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Abstract
Lack of biodiversity data is a major impediment to prioritizing sites for species repre-
sentation. Because comprehensive species data are not available in any planning area, 
planners often use surrogates (such as vegetation communities, or mapped occur-
rences of a well-inventoried taxon) to prioritize sites. We propose and demonstrate 
the effectiveness of predicted rarity-weighted richness (PRWR) as a surrogate in situ-
ations where species inventories may be available for a portion of the planning area. 
Use of PRWR as a surrogate involves several steps. First, rarity-weighted richness 
(RWR) is calculated from species inventories for a q% subset of sites. Then random 
forest models are used to model RWR as a function of freely available environmental 
variables for that q% subset. This function is then used to calculate PRWR for all sites 
(including those for which no species inventories are available), and PRWR is used to 
prioritize all sites. We tested PRWR on plant and bird datasets, using the species ac-
cumulation index to measure efficiency of PRWR. Sites with the highest PRWR repre-
sented species with median efficiency of 56% (range 32%–77% across six datasets) 
when q = 20%, and with median efficiency of 39% (range 20%–63%) when q = 10%. 
An efficiency of 56% means that selecting sites in order of PRWR rank was 56% as 
effective as having full knowledge of species distributions in PRWR’s ability to im-
prove on the number of species represented in the same number of randomly se-
lected sites. Our results suggest that PRWR may be able to help prioritize sites to 
represent species if a planner has species inventories for 10%–20% of the sites in the 
planning area.
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O R I G I N A L  R E S E A R C H

Predicted rarity-weighted richness, a new tool to prioritize 
sites for species representation

Fábio Albuquerque1 | Paul Beier2

1  | INTRODUCTION

The identification of sites that represent all or most species effi-
ciently (i.e., in relatively few sites) is a major issue in conservation 
planning (Pressey, Humphreys, Margules, Vane-Wright, & Williams, 
1993). If species occurrences are known for all sites in a landscape, 
integer programming or heuristic reserve-selection algorithms such 

as Marxan (Ardron, Possingham, & Klein, 2010), C-Plan (Pressey, 
Watts, Barret, & Ridges, 2009), or Zonation (Moilanen et al., 2014) 
can identify sets of sites that represent all species in the fewest 
sites, or represent the largest number of species in a fixed number 
of sites. Another alternative is to prioritize sites in order of a single 
site score (e.g., species richness, site area, or environmental or as-
semblage uniqueness). Although most scoring approaches perform 
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poorly (Pressey & Nicholls, 1989), one scoring algorithm, namely 
rarity-weighted richness (RWR), selected sites that represented 
species as efficiently as sites selected by simulated annealing in one 
study area (Csuti et al., 1997) and as efficiently as Zonation’s re-
verse stepwise heuristic algorithm in 11 study areas (Albuquerque 
& Beier, 2015a). Rarity-weighted richness prioritizes areas with 
large numbers of limited range species (Stein, Kutner, & Adams, 
2000). Rarity-weighted richness is identical to weighted endemism 
(Crisp, Laffan, Linder, & Monro, 2001) and endemism richness (Kier 
& Barthlott, 2001); these metrics consider only the number of sites 
occupied by each species, ignoring the abundance of each species 
within a site.

The lack of biodiversity data is one of the major limitations for 
the utility of ranking algorithms (heuristic or RWR). Given incom-
plete knowledge of species distributions, planners use surrogates, 
such as mapped occurrences of a well-inventoried taxon such as 
birds, or environmental diversity (Faith & Walker, 1996) to prioritize 
sites.

Here, we propose and evaluate a new tool that allows sites to 
be prioritized when species inventories are available for a subset 
of the planning area. The present work builds on two recent find-
ings: (1) Zonation importance score (the degree to which a site is 
essential to represent species efficiently, calculated from complete 
lists of species present in each site) can be accurately modeled as 
a function of freely available environmental variables (Albuquerque 
& Beier, 2015b), and (2) Given biological surveys of about 25% of 
sites, predicted importance (the expected contribution of a site to 
species representation—footnote 1 of Table 2) of all sites can be re-
liably modeled as a function of each site’s environmental variables 
(Albuquerque & Beier, 2015c). Here, we extend the approach of 
Albuquerque and Beier (2015c) to predicted rarity-weighted rich-
ness (PRWR) and demonstrate that PRWR is an efficient metric to 

prioritize sites for species representation. If PRWR works as well as 
predicted importance, PRWR would allow prioritization from limited 
biotic surveys without the need of specialized software to generate 
importance values from heuristic algorithms. RWR scores are highly 
correlated with those provided by simulated annealing (Csuti et al., 
1997) and Zonation (Albuquerque & Beier, 2015a), but it can be cal-
culated faster using simple programs such as Microsoft Excel and R (R 
Development Core Team 2008). Additionally, RWR is easy to under-
stand and managers and researchers can easily share the code used 
to calculate RWR.

In this study, we build models that predict RWR as a function of 
freely available environmental site covariates using inventory data for 
a subset of sites, and use predicted RWR (PRWR) to prioritize sites. 
Our goals were to (1) evaluate the utility of PRWR to prioritize sites 
for species representation and to (2) determine the minimum fraction 
of sites that must be inventoried to produce reliable PRWR rankings. 
We addressed these goals by analyzing six datasets; each dataset is 
an inventory or atlas of plant species or bird species in a particular 
terrestrial region (Table 1). If a reliable model to predict RWR can be 
developed using species data from, say, q% of sites, the cost of ac-
quiring species data for conservation planning would be reduced. Our 
analyses are intended as tests of the effectiveness of PRWR as a tool 
for species representation; a full conservation prioritization would 
reflect additional conservation goals such as population viability and 
connectivity among conserved sites.

2  | MATERIALS AND METHODS

2.1 | Data acquisition and preparation

We selected six datasets to span a broad range of sizes of sites and 
spatial extents, and to include both birds and plants and both atlas and 

Taxon, geographic area Extent (km2)
No. of 
sites

Size of site 
(km2)

No. of 
Species

Type of 
dataseta

Plants, Sierra Nevada, 
Spainb

862 595 0.04 255 Inventory

Birds, Arizona, USAc 295,234 1,317 25 359 Inventory

Plants, UKd 243,610 2,242 100 1,456 Atlas

Birds, Spaine 505,992 5,301 100 294 Atlas

Plants, Zimbabwef 390,757 360 625 1,338 Atlas

Birds, Western Europeg ~3,000,000 2,195 2,500 424 Atlas

aIn each “inventory” dataset, the sites were a systematic, unbiased subsample of the geographic area of 
interest, and an attempt was made to inventory all species at each site. In each “atlas” dataset, each site 
was a grid cell, and the data consisted of all species records in the cell.
bSierra Nevada Global Change Observatory (2013).
cCorman and Wise-Gervais (2005).
dPreston, Pearman, and Dines (2002); over 9 million records; the cells covered the full extent of U.K.
eINB (2007); the cells covered the full extent of Spain; 410,973 records.
fData from http://www.gbif.org/dataset/1881d048-04f9-4bc2-b7c8-931d1659a354; 42,951 records 
for Namibia, 14,802 records for Botswana, and 6,316 records for Zimbabwe.
gHagemeijer and Blair (1997): 471 birds (>100,000 records. The cells covered the full extent of Western 
Europe.

TABLE  1 Datasets used to evaluate 
predicted rarity-weighted richness (PRWR) 
as a surrogate to meet the goal of species 
representation

http://www.gbif.org/dataset/1881d048-04f9-4bc2-b7c8-931d1659a354
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inventory data (Table 1). Although atlas data do not indicate absences, 
the atlas datasets for Europe, UK, and Spain are among the world’s 
most exhaustive atlas datasets (footnotes in Table 1).

We included a set of environmental variables (Appendix S1) avail-
able for all regions of the world. These included temperature variables 
and precipitation variables (Hijmans, Cameron, Parra, Jones, & Jarvis, 
2005), PET (potential evapotranspiration, Zomer, Trabucco, Bossio, & 
Verchot, 2008), sunshine variables (Neteler, 2005), land cover diver-
sity (GlobCover 2009), NDVI (normalized difference vegetation index, 
Tucker, Pinzon, & Brown, 2004), elevation, and slope (USGS). We cal-
culated topographic diversity (Benito, Cayuela, & Albuquerque, 2013) 
from elevation data. For each variable, we used the mean, maximum, 
minimum, or a measure of variability, as a potential predictor of RWR 
(Table S1).

For each dataset, we used the procedures listed in Figure 1 to 
model RWR as a function of environmental variables using species in-
ventories for a q% subset of sites, and evaluate how well PRWR ranks 
prioritize sites for species representation.

2.2 | Selecting environmental variables

For each dataset, we used principal component analysis (PCA) of the 
matrix of environmental variables to identify significant (eigenvalue 
>1) PCA factors (environmental gradients). We then selected the vari-
able most correlated with each PCA factor and used these variables 
as predictors of RWR.

2.3 | Estimating RWR

Following Usher (1996) and Williams et al. (1996), we calculated the 
rarity value of a species as the inverse of the number of sites or plan-
ning units in which it occurs, and then summed the rarity scores for all 
species present at a given site: 

where ci is the number of sites occupied by species i, and the values 
are summed only for the n species that occur in that site.

RWR=

n
∑

1

1

ci

F IGURE  1 Flowchart of steps taken to model RWR as a function of environmental variables using species inventories for a q% subset of 
sites, and generate predicted rarity-weighted richness (PRWR) values for the entire landscape and test how well sites prioritized in order of 
PRWR incidentally represent species. Boxes with dashed borders indicate steps that are repeated 100 times to generate a 95% confidence 
interval on SAI (the measure of surrogate effectiveness). Boxes with black lines are steps in model fitting and boxes with gray borders are steps 
in the assessment of PRWR
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2.4 | Model fitting

Briefly, mimicking the planning situation in which species data are 
available for only a portion, q%, of the planning units, we used a ran-
domly selected subset of q% of the sites in the dataset to calculate 
RWR and model RWR as a function of environmental variables. The 
biological data for the remaining sites (1−q%) were set aside, repre-
senting the area for which the planner lacks species information. We 
developed models of RWR using 100 randomly selected subsets of q% 
of the sites in the dataset. We systematically varied q from 5% to 60% 
of the sites, in increments of 5%.

We used random forests (Breiman, 2001) to model RWR as a 
function of environmental variables selected by the PCA. We chose 
random forest models over alternatives, such as multiple regression, 
because random forests can model nonlinear and nonmonotonic in-
fluences and interactions, and usually produce better predictions 
(Svetnik et al., 2003).

In random forest, we first randomly drew 500 bootstrap samples, 
each consisting of about 66% of the data. We used these samples to 
develop 500 regression trees, in each case choosing the best split 
among a given number of predictors. The remaining data (about 33%) 
were used to estimate error rate based on the training data (out-of-
bag [OOB] error). Five hundred trees are substantially beyond the 
number of trees (about 200) at which mean squared error declined 
below 0.05.

We took 100 random subsets of q% of sites, yielding 100 models 
of RWR for each value of q. We used the resulting fitted random forest 
model to calculate PRWR for all sites in the dataset. This procedure 
generated 100 sets of PRWR values for each value of q, one set for 
each of the 100 random subsets of size q.

All analyses were performed within GRASS 6.4 (GRASS 
Development Team 2014) and R (R Development Core Team 2008) 
including the R packages ‘spgrass6’ (Bivand, 2016) and ‘randomForest’ 
(Liaw & Wiener, 2002).

2.5 | Model evaluation

To evaluate the ability of PRWR to prioritize sites for species repre-
sentation, we used the Species Accumulation Index (SAI, Rodrigues & 
Brooks, 2007); SAI = (S − R)/(O − R), where S is the number of species 
represented in sites with the highest PRWR ranks, O is the maximum 
number of species that can be represented in the same number of 
sites, and R is the number of species represented in the same number 
of randomly selected sites.

Following Albuquerque and Beier (2015c), Beier and Albuquerque 
(2015), we calculated O from core-area Zonation using the species 
data for all sites (Moilanen et al., 2014). To evaluate how well PRWR 
identified sites that could represent many species in relatively few 
sites, we accumulated sites (i.e., added sites to a hypothetical reserve) 
starting with the site with the highest PRWR; at each succeeding step, 
we added the site with the next highest PRWR. As we accumulated 
sites, we calculated S. We developed 100 species accumulation curves 
for the surrogate, one for each of the 100 PRWR models produced 

by random forests. This yielded 100 species accumulation curves for 
each value of q.

Species Accumulation Index is scaled −∞ to 1; negative SAI indi-
cates a worse than random result, 0 indicates random performance. 
A random result indicates that the selected sites sampled the species 
of a region in a reasonably unbiased way (Sutherland, 2006). A pos-
itive SAI is a measure of surrogate efficiency. The closer S is to the 
O, the higher the SAI value. A SAI of one indicates perfect surrogacy 
(Rodrigues & Brooks, 2007).

To determine the lowest useful value of q (i.e., the fraction of the 
landscape that must be inventoried) to produce a reliable surrogate, 
we systematically varied q from 5% to 60%, calculated the mean SAI 
and 95% CI across the 100 sets of PRWR values and observed how SAI 
increased with q. We considered SAI statistically significant if its CI did 
not overlap zero. We plotted SAI and its CI versus q for each dataset.

For q = 15% and q = 25%, we compared SAI values for PRWR to 
SAI values for predicted importance and environmental diversity, pre-
viously reported for five and three of the same datasets, respectively 
(Albuquerque & Beier, 2015c; Beier & Albuquerque, 2015).

3  | RESULTS

Principal component analysis analyses revealed 5–8 significant envi-
ronmental gradients in each dataset (Appendix S1). The variables with 
the highest factor loadings were eight variables related to energy, 
five related to precipitation, one related to land cover, five related 
to NDVI (normalized difference vegetation index), and two related to 
topography (Appendix S1). Four variables were used as predictors in 
at least half of the datasets, namely seasonality of precipitation (four 
datasets), mean temperature of the coldest quarter (three datasets), 
average NDVI (three datasets), and range of elevation (three datasets).

When species inventory data for 10% of the sites were used to 
model RWR, PRWR had a median efficiency of 39% (indicating that 
the surrogate was 39% as effective as having full knowledge of species 
occurrences in all sites in its ability to improve on random selection of 
sites) and range of 20% to 63% (Figure 2).

In all cases, SAI improved as the percentage of sites inventoried, 
q, increased (Figure 2). PRWR performed significantly better than ran-
dom selection of sites when q was as low as 10% (birds of Europe) or 
5% (the remaining five datasets) (Figure 2).

The SAI values for PRWR were approximately the same as those 
for predicted importance previously reported for five of these data-
sets and performed better than environmental diversity in two of three 
comparisons (Table 2).

4  | DISCUSSION

In all cases where at least 10% of the landscape was inventoried, 
PRWR was an efficient surrogate for representing species, as meas-
ured by Species Accumulation Index, SAI. Rodrigues and Brooks 
(2007) stress that an SAI of zero (indicating that a set sites selected 
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by a surrogate represent the same number of species as represented 
in the same number of randomly selected sites) is not a worst-case 
scenario, but instead indicates that the surrogate sampled the spe-
cies of the study area in an unbiased way. This can be much better 
than protected-area networks of many regions that are biased toward 
unfertile habitats of low value for human use (Pressey et al., 1996). 
All our SAI values were positive, indicating sites selected in order of 
PRWR represented more species than the same number of randomly 
selected sites. For example, the SAI of 0.63 (birds of Spain when 10% 
of sites were inventoried) indicates that the surrogate was 63% as effi-
cient as selecting sites on the basis of species inventories for all sites.

Rodrigues and Brooks (2007) reviewed 575 evaluations of the ef-
fectiveness of biotic surrogates in representing species in marine and 
terrestrial biomes. They found that sites selected using biotic surro-
gates represented more species than an equal number of randomly 
selected sites in 59% of the cases, with median SAI of 12% (12% im-
provement on random selection). Across the six datasets we analyzed, 
if species data were available for 10% of the sites, selecting sites with 
the highest PRWR performed about 39% (range 20%–63%) as well 
as direct selection of sites with full knowledge of species present in 
each site (Figure 2). Median efficiency increased to 56% for q = 20% 
(Figure 2). Thus efficiency of PRWR is at least three times greater than 

F IGURE  2 Efficiency of predicted rarity-weighted richness (PRWR) as a surrogate, as estimated by Species Accumulation Index, SAI. Each 
vertical bar depicts the 95% CI across 100 SAI values, each corresponding to a random forest model developed using the percentage of sites q 
indicated on the x-axis. SAI values are mean values that were calculated over multiple top fractions of a landscape. A value of 0.42, for example, 
indicates that the PRWR was 42% as effective as having full knowledge of species present in each site in its ability to improve on random 
selection of sites
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median efficiency of the biotic surrogates evaluated by Rodrigues and 
Brooks (2007).

Predicted rarity-weighted richness may be a useful surrogate to 
prioritize sites for conservation. Our results suggest that a conserva-
tion planner could inventory species at 10% to 20% of sites, and use 
those species data to build models that express RWR as a function 
of freely available abiotic environmental variables. Then the planner 
can calculate PRWR for 100% of sites, and prioritize sites in order of 
PRWR.

The Environmental Diversity approach (Beier & Albuquerque, 
2015; Faith & Walker, 1996) and software packages Marxan, Zonation, 
and C-Plan (Moilanen, Wilson, & Possingham, 2009) identify sets of 
sites that collectively represent species efficiently. These set-selection 
algorithms are generally considered superior to scoring methods that 
assign priority to individual sites because scoring methods do not ex-
plicitly consider how much each site complements (adds species to) 
the set of species represented in the other sites in a proposed priority 
set (Gotelli & Colwell, 2001). However, Albuquerque and Beier (2015c) 
demonstrated that one scoring method, predicted importance, can 
contribute to the goal of species representation and can do so with 
species data from a q% subset of sites in the planning area. Here, we 
demonstrate that another scoring method, PRWR, is similarly effective 
in meeting species representation goals. The performance of PRWR 
and predicted importance was similar when both procedures were 
applied to the same datasets at the same levels of q (Table 2).

The procedures to use PRWR as a surrogate are identical to the 
procedures to use predicted importance (Albuquerque & Beier, 2015c) 
as a surrogate, except that the quantity predicted from the q% sample 
is RWR instead of the importance of score from a heuristic algorithm 
(such as the algorithms in Zonation or Marxan). Because PRWR may 
require less technical and personal requirements (e.g., computational 
infrastructure, personnel hours) and the code used to calculate RWR 

can be easily shared and checked by others, PRWR may be preferable 
to predicted importance. On the other hand, the 95% confidence inter-
vals for predicted importance (Albuquerque & Beier, 2015c) are about 
half as wide as confidence intervals for PRWR (this article, Figure 2).

Environmental diversity is another abiotic surrogate that can be 
used to meet species representation goals (Beier & Albuquerque, 
2015; Faith & Walker, 1996). Both PRWR and predicted impor-
tance outperformed environmental diversity for two datasets and 
performed about as well as environmental diversity for one dataset 
(Table 2). This superior performance is offset by the relative costs. 
Environmental diversity can be implemented without any data on 
species occurrences, whereas PRWR and predicted importance re-
quire inventories of at least 10% of sites. We emphasize that the sam-
ple should be a random or systematic random sample of sites, and 
that sampling intensity should be standardized across sites; a sample 
of convenience probably would not perform as well as the random 
samples we tested (Gotelli & Colwell, 2001). A systematic sample (i.e., 
selecting sites that represent all combinations of environmental con-
ditions in the study area) is most likely to yield a strong RWR model; 
this can be achieved by stratified random sampling, or by a p-median 
approach (Faith & Walker, 1996). Where appropriate inventory data 
do not exist, survey costs could preclude the use of PRWR or pre-
dicted importance.

We had several reasons to expect that RWR could be predicted 
from environmental variables. First, ecological studies (summarized by 
Lawler et al., 2015) and paleoecological studies (summarized by Gill 
et al., 2015) have documented the influence of abiotic variables on 
species distributions. More specifically, species richness and species 
rarity (the two drivers of RWR) are affected by environmental con-
ditions (Albuquerque & Beier, 2015a; Hawkins, Field, Cornell, Currie, 
& Guegan, 2003; Kunin & Gaston, 1997; and references therein). 
Similarly, macroecological models (Calabrese, Certain, Kraan, & 

Dataset

PRWR using 
15% of sites to 
develop model

PIa using 15% 
of sites to 
develop model

PRWR using 
25% of sites to 
develop model

PIa using 25% 
of sites to 
develop model

Environ-
mental 
diversityb

Plants, Sierra 
Nevada

0.26 0.28 0.38 0.44

Birds, Arizona 0.51 0.62 0.64 0.67 0.35

Plants, UK 0.45 0.43 0.59 0.56

Birds, Spain 0.74 0.64 0.79 0.69 0.26

Plants, 
Zimbabwe

0.55 0.11 0.67 0.25 0.67

aData from Albuquerque and Beier (2015c). Predicted importance (predicted complementarity) starts 
with species inventory data for a subset of sites in the planning area, uses Zonation to calculate com-
plementarity, builds random forest models of the complementary value of each site as a function of 
environmental variables, uses the model to predict complementarity for all sites, and uses these pre-
dicted values as a surrogate to prioritize all sites (Albuquerque & Beier, 2015c). Thus, it is identical to 
PRWR (this article) except that complementarity ranks of the inventoried subset of sites are estimated 
by Zonation instead of RWR.
bData from Beier and Albuquerque (2015). Environmental Diversity (Faith & Walker, 1996) requires no 
biotic data; instead, it quantifies multivariate environmental space as an ordination, selects the set of 
sites that best span the environmental space, and posits that this set of sites will efficiently represent 
species.

TABLE  2 Performance (Species 
Accumulation Index) of predicted 
rarity-weighted richness (PRWR) compared 
to that of predicted importancea (PI) for 
five datasets and compared to 
environmental diversityb for three of the 
same datasets
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Dormann, 2014; Distler, Schuetz, Velásquez-Tibatá, & Langham, 2015; 
Guisan & Rahbeck, 2011) can predict species richness from environ-
mental variables. Nonetheless, we were surprised that RWR could be 
predicted so well from a relatively small subset of sites.

In general, SAI increased steeply as q (the proportion of sites inven-
toried for species increased from 5% to 20%, but increased relatively 
slowly as q increased from 20% to 60% (Figure 2). This suggests that 
it might be most cost-effective to inventory 20% of sites if a planner 
wished to implement PRWR to prioritize sites. At q = 20%, the lower 
bound of the 95% confidence interval on SAI was generally >0.25 
(Figure 2), suggesting that PRWR would perform well even for a 20% 
sample that provided a relatively poor model of PRWR.

Although PRWR seems to be a promising tool for systematic plan-
ning, additional work is needed to improve it. First, future work should 
evaluate this surrogate in contexts more relevant to conservation 
planning. This would include representation goals >1 occurrence per 
species (several sites may be required to support a viable population), 
goals that vary among species, prioritizing sites to expand an existing 
reserve network, and integration of species representation goals with 
conservation goals for compactness, connectivity, and ecological and 
evolutionary processes (Margules & Pressey, 2000). Second, each 
of our datasets involved only one broad taxonomic group (plants or 
birds), and most of our site sizes are much larger than the spatial reso-
lution at which sites are prioritized for conservation. It would be useful 
to analyze a dataset covering multiple taxa (including invertebrates) to 
test whether PRWR for one taxon is an efficient surrogate for com-
bined taxa. Unfortunately, to the best of our knowledge, the study 
area and dataset used by Ferrier and Watson (Ferrier & Watson, 1997) 
is the only comprehensive inventory of invertebrates, plants, and ver-
tebrates at hundreds of sites at a grain size relevant to conservation 
planning. Development of fine-resolution, all-taxon inventories in a 
few study areas is essential to a definitive evaluation of any surrogate 
strategy.
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