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Using DFT/(B3LYP/wB97XD/B2PLYPD) and OVGF electronic structure methods with
flexible atomic orbital basis sets, we examined the series of polynuclear superhalogen
anions matching the (BF3(BN)nF4n+1)

– formula (for n = 1-10,13,18-20) containing
alternately aligned boron and nitrogen central atoms decorated with fluorine ligands. It
was found that the equilibrium structures of these anions correspond to fully extended
chains (with each B and N central atom surrounded by four substituents arranged in a
tetrahedral manner) and thus mimic the globally stable fully extended (all-trans)
conformations of higher n-alkanes. The vertical electron detachment energies of the
(BF3(BN)nF4n+1)

– anions were found to exceed 8 eV in all cases and gradually increase
with the increasing number of n. The approximate limiting value of vertical electron binding
energy that could be achieved for such polynuclear superhalogen anions was estimated as
equal to ca. 10.7 eV.
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INTRODUCTION

Superhalogens are commonly defined as the systems exhibiting the electron affinity (EA) larger than
that of a chlorine atom (3.62 eV) (Hotop and Lineberger, 1985). The existence of such molecules and
their corresponding anions (so-called superhalogen anions) was proposed in 1981 by Gutsev and
Boldyrev who characterized (on the basis of theoretical calculations) several negatively charged
compounds matching the (MFk+1)

– formula and a few (MO(k+1)/2)
– anions (where M is main-group

central atom of maximal valence k) and confirmed their large excess electron binding energies
(Gutsev and Boldyrev, 1981a). In the course of later studies, Gutsev and Boldyrev modified their
formula describing superhalogens to cover various halogen atoms X that may serve as ligands in such
systems (i.e., MXk+1 for the neutral molecules and (MXk+1)

– for the corresponding anions) (Gutsev
and Boldyrev, 1981a; 1981b, 1984, 1985). On the other hand, many experimental attempts to
measure the electronic stability of such anions were made, however, all determinations performed
before 1999 were related to condensed phases only whereas the gas phase electron detachment
energies had not been measured (Heni and Illenberger, 1985; Metz et al., 1988; Weaver et al., 1988;
Compton, 1995; Huey et al., 1996; Wu et al., 1996; Taylor et al., 1998). The existence of superhalogen
anions in gas phase was experimentally confirmed in 1999 by Wang and co-workers who measured
gas-phase electron detachment energies of (MX2)

– (M = Li, Na; X = Cl, Br, I) systems (Wang et al.,
1999). The measurements performed by the Wang group were supported by the advanced ab initio
calculations executed by Boldyrev and Simons and it turned out that the vertical electron detachment
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energies (VDE) elucidated from the photoelectron spectra
(i.e., 5.92 ± 0.04 (LiCl2)

–, 5.42 ± 0.03 (LiBr2)
–, 4.88 ± 0.03

(LiI2)
–, 5.86 ± 0.06 (NaCl2)

–, 5.36 ± 0.06 (NaBr2)
–, and 4.84 ±

0.06 eV (NaI2)
–) were in excellent agreement with the values

predicted by theoretical calculations (Wang et al., 1999). This
joined experimental and theoretical study of selected
superhalogen anions was in fact a milestone achievement
which both confirmed the existence and stability of such
species in gas phase and demonstrated the usefulness of
certain ab initio methods to predict their structures and excess
electron binding energies. Since then, many research groups
turned their attention to superhalogens which resulted in
proposing numerous new compounds of that type in the
following years. These studies included various alternative
superhalogen anions utilizing non-metal or metalloid central
atoms (e.g., (SiF5)

– (VDE = 9.32 eV), (GeF5)
– (VDE =

9.74 eV), (PF6)
– (VDE = 9.43 eV)) (Sobczyk et al., 2003;

Marchaj et al., 2012), as well as numerous non-halogen
ligands (such as halogenoids (Smuczyńska and Skurski, 2009;
Li and Yin, 2021), electrophilic groups(Anusiewicz, 2009a), acidic
functional groups (Anusiewicz, 2009b), and other halogen-free
fragments (Sun et al., 2016c). In addition, it was found that even
superhalogens themselves may act as effective ligands in
superhalogen systems (Wang et al., 2009; Götz et al., 2010;
Koirala et al., 2010, 2013; Willis et al., 2010; Feng et al., 2011;
Paduani and Jena, 2012, 2013; Hou et al., 2013; Li et al., 2013; Tian
et al., 2014; Yang et al., 2014; Sun W.-M. et al., 2016; Paduani,
2016; Liu et al., 2017). These and other superhalogen anions have
recently been described in a comprehensive review article
(Skurski, 2021).

Compounds exhibiting large excess electron binding energy or
small ionization potential are of special interest because a wide
range of new materials (such as organic superconductors, organic
metals, ionic liquids, etc.) could be designed and synthesized on
their base (Awasthi et al., 2021; Pandey, 2021). Since
superhalogens represent the species having larger EAs than
other commonly known systems, the search for strong
electron acceptors is focused primarily on these compounds.
Taking into account that the electronic stability of a
monoanion strongly depends on the ability of excess charge
delocalization over the molecular framework, one may
anticipate that superhalogens containing large number of
electronegative ligands should exhibit large excess electron
binding energies. However, the number of ligands bound to a
single central atom cannot be increased beyond certain values
(mostly due to destabilizing valence repulsion effects and steric
hindrance). Hence, polynuclear superhalogen anions matching
the (MnXn×k+1)

– formula in which an excess electron density is
expected to delocalize over n×k+1 electronegative ligands have
been extensively studied in recent years (Alexandrova et al., 2004;
Anusiewicz and Skurski, 2007; Freza and Skurski, 2010; Sikorska
and Skurski, 2012; Wileńska et al., 2014; Yin et al., 2014; Li et al.,
2015a, 2015b, Li et al., 2015 M.-M.; Czapla and Skurski, 2015,
2018; Díaz-Tinoco and Ortiz, 2016a; Díaz-Tinoco and Ortiz,
2016b; Sun et al., 2016b; Ding et al., 2017; Zhao et al., 2017;
Anusiewicz et al., 2018; Cyraniak et al., 2019; Shi et al., 2019).
Even though the polynuclear superhalogens investigated to date

contain various central atoms (e.g., Li, Na, Mg, Ca, B, Al, Ge, Sn,
P, Ti, Sb, As, V, In, Ta, Fe, Au, Pt), the systems utilizing nitrogen
central atoms have not been proposed thus far. The lack of
polynuclear superhalogens containing N central atoms seems
intriguing and inspired us to make an attempt to propose and
characterize such compounds. In addition, having in mind the
well-known stability of saturated hydrocarbon structures, we
decided to design our systems in a way that reflects the
structures of chain-like CnH2n+2 molecules. In order to achieve
that goal, we adopted the electronic transmutation concept which
was introduced a decade ago.

Electronic transmutation is a concept introduced by Olson
and Boldyrev (Olson and Boldyrev, 2012) who utilized the
isoelectronic principle (Gillis, 1958) by proving that an
element M with atomic number Z (i.e., ZM) is expected to
undergo a transmutation into Z+1M via the acquisition of an
extra electron. It was demonstrated (Alexandrova et al., 2003;
Jemmis and Jayasree, 2003; Osorio et al., 2012; Popov and
Boldyrev, 2013; Gish et al., 2015; Popov et al., 2015; Zhang
et al., 2018a, 2018b; Lundell et al., 2020) that the resulting
species (having Z+1 electrons) possesses the chemical bonding
properties of the neighboring element Z+1M as if it was put in the
place of the transmuted element ZM. Certainly, the same line of
reasoning can be used for turning the element ZM into Z–1M by
withdrawing one electron from it. Hence, we decided to design
the structures containing the alternately aligned boron and
nitrogen atoms (forming the (BN)n ‘core’ of various length)
and decorated with 4n+2 substituents (as if the B and N
atoms comprising the core were carbon atoms). Indeed,
assuming that each boron atom acquires an electron from its
neighboring nitrogen atom, one may view the (BN)n core as
composed of alternately aligned B−and N+ ions, each of which is
expected to mimic the bonding properties of a carbon atom (due
to the presence of four valence electrons). As a result, the (BN)n
core might be expected to exhibit the bonding properties of the
C2n chain which naturally suggests the presence of 4n+2
substituents (to mimic the saturated hydrocarbon structure).
Recalling that fluorine atoms are likely the most effective
ligands in superhalogen systems, we decided to decorate the
(BN)n core with 4n+1 fluorine substituents and one BF3
substituent. The reason for using one BF3 substituent (instead
of F) was that we wanted the whole system to represent a closed-
shell superhalogen monoanion (BF3(BN)nF4n+1)

– rather than a
closed shell neutral molecule (BN)nF4n+2.

Hence, in this contribution, we first describe the structures of
the (BF3(BN)nF4n+1)

– (n = 1-10,13,18-20) systems followed by
our theoretical findings concerning their thermodynamic stability
and then we move on to discuss the vertical electron detachment
energies these polynuclear superhalogen anions are
characterized with.

METHODS

The stationary point structures of all systems investigated were
obtained by applying the Density Functional Theory (DFT)
method with the B3LYP (Becke, 1988; Lee et al., 1988)
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functional and the 6-311+G(d) (Krishnan et al., 1980; McLean
and Chandler, 1980) basis set for all atoms. The harmonic
vibrational frequencies characterizing the stationary points
were evaluated (without scaling) at the same level of theory to
assure that all obtained structures correspond to true minima
on the potential energy surface. The vertical electron
detachment energies of the (BF3(BN)nF4n+1)

– (n = 1-8)
anions were calculated by applying the outer valence Green
function OVGF method (B approximation) (Rowe, 1968;
Simons, 1971; Cederbaum, 1975; Ortiz, 1988; Zakrzewski
and Ortiz, 1994; Zakrzewski et al., 1996b) together with the
6-311+G(d) basis sets. Due to the limited computer resources
available, the VDE values for larger systems
(i.e., (BF3(BN)nF4n+1)

– (n = 9,10,13,18-20)) were estimated
at the B3LYP/6-311+G(d) level of theory.

In order to verify the performance of the 6-311+G(d) basis
set in predicting the VDE values of the anions studied we
calculated (for (BF3(BN)F5)

– and (BF3(BN)2F9)
–) the vertical

electron detachment energies with two additional basis sets
(i.e., aug-cc-pVTZ (Dunning, 1989) and Def2TZVP (Weigend
and Ahlrichs, 2005)). As it turned out, the VDEs calculated at
the OVGF/aug-cc-pVTZ level differ from those obtained by
employing the OVGF/6-311+G(d) treatment by less than
0.2 eV (ca. 2%) whereas the VDEs calculated at the OVGF/
Def2TZVP level differ by less than 0.3 eV (ca. 4%) from the
OVGF/6-311+G(d) values. Since the above mentioned
differences were found to be both relatively small and
nearly insignificant (0.02–0.05 eV) for the larger anion
tested (i.e., (BF3(BN)2F9)

–), we conclude that our VDEs
predicted with the 6-311+G(d) basis set can be considered
reliable, especially for the (BF3(BN)nF4n+1)

–, n > 1 anions).
As far as the performance of other DFT functionals in

reproducing the preliminary estimates of the VDE values is
concerned, we found (again, for (BF3(BN)F5)

– and
(BF3(BN)2F9)

–) that 1) employing the wB97XD functional
(Chai and Head-Gordon, 2008) leads to the vertical electron
detachment energies whose values are smaller by 0.08–0.12 eV
than those predicted at the OVGF/6-311+G(d) level and larger by
0.20–0.49 eV than the values obtained with the B3LYP functional;
2) the use of the B2PLYPD functional (Grimme, 2006; Schwabe
and Grimme, 2007) leads to the VDEs whose values are smaller
by 0.22–0.36 eV than those predicted at the OVGF/6-311+G(d)
level and larger by 0.10–0.14 eV than the values calculated with
the B3LYP functional. Therefore, we conclude that our
preliminary estimations of the VDEs characterizing the
(BF3(BN)nF4n+1)

– anions are reliable yet the results obtained
for two smallest systems considered indicate that the wB97XD
functional performs best and thus it should be chosen if the VDE
values were to be calculated only by DFT methods.

Due to the fact that the OVGF approximation remains valid
only for outer valence ionization for which the pole strengths (PS)
are greater than 0.80–0.85 (Zakrzewski et al., 1996a), we verified
that the PS values obtained were sufficiently large to justify the use
of the OVGF method.

The partial atomic charges were fitted to the electrostatic
potential according to the Merz-Singh-Kollman scheme (Besler
et al., 1990).

All calculations were carried out using the GAUSSIAN16
(Rev.B.01) package(Frisch et al., 2016).

RESULTS

In order to study the series of (BF3(BN)nF4n+1)
– anions, we

decided to examine their structures for n = 1-10 and a few
arbitrarily selected larger structures (for n = 13, 18-20). The
reason was to verify whether the structures of larger
(BF3(BN)nF4n+1)

– systems reflect those containing shorter
(BN)n core and to establish the approximate limit for the
vertical electron detachment energy which could be achieved
for these anions (presumably for large values of n).

Equilibrium Structures and Stability of
(BF3(BN)nF4n+1)

– (n = 1-10,13,18-20) Anions
The simplest anion matching the (BF3(BN)nF4n+1)

– formula
corresponds to the (BF3BNF5)

– system (i.e., (BF3(BN)nF4n+1)
–

FIGURE 1 | Equilibrium structures of (BF3(BN)nF4n+1)
– (n = 1–4) anions

(symmetry point group in parenthesis). Selected bond lengths are given in Å.
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for n = 1). We verified that its equilibrium structure is of C2v-
symmetry and can be viewed as two BF3 groups connected to the
central NF2 fragment (i.e., (BF3-NF2-BF3)

–), see Figure 1. The
length of both B-N bonds is equal to 1.700 Å, the length of both
N-F bonds is equal to 1.399 Å, whereas the B-F bond lengths span
the 1.376–1.382 Å range. As depicted in Figure 1, the substituents
around each B and N central atom are arranged in a tetrahedral
manner, as if B and N atoms were carbon atoms. In consequence,
the structure of the (BF3-NF2-BF3)

– system resembles that of
propane (or perfluoropropane) which in turn indicates that one
may consider the electronic transmutation of B and N atoms in
(BF3-NF2-BF3)

– accomplished. We verified that the (BF3-NF2-
BF3)

– is actually the only geometrically stable isomer of the
(BF3BNF5)

– system as all attempts to find the structures
having different arrangement of atoms failed (i.e., the
geometry optimizations of various initial structures resulted in
fragmentation of the system). As far as the thermodynamic
stability of (BF3-NF2-BF3)

– is concerned, we considered several
fragmentation paths leading to various molecular fragments
(such as BF4

−, F2
−, F2, NF3, BF3, NF4

−, etc.) and we verified
that none of those paths is energetically favorable. Since we have
also proven that the (BF3-NF2-BF3)

– anion is electronically stable
(by verifying that its excess electron binding energy is positive, see
the following section for details), we are confident that the
(BF3BNF5)

– system is a thermodynamically stable species.
The structure of (BF3(BN)nF4n+1)

– for n = 2 exhibits C2-
symmetry and contains alternately aligned B and N central
atoms forming the B-N-B-N-B chain decorated with 12
fluorine ligands, see Figure 1. As it was the case for the (BF3-
NF2-BF3)

– anion, we found only one geometrically stable
structure of (BF3-NF2-BF2-NF2-BF3)

– despite the fact that we
considered a large number of alternative structures having
various arrangements of B, N and F atoms, including not only
chain-like structures but also branched systems. Nevertheless, all
these alternative initial structures turned out to be geometrically
unstable. The terminal B-N bonds in (BF3-NF2-BF2-NF2-BF3)

–

were found to be longer (by 0.052 Å) than the B-N bonds in (BF3-
NF2-BF3)

– whereas the remaining B-N bonds in the former
system were predicted to be shorter (by 0.050 Å) than those in
the latter one. The B-F and N-F bond lengths in (BF3-NF2-BF2-
NF2-BF3)

– were found to be slightly shorter than the
corresponding separations in (BF3-NF2-BF3)

– as they span the
1.352–1.371 and 1.390–1.394 Å range, respectively. Tetrahedral
arrangement of the substituents around each B and N atom
causes the (BF3-NF2-BF2-NF2-BF3)

– structure to resemble that of
n-pentane (as if all boron and nitrogen atoms were mimicking the
bonding pattern typical for carbon atoms).

Since the (BF3-NF2-BF2-NF2-BF3)
– system

(i.e., BF3(BN)nF4n+1)
– for n = 2) is larger than (BF3-NF2-BF3)

–

anion (i.e., BF3(BN)nF4n+1)
– for n = 1) (and thus it is likely more

similar to larger (BF3(BN)nF4n+1)
– (n > 2) systems than the latter)

yet small enough to enable a comprehensive analysis of its
possible fragmentation channels, we decided to choose this
particular species to verify whether the more complex
(BF3(BN)nF4n+1)

– anions might be vulnerable to fragmentation
processes. Hence, we considered the possible loss of various
molecular fragments from (BF3(BN)2F9)

– by calculating the

energies of various fragmentation products and then
comparing them to the energy of (BF3(BN)2F9)

–. We found
one (and only) case in which the fragments are lower in
energy than the (BF3-NF2-BF2-NF2-BF3)

– anion, namely, we
verified that the energy sum of BF3 and a branched (BF3-
NF(BF3)-NF2)

– system is smaller by about 24 kcal/mol than
the energy of (BF3-NF2-BF2-NF2-BF3)

–. From the formal point
of view, this finding indicates thermodynamic instability of
(BF3(BN)2F9)

–, however, one should also consider the
fragmentation path which could potentially be pursued to
generate such a set of species. Obviously, the process of
transformation of the (BF3-NF2-BF2-NF2-BF3)

– anion into BF3
and (BF3-NF(BF3)-NF2)

– fragments would have to proceed
according to some stepwise mechanism involving the
detachment of BF3 molecule from (BF3-NF2-BF2-NF2-BF3)

–

followed by the substantial reorganization of the remaining
(BF3-NF2-BF2-NF2)

– anion (in order to produce a final
branched (BF3-NF(BF3)-NF2)

– structure). Having this in mind,
we performed a relaxed scan of the potential energy surface of
(BF3-NF2-BF2-NF2-BF3)

– along the terminal N-B bond, see
Figure 2. Our calculations revealed that a spontaneous
detachment of the BF3 molecule from the (BF3-NF2-BF2-NF2-
BF3)

– anion would be energetically unfavorable by ca. 16 kcal/mol
(as the energy profile shown in Figure 2 affirms) and thus should
be considered not likely. Therefore, we conclude that the
(BF3(BN)2F9)

– isomer, although higher in energy than the
(BF3-NF(BF3)-NF2)

– + BF3 fragments, should remain stable.
Moreover, we believe that we can extend that conclusion to
cover also larger (BF3(BN)nF4n+1)

– (n > 2) systems by
assuming that our considerations based on the n = 2 case can
be treated as representative for longer chain-like
(BF3(BN)nF4n+1)

– anions whose structures we are about to
discuss. In other words, we assume that all larger

FIGURE 2 | Energy profile corresponding to the relaxed scan along the
terminal B-N bond (indicated by a red arrow) in the (BF3-NF2-BF2-NF2-BF3)

–

anion. The horizontal red line indicates the sum of the energies of the isolated
(BF3-NF2-BF2-NF2)

– and BF3 systems.
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(BF3(BN)nF4n+1)
– (n > 2) systems we consider in this work are

likely not thermodynamically stable with respect to the formation
of BF3 and the remaining branched anionic fragment, yet should
be long lived due to the fact that the BF3 loss which would have to
happen to trigger such a process is energetically unfavorable.

Since the structures of larger (BF3(BN)nF4n+1)
– anions (i.e., for

n = 3-10, 13, 18-20) resemble many similarities with one another,
we describe them together in this section. The (BF3(BN)nF4n+1)

–

structures for n = 3 and n = 4 are shown in Figure 1, the structures
for n = 5-7 are presented in Figure 3, the structures for n = 8-10
and n = 13 are depicted in Figure 4, whereas the structures for n =
18-20 are gathered in Figure 5.

Our calculations revealed similarities among the
corresponding B-N, B-F, and N-F bond lengths in the
(BF3(BN)nF4n+1)

– anions considered (i.e., for n = 1-10, 13, 18-
20). Namely, the B-N bonds in (BF3(BN)3F13)

– (1.630–1.775 Å)
and (BF3(BN)4F17)

– (1.621–1.791 Å) are of similar lengths to
those found for (BF3(BN)F5)

– and (BF3(BN)2F9)
–, see the

discussion in the preceding paragraphs. In addition, B-N bond
lengths predicted for larger systems (1.616–1.797 Å for n = 5,
1.613–1.805 Å for n = 6, 1.611–1.807 Å for n = 7, 1.610–1.811 Å
for n = 8, 1.609–1.812 Å for n = 9, 1.608–1.813 Å for n = 10,
1.607–1.815 Å for n = 13, and 1.607–1.817 Å for n = 18-20) show
an analogous pattern (i.e., slightly larger separations between
terminal BF3 groups and the remaining molecular fragment). The
N-F bonds in the (BF3(BN)nF4n+1)

– (n > 2) anions (1.387–1.394 Å
for n = 3, 1.383–1.394 Å for n = 4, 1.384–1.394 Å for n = 5,
1.383–1.394 Å for n = 6, 1.381–1.394 Å for n = 7, 1.380–1.394 Å
for n = 8-10 and n = 13, 1.379–1.394 Å for n = 18-20) are also
similar to those in (BF3(BN)3F13)

– and (BF3(BN)4F17)
–. The B-F

bond lengths in the (BF3(BN)nF4n+1)
– (n > 2) systems span the

following ranges: 1.347–1.366 Å for n = 3, 1.342–1.365 Å for n = 4
and n = 5, 1.338–1.363 Å for n = 6-9, 1.336–1.362 Å for n = 10, n =
13, and n = 18-20. In addition to the similar lengths of the
corresponding B-N, B-F, and N-F bonds, the substituents around
each B and N atom in the (BF3(BN)nF4n+1)

– (n = 3-10, 13, 18-20)
anions are arranged in a tetrahedral manner as it was the case for
(BF3(BN)3F13)

– and (BF3(BN)4F17)
–, see Figure 1 and

Figures 3–5.

FIGURE 3 | Equilibrium structures of (BF3(BN)nF4n+1)
– (n = 5–7) anions

(symmetry point group in parenthesis).

FIGURE 4 | Equilibrium structures of (BF3(BN)nF4n+1)
– (n = 8–10,13)

anions (symmetry point group in parenthesis).

FIGURE 5 | Equilibrium structures of (BF3(BN)nF4n+1)
– (n = 18–20) anions

(symmetry point group in parenthesis).
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According to our predictions, the structures of
(BF3(BN)nF4n+1)

– anions correspond to extended
conformations with a tendency to form arched chains when
the number of BN units (n) develops. In general, the
structures predicted for (BF3(BN)nF4n+1)

– systems resemble the
extended conformations of higher n-alkanes. Indeed, as it was
established in the earlier studies (Lüttschwager et al., 2013), linear
alkanes of moderate length (i.e., containing up to 17(Thomas
et al., 2006) or 21 (Grimme et al., 2007) carbon atoms (depending
on the research method used)) tend to adopt a fully extended (all-
trans) conformations at low temperatures, whereas weak
dispersion interactions between chain fragments come into
play for larger systems by causing the trans-gauche
isomerizations which eventually transform an extended chain
into a hairpin structure (Lüttschwager et al., 2013). Therefore, we
believe that the structures of the (BF3(BN)nF4n+1)

– (n = 1-10)
anions presented in Figures 1, 3, 4 likely correspond to globally
stable conformations as the number of B and N atoms (each of
which mimics a carbon atom due to electronic transmutation)
does not exceed 21, hence it approaches the maximum number of
C atoms for which the fully extended alkanes remain to be
globally stable structures. As far as the (BF3(BN)nF4n+1)

– (n =
13,18-20) anions are concerned, the possible existence of
alternative lower energy conformers should be considered likely.

Excess Electron Binding Energies of
(BF3(BN)nF4n+1)

– (n = 1-10,13,18-20) Anions
The population analysis performed according to the Merz-Singh-
Kollman scheme revealed that the excess negative charge in all
(BF3(BN)nF4n+1)

– (n = 1-10,13,18-20) anions is distributed
among the fluorine ligands, yet not evenly. In order to
simplify the discussion, we decided to describe the partial
atomic charges obtained for two structurally smallest systems,
(BF3(BN)F5)

– and (BF3(BN)2F9)
– which can be considered

representative for all (BF3(BN)nF4n+1)
– anions studied in this

work. In the case of (BF3(BN)F5)
– system (i.e., (BF3-NF2-BF3)

–),
the partial charges (q) localized on the F atoms connected to
boron atoms are equal to –0.43|e| whereas those localized on the F
atoms linked to the nitrogen atom are equal to –0.11|e| (naturally,
all partial charges sum up to –1|e| as the partial charges predicted
for two boron atoms and for one nitrogen atom are equal to
+0.92|e| and –0.02|e|, respectively). In the case of (BF3(BN)2F9)

–

anion (i.e., (BF3-NF2-BF2-NF2-BF3)
–), the qF charges determined

for the F atoms connected to the terminal B atoms are equal to ca.
–0.41|e|, the qF of –0.32|e| are predicted for fluorine atoms bound
to the central B atom, whereas qF for the F atoms linked to N
atoms are equal to –0.09|e|. Since partial atomic charges
determined for larger (BF3(BN)nF4n+1)

– (n > 2) anions exhibit
approximately the same pattern as we found for these two
smallest systems (for n = 1,2), one may arrive at the following
generalizations: 1) the excess negative charge is delocalized
among all fluorine ligands (which is reasonable taking into
account the substantial electronegativity of F atoms), 2) the
atomic partial charges localized on the F, N, and B atoms
constituting the central part of a chain (i.e., the chain without
two terminal BF3 groups) sum up to approximately zero, and 3)
the atomic partial charges on B and F atoms comprising each
terminal BF3 group sum up to ca. −0.5|e|. Therefore, we conclude
that the excess negative charge in the anions considered is
localized mainly on the two terminal BF3 fragments.

FIGURE 6 |HOMO orbitals of the (BF3(BN)F5)
– and (BF3(BN)2F9)

– anions
with their orbital energies (ε).

TABLE 1 | Vertical electron detachment energies (in eV) of the (BF3(BN)nF4n+1)
–

anions (n = 1-10,13,18-20) determined at the OVGF/6-311+G(d) (labeled
VDEOVGF) and B3LYP/6-311+G(d) (labeled VDEB3LYP) level of theory. ΔVDE stands
for the difference between VDEOVGF and VDEB3LYP.

System VDEOVGF (eV) VDEB3LYP (eV) ΔVDE (eV)

(BF3(BN)F5)
– 8.10 7.78 0.32

(BF3(BN)2F9)
– 8.57 8.07 0.50

(BF3(BN)3F13)
– 9.07 8.35 0.72

(BF3(BN)4F17)
– 9.45 8.53 0.92

(BF3(BN)5F21)
– 9.77 8.68 1.09

(BF3(BN)6F25)
– 9.96 8.76 1.20

(BF3(BN)7F29)
– 10.10 8.84 1.26

(BF3(BN)8F33)
– 10.18 8.89 1.29

(BF3(BN)9F37)
– ~10.33a 8.92 1.41

(BF3(BN)10F41)
– ~10.41a 8.95 1.46

(BF3(BN)13F53)
– ~10.55a 9.01 1.54

(BF3(BN)18F73)
– ~10.64a 9.05 1.59

(BF3(BN)19F77)
– ~10.65a 9.06 1.59

(BF3(BN)20F81)
– ~10.66a 9.07 1.59

aalues extrapolated on the basis of the exponential fitting function, see caption for
Figure 7.
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The highest occupied molecular orbitals (HOMO) of the
smallest (BF3(BN)nF4n+1)

– anions (i.e., (BF3(BN)F5)
– and

(BF3(BN)2F9)
–) exhibit the bonding pattern typical for almost

all superhalogen anions described in the literature(Skurski, 2021),
see Figure 6. Indeed, one may easily notice the absence of
destabilizing antibonding ligand-central atom interactions,
which is characteristic not only for (MXk+1)

– systems
containing one central atom but also for polynuclear
(MnXn×k+1)

– superhalogen anions. In addition, the analysis of
HOMO for (BF3(BN)F5)

– and (BF3(BN)2F9)
– reveals strong

bonding boron-nitrogen interactions and substantial
contributions from 2p atomic orbitals of fluorine atoms. Since
the HOMOs calculated for larger (BF3(BN)nF4n+1)

– anions (n > 2)
look alike, we do not present them here (as the HOMO contour
plots for n = 1 and n = 2 are representative for all systems
considered).

The vertical electron detachment energies predicted for the
(BF3(BN)nF4n+1)

– anions (n = 1-10,13,18-20) are collected in
Table 1. In fact, we present the VDEs calculated by using the
OVGF method (for n = 1-8) and the B3LYP method (for n = 1-
10,13,18-20). Certainly, the VDE values obtained by employing
the OVGFmethod (VDEOVGF) are muchmore reliable than those
determined by the use of the B3LYP method (VDEB3LYP),
however, our computer resources enabled performing the
calculations of VDEOVGF values only for the (BF3(BN)nF4n+1)

–

anions up to n = 8. Therefore, we decided to determine the VDEs
for the larger systems (i.e., for n = 9,10,13,18-20) by employing a
less computationally demanding B3LYP approach. In fact, we
applied the B3LYP method to predict the VDEs also for those
systems (n = 1-8) whose vertical electron detachment energies
were calculated with the OVGF method (to enable the
comparison between the OVGF and B3LYP results which
allowed us to assess the reliability of the VDEB3LYP values).
Hence, we discuss the VDEs of the (BF3(BN)nF4n+1)

– anions
based on the VDEOVGF values whereas the VDEB3LYP results we
use only to predict a likely VDE dependence on n (i.e., the VDE =
f (n) function) and thus to estimate the approximate values of
VDEOVGF for n = 9,10,13,18-20.

We start our discussion with recalling the fact that the VDE of
the (BF4)

– was earlier calculated to be 8.98 eV (Sikorska et al.,
2008). We consider this result important because the (BF4)

–

system matches the (BF3(BN)nF4n+1)
– formula for n = 0. The

VDE of the smallest anion investigated in this work ((BF3(BN)
F5)

–, which can be treated as the (BF4)
– system having one of its

ligands replaced with the NF2-BF3 fragment) was evaluated as
equal to 8.10 eV, see Table 1. We believe the reason why the VDE
of (BF3(BN)F5)

– is smaller than that of (BF4)
– is that replacing

one F ligand with NF2-BF3 fragment lowers the symmetry of the
system which in turn causes the decrease of the excess electron
binding energy (as it was established for various superhalogen
anions (Smuczyńska and Skurski, 2008)). However, the molecular
fragment (BN)nF4n+1 that the F atom is replaced with contains
more and more electronegative fluorine ligands when n develops
and thus the VDE of the (BF3(BN)nF4n+1)

– anion increases when
n increases, see Table 1. In particular, the VDE of 8.57 eV was
calculated for n = 2 and the VDE of 9.07 eV was predicted for n =
3. As one can notice, the VDE found for (BF3(BN)3F13)

– slightly

exceeds that found for the reference (BF4)
– anion, which means

that the presence of electronegative ligands in the (BN)3F13
fragment compensates (in terms of the excess electron binding
energy) the destabilizing effects related to the symmetry lowering.

The VDE predicted for larger (BF3(BN)nF4n+1)
– anions

gradually increases to achieve the value of 10.18 eV for n = 8,
see Table 1. Although one might anticipate the continuation of
this tendency for larger n values, we cannot provide the precise
numeric values due to the lack of the OVGF-based results for n >
8. Despite this, we made an attempt to estimate the VDEs of the
larger systems considered (i.e., (BF3(BN)nF4n+1)

– for n > 8) by
finding the approximate function VDEOVGF = f (n) and
extrapolating it to achieve the VDEOVGF for n = 20. In order
to do this, we decided to choose the fitting function given by the
VDEOVGF � A · exp(−n/B) + C formula (where A, B, and C are
the fitting parameters) because we verified that such a function
properly describes the set of VDEB3LYP values we obtained for all
(BF3(BN)nF4n+1)

– anions (n = 1-10,13,18-20) which the
VDEB3LYP = f (n) plot depicted in Figure 7 affirms. In other
words, we assume that the VDEB3LYP values, although clearly
underestimated with respect to more reliable VDEOVGF values
(see Table 1), show the proper VDE trend for developing n.
According to the fitting function obtained for the VDEOVGF

results, the vertical electron detachment energy of the
(BF3(BN)20F81)

– anion is approximately equal to 10.7 eV.
Although this value comes from the extrapolation to n = 20,
we consider this estimate rather reliable because the r2

(i.e., coefficient of determination) for that fit approaches 1.0
(0.99665, see the caption for Figure 7). Both the shape of the
VDEOVGF = f (n) plot and the fact that the differences between the

FIGURE 7 | The VDEOVGF values (blue squares) and VDEB3LYP values
(orange diamonds) calculated for (BF3(BN)nF4n+1)

– anions. The plots
correspond to the fitting formula given by VDE � A · exp(−n/B) + C (where A,
B, and C stand for fitting parameters). The fitted parameters A =
−3.36783 ± 0.09853, B = 4.00503 ± 0.45838, and C = 10.68291 ± 0.14242
and the coefficient of determination r2 = 0.99665 were obtained for the
function approximating VDEOVGF results (blue line) while A = −1.72646 ±
0.02308, B = 3.40804 ± 0.08137, and C = 9.03863 ± 0.00786 and the r2 of
0.99878 were obtained for that approximating VDEB3LYP results (orange line).
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consecutive VDEOVGF values for n developing from 6 to 8 are
small (ca. 0.1 eV) indicate that the extrapolated VDE of 10.7 eV
for n = 20 may actually approach the maximal VDE which can be
obtained for (BF3(BN)nF4n+1)

– polynuclear superhalogen anions
(even for n > 20).

CONCLUSION

On the basis of the B3LYP/6-311+G(d) and OVGF/6-311+G(d)
calculations (whose accuracy were verified by employing the
wB97XD/6-311+G(d), B2PLYPD/6-311+G(d), OVGF/aug-cc-VTZ,
and OVGF/Def2TZVP treatments) performed for the
(BF3(BN)nF4n+1)

– (n = 1-10,13,18-20) anions we arrive at the
following conclusions:

1) The electronic transmutation concept can be employed to
design polynuclear superhalogen anions matching the
(BF3(BN)nF4n+1)

– formula and comprising alternately
aligned boron and nitrogen central atoms.

2) The equilibrium structures of (BF3(BN)nF4n+1)
– (n = 1-

10,13,18-20) anions correspond to fully extended (all-trans)
chains with four substituents arranged in a tetrahedral
manner around each B and N central atom and thus
mimic the globally stable fully extended conformations of
higher n-alkanes.

3) The excess negative charge in (BF3(BN)nF4n+1)
– (n = 1-

10,13,18-20) anions is delocalized mainly among the
fluorine ligands attached to two terminal boron atoms.

4) The vertical electron detachment energies predicted for
(BF3(BN)nF4n+1)

– (n = 1-8) anions always exceed 8 eV,
gradually increase with developing n and approach 10.2 eV
for n = 8.

5) The estimated VDE value for n = 20 (i.e., for the
(BF3(BN)20F81)

– system) is about 10.7 eV and it is

anticipated to represent the upper limit of vertical electron
binding energy which could be achieved for polynuclear
superhalogen anions matching the (BF3(BN)nF4n+1)

– formula.
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