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Extrapulmonary manifestations of COVID-19 have gained 
attention due to their links to clinical outcomes and their 
potential long-term sequelae1. Severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) displays tropism towards 
several organs, including the heart and kidney. Whether it also 
directly affects the liver has been debated2,3. Here we provide 
clinical, histopathological, molecular and bioinformatic evi-
dence for the hepatic tropism of SARS-CoV-2. We find that 
liver injury, indicated by a high frequency of abnormal liver 
function tests, is a common clinical feature of COVID-19 in 
two independent cohorts of patients with COVID-19 requir-
ing hospitalization. Using autopsy samples obtained from a 
third patient cohort, we provide multiple levels of evidence 
for SARS-CoV-2 liver tropism, including viral RNA detec-
tion in 69% of autopsy liver specimens, and successful isola-
tion of infectious SARS-CoV-2 from liver tissue postmortem. 
Furthermore, we identify transcription-, proteomic- and tran-
scription factor-based activity profiles in hepatic autopsy sam-
ples, revealing similarities to the signatures associated with 
multiple other viral infections of the human liver. Together, we 
provide a comprehensive multimodal analysis of SARS-CoV-2 
liver tropism, which increases our understanding of the molec-
ular consequences of severe COVID-19 and could be useful for 
the identification of organ-specific pharmacological targets.

In this study, we examined three patient cohorts to character-
ize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2)-associated liver injury and infection. First, a clinical cohort 

(Hamburg; cohort 1, n = 99) was used to examine changes in liver 
function tests (LFTs) in patients admitted to hospital due to corona-
virus disease 2019 (COVID-19) and those who were diagnosed with 
COVID-19 during hospitalization (Fig. 1a); 42% of these patients 
were at least 65 years old, 70% were males, only 23% had at least 3 
coexisting conditions (Source Data Fig. 1). Among patients admit-
ted due to COVID-19 (n = 72), raised aspartate aminotransferase 
(AST) and alanine aminotransferase (ALT) were shown in 63 and 
39% of cases (Fig. 1b), respectively despite the low frequency of liver 
disease (1.4%), confirming previous studies4–11. Next, we analysed a 
subgroup of patients that were admitted to hospital due to alterna-
tive diagnoses (n = 27) and suffered from nosocomial SARS-CoV-2 
infection. Both AST and ALT were significantly increased after the 
diagnosis of COVID-19 (Fig. 1c). While the percentage of patients 
with raised ALT almost doubled before and after COVID-19 diag-
nosis (33 versus 59%), the percentage of patients with elevated AST 
almost tripled (22 versus 67%) (Fig. 1d). Next, we evaluated a large 
validation cohort of patients admitted to hospital due to COVID-19 
(Michigan; cohort 2, n = 1,219) (Fig. 1e); 44% of patients were at least 
65 years old, 57% were males and only 16% had at least 3 coexisting 
conditions (Supplementary Table 1). Importantly, 57% (n = 699) of 
patients showed elevations of AST and 37% (n = 452) of ALT at admis-
sion (Fig. 1e). Furthermore, LFT elevations at admission and during 
the second week of hospitalization were associated with mortality  
(Fig. 1f), raising questions about their role in disease severity. Together, 
these observations clearly highlight hepatic injury as an important 
clinical feature of patients with COVID-19 requiring hospitalization.

Molecular consequences of SARS-CoV-2  
liver tropism
Nicola Wanner1,16, Geoffroy Andrieux   2,16, Pau Badia-i-Mompel   3, Carolin Edler4, Susanne Pfefferle   5,  
Maja T. Lindenmeyer1, Christian Schmidt-Lauber   1, Jan Czogalla   1, Milagros N. Wong1,  
Yusuke Okabayashi1, Fabian Braun   1, Marc Lütgehetmann   5, Elisabeth Meister1, Shun Lu   1,  
Maria L. M. Noriega6, Thomas Günther   7, Adam Grundhoff   7, Nicole Fischer5, Hanna Bräuninger   8,9,  
Diana Lindner   8,9, Dirk Westermann8,9, Fabian Haas   1, Kevin Roedl10, Stefan Kluge10, 
Marylyn M. Addo   11,12, Samuel Huber   11, Ansgar W. Lohse11, Jochen Reiser13, Benjamin Ondruschka4, 
Jan P. Sperhake4, Julio Saez-Rodriguez   3, Melanie Boerries2,14, Salim S. Hayek   15, 
Martin Aepfelbacher5, Pietro Scaturro   7,17, Victor G. Puelles   1,17 ✉ and Tobias B. Huber   1,17 ✉

NATuRE METABOLiSM | VOL 4 | MARCH 2022 | 310–319 | www.nature.com/natmetab310

mailto:v.puelles@uke.de
mailto:t.huber@uke.de
http://orcid.org/0000-0002-5389-9481
http://orcid.org/0000-0002-1004-3923
http://orcid.org/0000-0001-7489-6557
http://orcid.org/0000-0002-7864-0361
http://orcid.org/0000-0003-1888-3369
http://orcid.org/0000-0002-4742-050X
http://orcid.org/0000-0002-9468-7944
http://orcid.org/0000-0003-4501-2008
http://orcid.org/0000-0001-9650-0218
http://orcid.org/0000-0003-0940-7045
http://orcid.org/0000-0002-4370-9509
http://orcid.org/0000-0001-5477-769X
http://orcid.org/0000-0001-5440-1035
http://orcid.org/0000-0003-2836-9224
http://orcid.org/0000-0001-9325-8227
http://orcid.org/0000-0002-8552-8976
http://orcid.org/0000-0003-0180-349X
http://orcid.org/0000-0001-9098-3087
http://orcid.org/0000-0002-7735-5462
http://orcid.org/0000-0001-7175-5062
http://crossmark.crossref.org/dialog/?doi=10.1038/s42255-022-00552-6&domain=pdf
http://www.nature.com/natmetab


LettersNATURE METAbOlISM

It has been postulated that LFT elevations in hospitalized patients 
with COVID-19 may result from systemic inflammation or severe 
cellular stress (for example, hypoxia), as generally observed in criti-
cally ill patients9. However, an autopsy study reported ultrastruc-
tural evidence of SARS-CoV-2 (ref. 12), and a second study reported 
histopathological findings in a liver biopsy of a patient with abnor-
mal liver enzymes, including no obvious inflammation in the portal 
area, with normal description of the interlobular bile duct, interlob-
ular vein, interlobular artery and hepatocytes with minimal inflam-
matory cell infiltration11. Given that liver biopsies are not routinely 
performed in patients with COVID-19 with altered LFTs, we eval-
uated a third cohort (cohort 3, n = 45 autopsy cases) in search of 
direct evidence of liver infection (Supplementary Table 2); 73% 
(n = 33) were older than 65, 69% (n = 31) had at least 3 coexisting 
conditions and 62% (n = 28) were males, matching the demographic 
characteristics linked to severe COVID-19. SARS-CoV-2 RNA was 
detected using quantitative PCR with reverse transcription (RT–
qPCR) targeting the E gene in 69% of cases (n = 31) (Fig. 2a), which 
was more frequently associated with older age, male sex and mul-
tiple coexisting conditions, as shown in previous reports2,13,14.

Pathology assessment only revealed signs of shock, probably 
due to severe systemic disease, and adipose changes without clas-
sical signs of hepatitis or significant immune infiltration (n = 18; 

Extended Data Fig. 1). However, a combination of indirect immu-
nofluorescence and high-resolution confocal microscopy identified 
hepatic expression of angiotensin-converting enzyme 2 (ACE2), 
the main cellular receptor of SARS-CoV-2 (Fig. 2b and Extended 
Data Fig. 2; n = 5 liver samples), and SARS-CoV-2 spike protein 
(Fig. 2c and Extended Data Fig. 3, n = 3 examples). In addition, 
SARS-CoV-2 RNA was also found in hepatic cells with in situ hybrid-
ization (Supplementary Fig. 1; n = 4, that is, n = 2 SARS-CoV-2 
PCR+ and n = 2 controls (Ctrls)), confirming the spatial location 
of SARS-CoV-2 in the human liver using multiple techniques 
that complement the findings of previous studies12,15. To provide 
additional context, we first compared the levels of SARS-CoV-2 
RNA copies per cell between airway samples (previously reported 
in Puelles et al.2) and a subset of autopsy livers, showing a simi-
lar range but a lower median viral RNA load in hepatic specimens 
(Supplementary Fig. 2a; n = 18 lung, n = 16 pharynx and n = 18 
liver), and we quantified the number of SARS-CoV-2 spike-positive 
cells in a small subset of our autopsy samples (n = 6 liver samples, 
that is, n = 3 SARS-CoV-2 PCR+ and n = 3 Ctrls with quantification 
provided in Supplementary Fig. 2b), both of which may explain 
the lack of overt cytopathic changes (that is, hepatitis). Notably, we 
isolated infectious SARS-CoV-2 from 2 out of 3 autopsy livers and 
corresponding lungs, confirming the infectivity of postmortem liver 
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Fig. 1 | Elevated LFTs among patients with COViD-19. a, Overview of cohort 1. n = 99 patients required hospitalization due to COVID-19 (Germany).  
n = 72 were admitted due to moderate/severe COVID-19 and n = 27 acquired COVID-19 during their hospital stay. b, Only 1.4% of patients admitted  
due to COVID-19 from cohort 1 had a history of liver disease, yet LFTs at admission showed elevated AST in 63% and ALT in 39% of patients. c,d, AST  
and ALT levels in patients with COVID-19 acquired during hospitalization worsened after COVID-19 diagnosis in 81% and 67% of patients, respectively.  
e, Demographic overview of cohort 2. n = 1,219 patients required hospitalization due to COVID-19 (Michigan). Only 2.4% of admitted patients from cohort 
2 had a history of liver disease, yet LFTs at admission show elevated AST in 57% and ALT in 37% of patients with COVID-19. f, Variation of mean AST and 
ALT over time in patients with COVID-19, showing elevations in LFTs associated with mortality.
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tissue samples, leading to a 1,000 time increase in viral RNA after 
48 h of cell infection in vitro (Fig. 2d), as previously reported in the 
kidney13. Together, our data provide spatial and functional evidence 
of SARS-CoV-2 hepatic tropism, at least in cases of fatal COVID-19.

Next, we aimed to determine the molecular changes associ-
ated with SARS-CoV-2 liver tropism. Thus, liver tissues from a 
subset of COVID-19 autopsies were selected for transcriptomic 

and proteomic analyses (n = 11; Fig. 2e). Briefly, 3 comparison 
groups were defined a priori: (1) patients with COVID-19 and 
SARS-CoV-2-positive livers (n = 5 for transcriptomics and n = 6 
for proteomics); (2) patients with COVID-19 and SARS-CoV-
2-negative livers (n = 5 for transcriptomics and proteomics) to 
account for the systemic effect of COVID-19; and (3) patients with 
non-COVID-19-related deaths (n = 5 for proteomics and n = 7 for 
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transcriptomics, that is, Ctrls) to account for pleiotropic effects 
resulting from autopsy-related collection and storage. The groups 
were similar in terms of age, sex and number of coexisting con-
ditions (Supplementary Table 3). First, transcriptomic profiling 
confirmed the expression of known SARS-CoV-2 entry receptors 
and facilitators in the liver autopsy samples (Extended Data Fig. 
4), including ACE2, transmembrane protease serine 2 (TMPRSS2), 
procathepsin L and Ras-related protein Rab-7a16,17. Importantly, a 
direct comparison to a publicly available dataset18 contextualized 
the expression of these facilitators in relation to other organs, where 
liver samples showed similar expression levels as the lung, only sur-
passed by the kidney and small intestine, suggesting that hepatic 
tissue is susceptible to SARS-CoV-2 infection. Then, we detected 
SARS-CoV-2 subgenomic RNA within our own dataset and identi-
fied two samples out of six with values in the range of the infected 
respiratory tract, tracing SARS-CoV-2 to the liver by another inde-
pendent methodology (Extended Data Fig. 5).

Transcriptional changes associated with SARS-CoV-2 hepatic 
tropism revealed a significant upregulation of type I and II inter-
feron (IFN) responses (Fig. 2f and Extended Data Fig. 6). Gene 
Ontology (GO) analysis confirmed upregulation of IFN and 
viral responses and increases in lipid and phospholipid meta-
bolic processes (Extended Data Fig. 7), supporting a recent study 
linking perturbations of lipid metabolism with SARS-CoV-2 infec-
tion19. Importantly, these findings were also consistent at a single 
patient level (Fig. 2g) and within single gene sets (Fig. 2h,i). While 
SARS-CoV-2 has developed strategies to evade IFN responses, lead-
ing to relatively weak type I and III IFN induction in host cells20, a 
recent study showed a high expression level of IFN-stimulated genes 
in patients with a high SARS-CoV-2 viral load and high levels of 
pro-inflammatory cytokines but relatively intact lung morphology21. 
These observations are in agreement with our findings, supporting 

upregulated IFN responses in tissues with traces of SARS-CoV-2 
RNA and without classical cytopathic changes. In addition, we also 
identified that components of IFN-related JAK-STAT signalling 
(Supplementary Fig. 3), and other central cellular processes involved 
in lipid/cholesterol synthesis, including terpenoid and steroid bio-
synthesis were all modulated in patients with SARS-CoV-2 liver tro-
pism. Altogether, these data provide a comprehensive framework to 
understand the molecular consequences of SARS-CoV-2-mediated 
liver injury.

Global proteomic profiling in hepatic tissues of the same autopsy 
cohort showed substantial regulation of IFN, viral and in par-
ticular SARS-CoV-2 responses (Fig. 3a and Source Data Fig. 3). 
Protein ontology analysis revealed upregulation of IFN signalling 
and downregulation of basic biological processes, including oxida-
tion reduction, oxidative phosphorylation and cellular respiration 
(Fig. 3b). Type I IFN responses were confirmed at the single patient 
level (Fig. 3c). Gene/protein sets for hallmark ‘interferon-α (IFN-α) 
response’ (R = 0.65, P < 0.05; Fig. 3d) and the GO Biological Process 
‘defence response to virus’ (R = 0.71, P < 0.05; Fig. 3e), as well as 
single gene/protein analysis for IFN-inducible genes (R = 0.74–0.87, 
P < 0.05; Fig. 3f), showed strong associations between transcrip-
tomic and proteomic profiles, highlighting a coherent modulation 
of SARS-CoV-2-related pathways at the transcriptional and transla-
tional level. Furthermore, transcription factor activity profiling (Fig. 
3g) provided individual (Fig. 3h) and global (Fig. 3i) signatures that 
combined transcription factor upregulation (for example, signal 
transducer and activator of transcription 2 (STAT2), a signal trans-
ducer and activator of transcription that mediates signalling by type 
I IFNs) and downregulation (that is, nuclear receptor corepressor 
2 (N-CoR2), which aids histone deacetylases to modify chromatin 
structure, thus preventing basal transcriptional activity). Canonical 
pathway analysis confirmed upregulation of immune-mediated, 

Fig. 3 | SARS-CoV-2 liver tropism is associated with proteomic and transcription factor activity regulation of iFN responses. a, GAGE analysis of gene 
sets significantly regulated between liver PCR-positive (n = 5), PCR-negative (n= 5) and Ctrl (n = 5) conditions. b, Bar plots showing the top 10 up- and 
downregulated gene sets from GO Biological Processes between positive and negative. The colour coding represents the number of genes within each 
gene set. c, Row-wise scaled intensity (z-score) heatmap showing genes from the ‘IFN-α response’ gene set. Genes were ranked according to the log2 
fold change, which is indicated on the right. *Padj < 0.05. Within each group, samples were clustered based on Euclidean distance. d,e, mRNA versus 
protein-positive versus negative fold change scatter plot of gene sets ‘hallmark IFN-α response’ (d) and ‘GO defense response to virus’ (e). Each dot 
represents a gene that belongs to the gene set. The blue line represents the linear regression between mRNA and protein fold changes. f, mRNA versus 
protein intensity scatter plot of the genes IFIT2, IFIT3, OAS2 and MX1. Each dot represents a single sample, colour-coded based on the groups: white, green 
and purple for Ctrl, negative and positive, respectively. The blue line represents the linear regression between mRNA and protein-normalized intensities. 
g, Transcription factor analysis revealed differential transcription factor usage in Ctrl, COVID-19 liver negative and liver positive samples. h, Heatmap of 
differentially regulated transcription factors per sample (positive: n = 7; negative: n = 6; Ctrl: n = 6). i, Summary of the mean transcription factor analysis.

Fig. 2 | SARS-CoV-2 liver tropism is associated with transcriptional regulation of iFN responses. a, Clinical heatmap of 45 patients indicating age 
≥65 years, sex, 3 or more coexisting conditions and SARS-CoV-2 liver tropism (PCR + liver). b, Immunofluorescence images show the presence of 
the SARS-CoV-2 receptor ACE2 in hepatic cells (that is, Kupffer cells). Staining was performed in samples from five different patients (data shown in 
Extended Data Fig. 2). c, SARS-CoV-2 spike protein detection in autopsy liver tissues (that is, Kupffer cells and hepatocytes). d, Successful SARS-CoV-2 
isolation in postmortem livers and respective lungs from two of three autopsy cases, showing increases in SARS-CoV-2 RNA levels in the supernatants 
of infected cells (43–45 refers to the number sequence in a). e, Schematic of autopsy tissue selection for molecular profiling. f, Generally applicable gene 
set enrichment (GAGE) analysis of gene sets significantly regulated between liver PCR-positive, PCR-negative and Ctrl conditions. g, Single-sample jitter 
plot for gene sets significant (Padj < 0.05) in at least 1 sample and significant difference between the PCR-positive and PCR-negative groups (Wilcoxon 
signed-rank test, P < 0.05). Box plot (box extending from the 25th to the 75th percentile with the median shown as a line in the middle and the whiskers 
indicating the smallest and largest values) showing the most relevant pathways from Consensus PathDB. Pathways were ranked according to the 
average difference between PCR-positive and PCR-negative. Each dot represents the enrichment score from the single-sample analysis. Two-sided 
Wilcoxon signed-rank tests were performed for statistical significance, including IFN-α response (P = 0.004329004), interferon-γ (IFN-γ) response 
(P = 0.017316017) and Notch signalling (P = 0.017316017). h, Single-sample enrichment barcode illustrating the distribution of the hallmark gene set 
‘IFN-α response’ in every single sample. Genes were ranked according to their normalized TPM value. The colour coding represents the enrichment score 
of the gene set during a random walk over the ranked list of genes. Samples were divided into PCR-positive and PCR-negative and then ordered from left 
to right based on their enrichment score, from high to low. i, Row-wise scaled intensity (z-score) heatmap showing genes from the IFN-α response gene 
set. Genes were ranked according to the log2 fold change, which is indicated on the right. *Padj < 0.05. Within each group, samples were clustered based on 
Euclidean distance. Scale bars, 10 μm.
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IFN and JAK-STAT-related responses (Extended Data Fig. 8a), as 
well as downregulation of glucose and carbohydrate metabolism in 
association with liver tropism (Extended Data Fig. 8b). Interestingly, 
modulation of JAK-STAT signalling has been proposed to target 
SARS-CoV-2 viral entry and replication22 in a study that dissected 

SARS-CoV-2 infectivity using organotypic three-dimensional cul-
tures of primary human liver cells.

The clinical and molecular data from our study suggest that 
SARS-CoV-2-mediated liver injury is comparable to previously 
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Fig. 4 | SARS-CoV-2 shares molecular signatures with viruses associated with liver injury. a, Publicly available datasets from HBV, HCV and HIV 
infections were compared with our COVID-19 up- and downregulated gene signatures via GSEA. b, HBV infection showed overlapping gene signatures  
with our data (upregulated genes/top 100 upregulated genes). c, Liver biopsies from HCV-positive patients showed overlapping gene signatures with  
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upregulated for COVID-19 liver positive versus negative samples and HCV ISG high versus Ctrl showing overlap in 13 out of 20 pathways. i, GO Biological 
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publicly available datasets containing bulk RNA sequencing 
(RNA-seq) data from liver tissue samples from patients with hepa-
titis C virus (HCV)23, human immunodeficiency virus (HIV)24 and 
hepatitis B virus (HBV)25 via gene set enrichment analysis (GSEA) 
(Fig. 4a). While our literature search was carefully performed, it 
was not possible to find studies that could be perfectly matched our 
study demographics (for example, our population was notably older 
than the other three studies as per the demographic trends of fatal 
COVID-19; Supplementary Table 4). Interestingly, and despite of 
multiple methodological limitations, all three infections affecting 
the liver, including HBV (Fig. 4b), HCV (Fig. 4c) and HIV (Fig. 4d), 
showed overlapping gene expression patterns with our proposed 
SARS-CoV-2 signature. Specific examples include upregulation 
of IFN signalling gene sets (Fig. 4e), especially types I, II and III 
IFN responses (Fig. 4f), and downregulation of viral gene expres-
sion and related cellular functions (that is, translational initiation 
and peptide metabolic processes) (Fig. 4g). Pathway analysis also 
revealed remarkable overlap between SARS-CoV-2 and HCV (13 of 
20 pathways for upregulated; Fig. 4h; 8 of 20 pathways for downreg-
ulated; Fig. 4i). In addition, we identified similar transcription fac-
tor use in livers from patients with severe COVID-19 and patients 
with liver steatosis and HIV, inactive carriers of HBV and chronic 
HCV (Fig. 4j). Taken together, this comparative analysis highlights 
a shared molecular signature between SARS-CoV-2 and multiple 
viruses with well-characterized patterns of liver injury.

Since the topic of SARS-CoV-2 hepatic tropism has been highly 
debated3, we aimed to tackle this question from multiple perspec-
tives, including clinical (two large independent patient cohorts that 
showcase COVID-19-associated liver injury), histopathological 
(identification of SARS-CoV-2 at the RNA and protein levels with 
high spatial resolution), virological (RT–qPCR in human autopsy 
samples and isolation of SARS-CoV-2 from human autopsy liver 
specimens), molecular (transcriptomic, proteomic and transcription 
factor activity use profiling, indicating the presence of SARS-CoV-2 
in association with significant tissue responses) and bioinformatic 
(detection of subgenomic RNA and data validation with external 
public datasets of virus-mediated hepatic injury). Despite all these 
layers of evidence supporting SARS-CoV-2 hepatic tropism, the 
exact mechanism of infection is unclear. Our findings show that 
the human liver is susceptible to SARS-CoV-2 infection since cell 
entry receptors and facilitators are clearly expressed in hepatic cells. 
However, we observed a mismatch between the expression of the 
ACE2 protein, mostly observed in Kupffer cells, and the location 
of the SARS-CoV-2 spike protein, which was observed in Kupffer 
and parenchymal cells (for example, hepatocytes). In this context, 
it is worth considering a recent study that proposed high-density 
lipoprotein scavenger receptor class B member 1 (SRB1) as a cell 
entry facilitator for SARS-CoV-2. SRB1 acts as a critical receptor 
that affects HCV entry26, an infection that shares some molecu-
lar features with SARS-CoV-2 liver tropism. While Wei et al.19 
reported strong protein expression of SRB1 in the human liver, we 
confirmed messenger RNA expression of SCARB1 (SRB1 gene) in 
multiple human organs, showing the highest expression levels in 
the liver followed by the brain, small intestine, lung, kidney and 
muscle (Extended Data Fig. 9). In addition, we confirmed SRB1 
protein expression on human hepatocytes and in association with 
the expression of SARS-CoV-2 spike protein (Extended Data Fig. 
10). It is plausible that even if the expression of ACE2 in hepatocytes 
is relatively low at both RNA and protein levels, high levels of SRB1 
may enhance the potential for SARS-CoV-2 entry.

It is worth remembering that our observations represent a late 
‘snapshot’ of a severe disease state and consequent multi-organ 
dysfunction (that is, severe COVID-19 leading to death), which 
provides a limited view affected by disease course, coexisting con-
ditions, therapeutic interventions and postmortem processes. All 
these factors may influence our view of receptor expression patterns 

(for example, potential up/downregulation during infection), defi-
nition of cell-specific tropism (that is, severe injury to infected cells 
and local protein clearance) and even molecular signatures, which 
likely reflect profound cellular changes in neighbouring cells that 
have survived an active phase of SARS-CoV-2 tropism and could 
explain the common features between patients with severe COVID-
19 and hepatotropic viruses (that is, HCV). Furthermore, our find-
ings should be carefully considered in the context of lack of access 
to full clinical data in our large clinical cohorts, limiting our ability 
to rule out other causes of liver injury (for example, drug-mediated 
hepatoxicity), and relatively small sample sizes in our multi-omics 
experiments, which were mainly focused on patients who died due 
to severe COVID-19, raising questions about generalizability to mild 
and moderate cases. Despite this, a recent clinical study followed 
443 non-hospitalized individuals for approximately 9.6 months after 
their first positive SARS-CoV-2 test, revealing signs of multi-organ 
injury27, which allows us to question the potential for similar molec-
ular changes in mild and moderate forms of COVID-19.

In summary, our findings provide multimodal evidence of 
SARS-CoV-2 human liver tropism and a molecular signature, fea-
turing a strong upregulation of IFN responses, JAK-STAT signalling 
and liver-specific metabolic modulation. This unique human data-
set can be used as a rational framework for future studies aiming 
to characterize the potential consequences of SARS-CoV-2 extra-
pulmonary manifestations and identify personalized therapeutic 
strategies.

Methods
Tissue and data collection. Autopsies were performed at the Institute of Legal 
Medicine of the University Medical Center Hamburg-Eppendorf. From every 
liver specimen collected by the Institute of Legal Medicine, multiple randomly 
chosen small samples were available for different analyses. The ethics committee 
of the Hamburg Chamber of Physicians was informed about the study (nos. 
2020-10353-BO-ff and PV7311). Ctrls included cases of sudden, non-infectious 
deaths. The postmortem interval was on average 6 d. Informed consent was 
obtained from a next of kin or legal representative for autopsy and tissue sampling. 
No compensation was paid.

The study protocol for clinical data collection (patient cohorts) was approved 
by the institutional review board (IRB) of the University of Michigan (no. 
HUM00178971) and Hamburg (no. WF-052/20). The IRB approved a waiver of 
informed consent for this observational study.

Molecular detection of SARS-CoV-2. Tissue samples were systematically sampled 
during the autopsy procedure in 45 individuals. Automated nucleic acid extraction 
was performed according to the manufacturer’s recommendations with whole 
process control (control kit; Roche), with a final elution volume of 100 μl. For 
virus quantification, a previously published assay was adopted with modifications 
using chimeric 2′-O-methyl RNA bases at the penultimate base of both primers 
(mG and mC) to reduce primer dimer formation28. The forward primer 
5′-ACAGGTACGTTAATAGTTAATAGCmGT-3′ (400 nM end concentration), 
5′-TATTGCAGCAGTACGCACAmCA-3′ (400 nM end concentration) and probe 
5′-Fam-ACACTAGCC/ZEN/ATCCTTACTGCGCTTCG-Iowa Black FQ-3′ 
(100 nM end concentration) were used. Primer and probes were obtained from 
Integrated DNA Technologies. One-step RT–PCR (25 μl volume) was run on the 
LightCycler 480 system (Roche) using the one-step RNA control kit as master mix 
(Roche) and 5 μl of eluate. The Ct value for the target SARS-CoV-2 RNA (FAM) 
was determined using the second derivative maximum method. To quantify the 
standard in vitro-transcribed RNA, the E gene of SARS-CoV-2 was used. The 
standard was obtained via the European Virus Archive4. The linear range of the 
assay was between 1 × 103 and 1 × 109 copies ml−1. β-Globin qPCR was performed 
with the commercial TaqMan primer set (catalogue no. 401846; Thermo Fisher 
Scientific) and Roche DNA control kit. The PCR was run on the LightCycler 
480 system. The amount of DNA was normalized using a human DNA standard 
(KR0454). SARS-CoV-2 RNA levels in tissues were normalized to β-globin DNA.

Histology, immunolabelling and quantification. Liver tissue was fixed in 
formaldehyde. Then, 2-μm slides were cut and haematoxylin and eosin, periodic 
acid–Schiff and Masson–Goldner stainings were performed. Expert pathology 
review was conducted by two independent and experienced pathologists.

ACE2 and SARS-CoV-2 spike were detected in formalin-fixed 
paraffin-embedded sections using a protocol for indirect immunofluorescence 
and confocal microscopy29,30. We used primary antibodies against ACE2 (dilution: 
1:200, catalogue no. AF933; R&D Systems) and SARS-CoV/SARS-CoV-2  
(COVID-19) (dilution 1:200, catalogue no. GTX632604; GeneTex), which were 
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validated in previous studies2,13. We also used a primary antibody against SRB1 
(dilution 1:200, catalogue no. ab217318; Abcam).

For quantification, and considering the size and degree of autolysis, we 
performed targeted sampling of five fields of view based on the presence of at least 
one SARS-CoV-2 spike+ cell with a random location within the field; for Ctrls, 
five random fields were chosen from non-autolytic sites. Then, we quantified the 
number of SARS-CoV-2 spike+ cells and the total number of complete nuclei per 
field, which allowed us to calculate a percentage of positive cells per field. Statistics 
were performed with Prism v.9.2.0 (GraphPad Software).

RNA in situ hybridization (RNAscope). In situ hybridization was carried out to 
detect virus RNA of SARS-CoV-2 on paraffin sections utilizing the RNAscope 2.5 
HD detection kit (catalogue no. 322310; Advanced Cell Diagnostics) according 
to the manufacturer’s instructions31. Briefly, tissue sections were deparaffinized 
in xylene followed by target retrieval at 95 °C for 10 min. Subsequently, internal 
peroxidase activity was quenched by hydrogen peroxide incubation for 10 min 
followed by permeabilization using protease plus treatment at 40 °C for 30 min. 
The SARS-CoV-2-specific RNAscope probe V-nCoV2019-S (catalogue no. 848561) 
was hybridized at 40 °C for 2 h. RNAscope probes specific for either the human 
ubiquitin C mRNA (catalogue no. 310041) or the bacterial dihydrodipicolinate 
reductase mRNA (catalogue no. 310043) were used as positive or negative Ctrl, 
respectively. The RNAscope signal was developed with 3,3′-diaminobenzidine and 
nuclei were counterstained with haematoxylin.

Cell culture and virus isolation. Liver tissues were homogenized32 and 250 μl of 
the homogenized tissue solution were used to infect Vero cells (CRL-1586; ATCC). 
Growth was confirmed by RT–qPCR of cell culture supernatants28.

RNA-seq. Sample selection was based on collection date and RNA quality. RNA 
was extracted with the QIAGEN RNeasy Micro Kit according to the manufacturer’s 
instructions followed by Agilent Bioanalyzer sample quality control, library 
preparation with Lexogen CORALL Total RNA and ribosomal RNA depletion. 
Single-end RNA-seq was done using 75-base pair NextSeq v.2.5 with >30 million 
reads. Raw reads were trimmed with Trim Galore! v.0.4.3 (http://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/) and aligned with RNA STAR: Galaxy Version 
2.7.2b33. Mapped reads were counted with HTSeq: Galaxy Version 0.9.1.34.

GTEX data. Raw counts from several healthy tissues were downloaded directly 
from the GTEX portal (www.gtexportal.org) on 4 March 202035.

Differential analysis. Genes with a non-null count in at least two samples were 
selected. Raw counts were processed with the limma R package v.3.42.2 (ref. 36) and 
differentially regulated genes between PCR-positive and PCR-negative groups were 
identified after library size normalization. Both groups were compared to GTEX 
liver. A Benjamini–Hochberg-adjusted P < 0.05 was considered significant.

Group-wise GSEA. GSEA was performed using the GAGE R package v.2.36.0  
(ref. 37) with the Molecular Signatures Database (MSigDB) gene set v.7.1, comparing 
PCR-positive to PCR-negative groups. Both groups were also compared with GTEX 
liver. A Benjamini–Hochberg-adjusted P < 0.05 was considered significant.

Single-sample GSEA. First, each sample was normalized to healthy liver tissue 
to depreciate the background noise and emphasize the true signal. Therefore, 
the average GTEX liver transcripts per kilobase million (TPM) intensity was 
subtracted for every single gene. In each sample, genes were ranked according 
to their normalized TPM value and used as input for single-sample enrichment 
analysis using the fgsea R package v.1.12.0 (ref. 38) with MSigDB gene set v.7.1  
(ref. 39) and ConsensusPathDB v.34 (ref. 40). In all gene sets, the enrichment  
score was calculated based on a random walk over the ranked list of genes.  
The significance of the enrichment scores was assessed with 1,000 permutations.  
A Benjamini–Hochberg-adjusted P < 0.05 was considered significant.

Kyoto Encyclopedia of Genes and Genomes pathways were created with 
PathView v.1.34.0 (ref. 41) with log2 positive versus negative fold change.

Detection of sgRNA. The relative fraction of single-guide RNAs (sgRNAs) 
was determined by identifying the leader sgRNA fusion containing sequencing 
reads normalized to read counts containing the genomic RNA leader sequence42. 
Pharyngeal swab data served as a positive control for the detection of sgRNA due 
to the high amount of replicating virus in this specimen. Swab sample data were 
reproduced from our own data42.

Proteomic analysis. For sample preparation, paraffin-embedded liver samples 
were deparaffinized, resuspended in 100 μl lysis buffer (50% trifluoroethanol 
(TFE), 300 mM Tris-HCl, pH 8.0) and processed43. Briefly, samples were sonicated 
at 4 °C for 15 min (‘high’ settings on a Bioruptor; Diagenode), boiled at 95 °C for 
90 min and sonicated again as described above. Cleared lysates were reduced/
alkylated (5 mM dithiothreitol, 25 mM chloroacetamide) for 1 h in the dark and 
concentrated on a vacuum centrifuge (45 min, 60 °C). A total of 50 µg proteins were 
digested overnight in digestion buffer (10% TFE containing trypsin/LysC (1:50 

protein/protein ratio). Digestion was stopped with 1% trifluoroacetic acid (TFA) 
and peptides were purified on stage tips with two SDB-RPS Empore filter discs 
(3M) and resuspended in 2% acetonitrile (ACN)/0.1% TFA to a final concentration 
of 250 ng µl−1.

Ultra-high-performance liquid chromatography and trapped ion mobility 
spectrometry quadrupole time of flight settings. Samples were analysed on 
a nanoElute (plug-in v.1.1.0.27; Bruker) coupled to a trapped ion mobility 
spectrometry quadrupole time of flight (timsTOF Pro) (Bruker) equipped with 
a CaptiveSpray source. Peptides (500 ng) were injected into a Trap cartridge 
(5 mm × 300 μm, 5 μm C18; Thermo Fisher Scientific) and next separated on a 
25 cm × 75 μm analytical column, 1.6 μm C18 beads with a packed emitter tip 
(IonOpticks). The column temperature was maintained at 50 °C using an integrated 
column oven (Sonation GmbH). The column was equilibrated using 4 column 
volumes before loading samples in 100% buffer A (99.9% Milli-Q water, 0.1% 
formic acid (FA)). Samples were separated at 400 nl min−1 using a linear gradient 
from 2 to 17% buffer B (99.9% ACN, 0.1% FA) over 60 min before ramping up 
to 25% (30 min), 37% (10 min) and 95% of buffer B (10 min) and sustained for 
10 min (total separation method time, 120 min). The timsTOF Pro was operated in 
parallel accumulation-serial fragmentation (PASEF) mode using Compass Hystar 
v.5.0.36.0. Settings were as follows: mass range 100–1700 m/z, 1/K0 start 0.6 V⋅s/
cm2End 1.6 V⋅s/cm2; ramp time 110.1 ms; lock duty cycle to 100%; capillary voltage 
1,600 V; dry gas 3 l min−1; dry temperature 180 °C. The PASEF settings were: 10 
tandem mass spectrometry (MS) scans (total cycle time, 1.27 s); charge range 0–5; 
active exclusion for 0.4 min; scheduling target intensity 10,000; intensity threshold 
2,500; collision-induced dissociation energy 42 eV.

Raw data processing and analysis. Raw MS data were processed with the MaxQuant 
software v.1.6.17 using the built-in Andromeda search engine to search against 
the human proteome (UniprotKB, release 2019_10) containing forward and 
reverse sequences concatenated with the SARS-CoV-2 polyprotein with the 
individual viral open reading frames manually annotated, and the label-free 
quantitation algorithm44. Additionally, the intensity-based absolute quantification 
(iBAQ) algorithm and match between runs option were used. In MaxQuant, 
carbamidomethylation was set as fixed and methionine oxidation and N-acetylation 
as variable modifications. Search peptide tolerance was set at 70 p.p.m. and the 
main search was set at 30 p.p.m. (other settings left as default). Experiment type was 
set as TIMS-DDA with no modification to the default settings. Search results were 
filtered with a false discovery rate of 0.01 for peptide and protein identification. 
The Perseus software v.1.6.10.4 was used to process the data further. Protein 
tables were filtered to eliminate the identifications from the reverse database and 
common contaminants. When analysing the MS data, only proteins identified on 
the basis of at least one peptide and a minimum of three quantitation events in at 
least one experimental group were considered. The iBAQ protein intensity values 
were normalized against the median intensity of each sample (using only peptides 
with recorded intensity values across all samples and biological replicates) and 
log-transformed; missing values were filled by imputation with random numbers 
drawn from a normal distribution calculated for each sample45. Differential analysis 
and GSEA were performed as described above on mRNA.

Data integration. The mRNA and protein datasets were integrated and the 
correlation analysis was performed based on two different approaches: gene-wise 
and sample-wise.

Gene-wise. Spearman’s correlation between mRNA and protein across all samples 
was calculated for every single gene separately. For each gene, lower- and 
upper-tail P values were calculated from the empirical cumulative distribution 
function (ECDF). Significantly highly correlated genes (upper-tail P < 0.05) were 
selected to perform GSEA using Fisher’s exact test on the MSigDB. A Benjamini–
Hochberg-adjusted P < 0.05 was considered significant.

Sample-wise. For every single gene, we calculated the average fold change between 
positive and negative. The gene set-specific correlation was assessed by first 
selecting the genes that belonged to a given gene set, then by calculating the mRNA 
fold change versus the protein fold change Spearman’s correlation of these genes. 
To estimate the significance of the correlation for one gene set, correlation values 
were also calculated from 10,000 random sets of genes, using the same number 
of genes as the given gene set. Finally, the ECDF was used to return lower- and 
upper-tail P values.

Transcription factor analysis. Functional analysis was performed with the 
DoRothEA package (1.4.1)46 for transcription factor activity and the PROGENy 
package (1.14.0)47 for pathway activity. To test the difference in activities, a factorial 
experiment was designed for each modality using the limma package. In both 
functional types, the first factor was the infection status of the patient (COVID-
19+/COVID-19−) and the second was if there were traces of the virus in their 
liver (PCR+/PCR−). Thus, in total there were three factor combinations: a healthy 
patient (COVID-19−/PCR−: Ctrl); an early-stage infection (COVID-19+/PCR−: 
negative); and a late-stage infection (COVID-19+/PCR+: positive). A linear model 
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was fitted for each transcription factor and pathway activity to obtain coefficients 
for each factorial combination. Then, these coefficients were used to compute 
three contrasts: effect of COVID-19+/PCR− based on COVID-19−/PCR− samples 
(negative versus Ctrl); effects of COVID-19+/PCR− based on COVID-19−/PCR− 
samples (positive versus Ctrl); and the difference between these two comparisons 
(positive versus negative). The first and second contrasts were aimed at detecting 
systematic changes in activity when an early or late-stage COVID-19 infection 
was taking place. However, the third contrast was aimed at detecting the specific 
difference in activity between late-stage and early-stage infection. The sign of the 
obtained coefficients can be interpreted as an increase or decrease of the mean 
activity for a given comparison, each with an associated probability.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The RNA-seq raw and processed data have been deposited at the University 
Hamburg Research Data Repository (https://www.fdr.uni-hamburg.de/) with 
the following identifiers: https://doi.org/10.25592/uhhfdm.8358 and https://doi.
org/10.25592/uhhfdm.8372. The mass spectrometry-based proteomics data have 
been deposited at the ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the PRIDE partner repository with the following dataset 
identifier: PXD022789. Source data are provided with this paper.
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Extended Data Fig. 1 | Histopathology in autopsy samples. a, b, Histological sections from COVID-19 autopsy tissue without signs of overt cytopathic 
changes. Examples of other pathological alterations. c, Overview of a case with focal fatty changes and centrilobular necrosis, likely as a consequence of 
shock. d, Zoom in of a case with moderate fatty liver and marked centrilobular necrosis, also likely due to shock. These images represent the main findings 
after careful examination of 18 cases. Scale bar represents 350um.
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Extended Data Fig. 2 | ACE2 expression. ACE expression (orange) and DNA (grey) in the human liver. Based on anatomical location, the staining pattern 
suggests expression by Kupffer cells. All images were taken at the same magnification. Scale bar represents 10um. This experiment was repeated 3 times 
in 3 samples with identical results.
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Extended Data Fig. 3 | SARS-CoV-2 spike protein in autopsy samples. a, Expression of SARS-CoV-2 spike protein (orange) and DNA (grey) in autopsy 
tissue from 3 patients with confirmed RT-qPCR+ for SARS-CoV-2 in the respiratory tract (during clinical course) and in the liver (at autopsy). Based 
on anatomical locations, these findings suggest expression of SARS-CoV-2 spike protein in Kupffer cells, immune cells, and hepatocytes. Scale bar 
represents 10um.
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Extended Data Fig. 4 | Expression of known SARS-CoV-2 entry receptors and facilitators in liver autopsy samples. a, Gene expression of ACE2 in 
different GTEX tissues shows log2 transcript per million (TPM) expression levels in the liver after intestine, kidney and lung. ACE2 expression levels in 
the liver samples of COVID-19 patients and controls are comparable with liver and lung expression in GTEX data set. b, Gene expression of CTSL and c, 
TMPRSS2 and d, RAB7A in different GTEX tissues shows log2 TPM expression levels in the liver after intestine, kidney and lung. Box plots showing boxes 
from the 25th to the 75th percentile with the median shown as a line in the middle and whiskers indicating 1.5 times the interquartile range.

NATuRE METABOLiSM | www.nature.com/natmetab

http://www.nature.com/natmetab


Letters NATURE METAbOlISMLetters NATURE METAbOlISM

Extended Data Fig. 5 | Detection of SARS-CoV-2 subgenomic RNA. a, Relative fraction of sgRNA in SARS-CoV-2-positive liver samples is comparable to 
pharyngeal swab sample data (medRxiv 2020.06.11.20127332; doi: 10.1101/2020.06.11.20127332). b, Total number of SARS-CoV-2-positive reads divided 
by total number of human reads (*1000) shows a higher number of reads aligning to the SARS-CoV-2 genome in SARS-CoV-2 liver POS samples than 
in SARS-CoV-2 liver NEG samples and controls. *, p-value = 0.0122 (Mann-Whitney test, two-tailed). Box plot: box extending from the 25th to the 75th 
percentile with the median shown as a line in the middle and whiskers indicating smallest and largest values.
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Extended Data Fig. 6 | Transcriptional changes associated with SARS-CoV-2 hepatic tropism. a, Principal Component Analysis performed on the 
normalized intensity showing PCR positive (blue), PCR negative (red) Covid-19 liver samples and Control liver (green) samples. PCR- samples are well 
embedded with healthy liver tissue. b, Volcano plot shows the differentially regulated genes (red dots, adjusted p-value < 0.05) in SARS-CoV-2 PCR 
positive vs. negative liver samples. Top 25 regulated genes, based on p-value, are labeled. c, Row-wise scaled intensity (mat, z-score) heatmap showing 
genes from Notch signaling pathway and d, Interferon gamma response gene-set. Genes are ranked according to the log2 fold change, indicated on the 
right side. Adjusted p-value < 0.05 is indicated with ‘*’. Within each group, samples are clustered based on Euclidean distance.
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Extended Data Fig. 7 | Gene ontology analysis. Barplots showing the top 10 UP- and DOWN-regulated gene-sets from Gene Ontology Biological 
processes between PCR positive and negative samples. Color code represent the number of genes within each gene set.
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Extended Data Fig. 8 | Canonical pathway analysis. a, Transcription factor analysis reveals differential transcription factor usage in CTL, COVID-19 liver 
NEG and liver POS samples. Summary of mean pathway activity in each infection status. b, Canonical pathways up (+) or down (-) regulated.
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Extended Data Fig. 9 | Gene expression of SCARB1. Gene expression of SCARB1 in different GTEX tissues shows log2 transcript per million (TPM). 
Our own datasets are also used to provide context, including Liver (Controls) and Liver (COVID-19). Box plots showing boxes from the 25th to the 75th 
percentile with the median shown as a line in the middle and whiskers indicating 1.5 times the interquartile range.
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Extended Data Fig. 10 | Protein expression of SR-B1 and SARs-CoV-2 spike in autopsy tissue. Protein expression of SR-B1 (cyan) in one post-mortem liver 
sample – and co-expression with SARS-CoV-2 spike protein (orange) within the same cell. In A, we show an overview of a large liver region, showcasing 
widespread expression of SR-B1 among hepatocytes with a zoom-in to a cell expressing also SARS-CoV-2 spike. In B, we show two additional regions with 
hepatocytes showing co-expression of SR-B1 and SARS-CoV-2 spike in the same cell. All images were performed in one specimen as proof-of-principle. 
Scale bars represent 20um.
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