solu-
bility and higher diffusivity. With increasing POEM content, both the CO2 and N2 perme-

Figure 5. EDS mapping images (nitrogen element) and STEM images of POEM-g-PAcAm comb copolymer with different
compositions: (a,d) PAA55, (b,e) PAA64, and (c,f) PAA73.

3.3. CO2/N2 Separation Performance

Figure 6 and Table 2 show the CO2/N2 separation performance of the POEM-g-PAcAm
comb copolymer membranes using the time-lag method at 35 ◦C and 760 Torr (1 bar). As
mentioned earlier, the permeability of gas molecules through a polymeric membrane is
determined based on solubility and diffusivity. Because CO2 is more condensed than N2
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(critical temperatures of 195 and 71 K, respectively), the solubility of CO2 is higher than
that of N2. Furthermore, the kinetic diameter of CO2 (3.30 Å) is smaller than that of N2
(3.64 Å), which means that the diffusivity of CO2 gas molecules is always higher [47].
Therefore, the permeability of CO2 is higher than that of N2 because of the dual effect
of higher solubility and higher diffusivity. With increasing POEM content, both the CO2
and N2 permeabilities increased gradually. However, the increase in the permeability of
CO2 was significantly greater than that of N2. Thus, the CO2 permeability and CO2/N2
selectivity increased simultaneously because the CO2−philic segments in the POEM chains
enhance the CO2 solubility of the membrane and form a microphase-separated channel
for CO2 transport, as confirmed by TEM, EDS, and STEM analyses [48]. The bicontinuous
microphase-separated structure was attributed to the selective interactions between POEM
segments, which have much longer chain lengths compared to PAcAm segments, resulting
in interconnected CO2-philic pathways in the membranes. These pathways increase the
CO2 permeability significantly, while only slightly increasing the N2 permeability, thus im-
proving the CO2/N2 selectivity, as illustrated in Figure 7. To clearly investigate the effect of
the CO2-philic segments on the separation properties, the diffusivity and solubility values
of POEM-g-PAcAm membranes were determined as shown in Table 3. The CO2 solubility
of the membranes increased dramatically as the POEM content increased, indicating that
the POEM chains have an excellent CO2-philicity.
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Figure 6. (a) Pure gas permeability and (b) CO2/N2 selectivity of POEM-g-PAcAm free-standing membranes with different
compositions at 35 ◦C and 1 bar.

Table 2. Comparison of CO2/N2 separation performances for all-polymeric membranes without
porous additives.

# Polymer CO2
(Barrer)

N2
(Barrer)

Selectivity
(CO2/N2) Reference

1 PAA73 261.7 5.9 44.0 This work
2 PAA64 82.2 2.7 30.0 This work
3 PAA55 36.7 1.8 20.5 This work
4 Semi-Crystalline PEO 13 0.24 55 [47]
5 Amorphous PEO a 143 3.0 47.7 [47]
6 PVIm-POEM 204.5 4.7 43.9 [48]
7 PEO/PAMAM 25.5 0.45 56.7 [49]
8 PEO/PGP-POEM 120.9 2.69 44.9 [50]
9 cPI-PEO6000 31.5 0.53 59.9 [51]

10 PGP-POEM/Pebax 236.6 6.1 38.8 [52]
11 Pebax1657 82 1.5 54 [53]
12 Pebax/PBE 224.4 5.79 38.7 [54]

a Estimated infinite dilution amorphous phase permeability coefficients.
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Table 3. CO2 diffusivity and solubility values of POEM-g-PAcAm free-standing membranes with
different compositions.

# Polymer CO2 Diffusivity
(×10−7)

CO2 Solubility
(×10−2)

CO2 Permeability *
(Barrer)

1 PAA73 9.25 2.83 261.7
2 PAA64 3.73 2.20 82.2
3 PAA55 1.88 1.95 36.7

* Permeability (cm3(STP)·cm·cm−2·s−1·cmHg−1) = solubility (cm3(STP)·cm−3·cmHg−1) × diffusivity (cm2·s−1).

Figure 8 shows a Robeson plot showing the tradeoff relationship between the selec-
tivity and permeability of the polymeric membranes [18]. Among the POEM-g-PAcAm
membranes, the PAA73 exhibited outstanding CO2/N2 separation performance on the
Robeson upper bound and was superior to commercial Pebax block copolymer and other
alcohol-soluble, all-polymeric membranes based on PEO or PEG polymer matrix without
porous additives, such as metal organic frameworks (MOFs). The PAA73 showed the CO2
permeability of 261.7 Barrer and CO2/N2 selectivity of 44.0. The good solubility of the
POEM-g-PAcAm comb copolymer in alcohol is a vital factor for commercial applications.
The comb copolymer could be used as a selective coating layer for thin-film composite
membranes because most of the porous polymer supports (e.g., polysulfone) do not dis-
solve in alcohol. Further studies can be carried out on the fabrication of thin-film composite
membranes to improve the permeance of membranes in gas permeance unit (GPU).
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4. Conclusions

In this study, high-performance gas separation membranes were prepared based on
CO2-philic POEM-g-PAcAm comb copolymers consisting of rigid PAcAm segments and
rubbery hydrophilic POEM segments. The successful synthesis of POEM-g-PAcAm comb
copolymers was confirmed by FTIR and 1H NMR spectroscopy. The POEM-g-PAcAm comb
copolymers have an amorphous structure as investigated by DSC and XRD analysis. The
bicontinuous microphase-separated channel for CO2 transport was confirmed by TEM, EDS,
and STEM analyses. The CO2-philic ethylene oxide (C–O–C) groups in the POEM chains
of the copolymer improved the CO2 solubility of the membrane. The rigid PAcAm chains
played a crucial role in minimizing the N2 permeability to enhance the selectivity. For
the PAA73 membrane, the CO2 permeability was 261.7 Barrer and the CO2/N2 selectivity
reached 44.0, which is among the highest separation performances previously reported
for alcohol-soluble, all-polymeric membranes without porous additives. Furthermore,
the POEM-g-PAcAm comb copolymers were synthesized via free radical polymerization,
which is more economical than the synthesis of conventional block copolymers. The results
reported herein suggest that the POEM-g-PAcAm comb copolymers have great potential
for CO2 capture applications because of their simple fabrication process and high gas
separation performance.
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