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Bacteriophage is a type of virus that could infect the host bacteria. They have
been applied in the treatment of pathogenic bacterial infection. Phage enzymes and
hydrolases play the most important role in the destruction of bacterial cells. Correctly
identifying the hydrolases coded by phage is not only beneficial to their function study,
but also conducive to antibacteria drug discovery. Thus, this work aims to recognize
the enzymes and hydrolases in phage. A combination of different features was used to
represent samples of phage and hydrolase. A feature selection technique called analysis
of variance was developed to optimize features. The classification was performed by
using support vector machine (SVM). The prediction process includes two steps. The
first step is to identify phage enzymes. The second step is to determine whether a
phage enzyme is hydrolase or not. The jackknife cross-validated results showed that
our method could produce overall accuracies of 85.1 and 94.3%, respectively, for the
two predictions, demonstrating that the proposed method is promising.

Keywords: bacteriophage enzymes, hydrolase, analysis of variance, sequence feature, classification

INTRODUCTION

Bacteriophage, as safe agent, can lyse and infect specific bacteria without destroying natural
beneficial microflora (Parmar et al., 2018). Hydrolytic enzymes encoded by phages are key
ingredients of lysis, which is helpful to fighting bacterial pathogens, especially those that cannot be
killed by antibiotics and chemicals. In fact, in some countries, they have been used therapeutically
to treat bacterial infections that do not respond to antibiotics (Thiel, 2004; Parfitt, 2005; Keen,
2012). They have also been used as a food safety tool to reduce bacterial contamination (Pirisi,
2000). Hence, rapid detection of bacteriophage and hydrolase responsible for antibacterial drugs is
a growing necessity for public health.

Because of abuse of antibiotics, certain resistant viruses cannot be effectively controlled. This
problem can be resolved by therapy of phage hydrolytic that disintegrates host viruses during
releasing progeny phage. Therefore, the identification of hydrolases encoded by phages has become
an important research topic. It not only has been studied in chemistry and physics through

Abbreviations: CTD, composition transition and distribution; SVM, support vector machine; RF, random forest; MLP,
multilayer perceptron; KNN, k-nearest neighbors; Sn, sensitivity; Sp, specificity; Ac, accuracy; MCC, matthew correlation
coefficient; PseAAC, pseudo–amino acid composition; GTPC, grouped tripeptide composition; ROC, receiver operating
characteristic; AUC, area under receiver operating characteristic (ROC) curve; GGDC, g-gap dipeptide composition;
ANOVA, analysis of variance; RBF, Radial Basis Function; ORFs, Open Reading Frames.
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experimental methods, but also achieved good results in theory
through recently popular machine learning algorithms. Some
experiments have been performed to study the function of
phage hydrolase (Kimura and Itoh, 2003; Rodriguez-Rubio
et al., 2013). In addition, in the study of host cell lysis by
hydrolytic enzyme activation, Kovalenko et al. (2019) found
that the calcium could regulate phage-induced bacterial lysis.
Although those biochemical-based methods can accurately
recognize phage hydrolases and clearly elucidate the functional
mechanism of the enzyme, it is time-consuming and expensive.
Additionally, biochemical experiments always need rigorous
experimental conditions, which will prevent most of scholars
from doing more in-depth studies. Computational methods
provide another chance to study phage hydrolase without
the disadvantage of biochemical-based methods. Phylogenetic
analysis or similarity search could find relative conservation
of motifs among related species (Lin and Li, 2011; Liu
et al., 2019). However, it is extremely diverse for phage
Open Reading Frames (ORFs), of which more than 70% of
them cannot find out similar genes with annotated functions
in GenBank (Seguritan et al., 2012). Moreover, it is also
time-consuming.

With the accumulation of more and more postgenomic data,
some computational methods have been proposed to study the
function of phage proteins. Riede and his colleagues (Riede
et al., 1987) have proposed a model to predict tail-fiber proteins’
three-dimensional structure of T-even–type phages. The results
are consistent with electron microscopic data. Subsequently,
a computer program was developed to identify DNA-binding
regulatory proteins in bacteriophage T7 (White, 1987; Song et al.,
2014; Zou et al., 2016a; Qu et al., 2019). Recently, the virion
proteins encoded by phages were studied by using naive Bayes
combined with primary sequence information (Feng et al., 2013).
The proposed model could yield the overall accuracy (Ac) of
79.15%. By using feature selection technique, the overall Ac was
improved to 85.02% (Ding et al., 2014). A free webserver called
PVPred (Ding et al., 2014) was constructed for predicting phage
virion proteins.

The success of previous works on the prediction of phage
functional proteins (Feng et al., 2013; Ding et al., 2014) and
enzyme prediction (Zuo et al., 2014; Ding H. et al., 2016)
provided good strategy to discriminate hydrolases encoded by
phages by transforming protein sequences into digital features
and further establishing machine learning-based models. Thus,
this work aims to develop a powerful computational model
to recognize phage hydrolase by combining feature selection
and expression of multiple features. The entire experiment
was divided into two steps. First is to discriminate phage
enzymes from phage nonenzymes and then to identify phage
hydrolases from phage enzymes. In this model, the support
vector machine (SVM) was applied as the algorithm to
perform the classification. Different features were proposed
to formulate protein samples and then inputted into SVM.
The best features that can achieve the maximum accuracies
were discovered by using analysis of variance (ANOVA).
The model’s performance was estimated by using jackknife
cross-validation.

MATERIALS AND METHODS

Benchmark Dataset
Constructing a reliable benchmark dataset could guarantee the
reliability of the proposed computational model (Ma et al.,
2014; Liang et al., 2017; Yang et al., 2017; Wang et al., 2018;
Cheng et al., 2019; Hu et al., 2019; Zheng et al., 2019). In
this work, samples were gained from Ding H. et al. (2016),
which were rigorously screened through the following three
steps: (1) phage proteins have been annotated by standard
operating procedure for UniProt manual curation (Swiss-Prot);
(2) protein sequences samples containing illegal characters
were deleted; (3) sequence identity in the dataset must be
less than 30%, which was implemented by CD-HIT (Fu
et al., 2012) software. Consequently, the definitive benchmark
dataset contains 255 phage proteins, of which 124 proteins
belong to phage enzymes (positive samples of set 1), and the
remaining 131 are phage nonenzymes (negative samples of set 1).
Furthermore, 124 phage enzymes are divided into 69 hydrolases
(positive samples of set 2) and 55 nonhydrolases (negative
samples of set 2), respectively. The following calculations are all
based on these data.

Protein Feature Extraction
The perfect expression of protein sequences by digital features
can dramatically increase the Ac and robust of computing models
(Wang et al., 2008, 2010; Song et al., 2010, 2018; Zuo et al.,
2017; Basith et al., 2018; Chen W. et al., 2018; Wei et al., 2018b;
Boopathi et al., 2019; Ding et al., 2019; Manavalan et al., 2019b;
Shen et al., 2019; Tan et al., 2019; Zhang and Liu, 2019; Zhu
et al., 2019). The specific order of residues in the peptide sequence
dictates the protein to fold up into a special three-dimensional
structure. Thus, the interaction between two residues in a protein
is a main factor to characterize the protein. In the past 20 years,
scholars have developed dipeptide composition to formulate
peptide samples (Tang et al., 2016). However, the feature can only
describe the short-range interaction between two residues. In fact,
there are lots of long-range interaction for a protein in three-
dimensional space. For example, the secondary structures (α helix
and β sheet) were formed by the interaction of two nonadjoining
residues. Hence, it will be more reasonable to investigate the
performance of other kinds of correlations.

Based on the above analysis and other peer works (Ding
and Li, 2015), in this work, the g-gap dipeptide composition
(GGDC), which is extended from general dipeptide composition,
is used as the main feature to denote the residues’ correlation
in the original peptide sequence. For the perfect expression
of the sample, the combination of GGDC, pseudo–amino
acid composition (PseAAC), grouped tripeptide composition
(GTPC), and composition transition and distribution (CTD) is
used as the final feature vector. Pseudo–amino acid composition
provides the correlation of physical and chemical properties
between two residues (Chen et al., 2016; Yang et al., 2016).
Grouped tripeptide composition provides tripeptide information
(Tan et al., 2019). CTD provides distribution patterns of a specific
structural property for residues (Cheng et al., 2018) and indirectly
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contains information about 20 amino acid residues, so PseAAC,
in our work, does not contain amino acid information.

G-Gap Dipeptide Composition
The GGDC proposed by Ding et al. (2014) is the extension of
the proximate dipeptide composition, because proteins contain
deep correlation of residues relating with hydrogen bonding in
secondary structure. For different g, the protein sequence P with
L residues is expressed by a 400-dimensional GGDC as follows:

P = [f g1 , f g2 , ..., f gε , ..., f g400]
T (1)

where T is called the transposing operator, the f gε can be
calculated by:

f gε = ngε/(L− g − 1) (2)

where the ngε denotes the absolute occurrence number of the
GGDC in a protein. Since previous studies (Ding H. et al., 2016)
have shown that g = 2 has the best prediction effect, only 2-gap
was used in our experiments.

Pseudo–Amino Acid Composition
Hydrophobicity, hydrophilicity, and other physicochemical
properties are important characteristics of amino acids. In order
to incorporate these properties with amino acid composition, two
types of PseAAC were used. In our work, motived by PseAAC, the
protein sample, can be expressed as follows:
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i=1 H1
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1
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1
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i=1 Hn
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(3)

Hn
k,k+λ

th residue and the (k+λ)-th residue; L is length of sample.
After experimental comparison, we selected 10 physical and
chemical properties containing hydrophobicity, hydrophilicity,
amino acid side chain group mass, -COOH group dissociation
constant, -NH3 group dissociation constant, isoelectric point
at 25◦C, rigidity, flexibility, irreplaceability, and polarity. We
used λ = 15.

GTPC and CTD
iFeature is a comprehensive Python-based toolkit that contains
four major functions: feature representation, dimensionality
reduction algorithms, feature selection algorithms, and feature
clustering algorithms (Chen Z. et al., 2018). In our study, we
have used GTPC and CTD provided by iFeature (Chen Z. et al.,
2018) to extract numerical descriptors from samples. Grouped

tripeptide composition converts protein sequences into 125-
dimensional digital features expressed as follows:

f (r, s, t) =
Nrst

N − 1
, r, s ∈ {g1, g2, g3, g4, g5} (4)

where Nrst denotes the number of tripeptides in groups r, s, and t
(Chen Z. et al., 2018). N is the length of a protein.

CTD converts protein sequences into 39-dimensional digital
features defined as follows:

C(r) =
Nr

N
, r{polar, neutral, hydrophoic} (5)

where N(r) represents the number of residue type r in the peptide
sequence (Chen Z. et al., 2018). Thus, samples are transformed
into 164 -dimensional features.

Support Vector Machine
Support vector machine is a classical machine learning algorithm
and has been widely adopted in computational biology (Jiang
et al., 2013; Zhao et al., 2015, 2017; Ding H. et al., 2016;
Ding et al., 2016a,b; Dao et al., 2018; Feng et al., 2018;
Manavalan et al., 2018a,b; Zhang et al., 2018; Chao et al.,
2019; Chen et al., 2019a; Wang et al., 2019; Basith et al.,
2020). For nonlinear samples, its projects inputted data into
high-dimensional spare by a kernel function. There are four
kernel functions including Sigmoid function, Gaussian function,
line function, and polynomial function, among which Gaussian
function is most commonly used. C and g are the most important
parameters to adjust performance of Gaussian function. The
value of g is related to the partitioning of samples, and the
value of C determines the tolerance of the model. In our work,
SVC functions in Scikit-learn (Swami and Jain, 2012), based
on Python, are used to build models, and Gaussian functions
are used as kernel functions, because the Gaussian function
can efficiently map small samples with fewer features to high-
dimensional space and distinguish positive and negative samples
with high Ac. In addition, the GridSearchCV function in Scikit-
learn was used to optimize the parameters C and g.

Feature Selection Method
Because one type of feature does not fully represent the
characteristics of a protein sequence, the combination of features
is a good approach to perform classifications. The combined
features could also cause a lot of inconvenience, such as noise,
dimension disaster, and so on. Analysis of variance (Feng
et al., 2013; Tang et al., 2017; Xianfang et al., 2019), principal
component analysis (Dong et al., 2015), minimal redundancy
maximal relevance (Ding et al., 2013), maximum relevance
maximum distance (Zou et al., 2016b), and increment of diversity
(Zuo and Li, 2009; Zhao et al., 2010; Fan and Li, 2012) can solve
these problems. In our study, ANOVA is used to screen the best
feature set; the idea is to calculate the ratio of the categories to
sample variance. Obviously, features with larger ratios are more
suitable for classification. The details can be referred from Feng
et al. (2013), Tang et al. (2017) and Xianfang et al. (2019).
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Performance Evaluation
In statistical prediction, the performance of the model needs
to be measured by some methods and parameters (Chen et al.,
2017, 2019b; Ding et al., 2017; Tang et al., 2018; Yang et al.,
2018). The cross-validation test has been widely used to evaluate
methods (Yang et al., 2019; Zhu et al., 2019). To provide a fair
comparison, we used the jackknife test in this study. The four
parameters, namely, sensitivity (Sn), specificity (Sp), Ac, and
Matthew correlation coefficient (MCC), are used to evaluate the
performance of the model (Liu et al., 2018; Manavalan et al.,
2018c, 2019a,c; Basith et al., 2019), which are defined as follows:

Sn = TP
TP+FN

Sp = TP
TP+FN

Ac =
TP+FN

TP+FP+TN+FN

MCC = (TP×TN)+(FP×FN)
(TP+FN)(TN+FP)(TP+FP)(TN+FN)

(6)

where TP and TN are the number of the correctly identified
positive samples and the number of the correctly identified
negative samples; FP indicates the number of negative samples
recognized as positive samples; FN indicates the number
of positive samples recognized as negative samples. Also,
the area under receiver operating characteristic (ROC) curve
(AUC) is often used to evaluate the performance of binary
classification models.

RESULTS

Discriminating Phage Enzymes From
Nonenzymes
For a new sequenced phage protein, we first need to judge
whether the phage protein is an enzyme. Thus, the predictive
performances of three combined vectors were investigated by
using SVM with jackknife test. First, samples are expressed by
three kinds of combinations: GGDC combined with PseAAC,
GTPC combined with CTD, and all features. Prediction results
are listed in Table 1. We observed that all features cannot
achieve the best Ac. The reason is maybe noise or redundant
information. Thus, we performed feature selection for three
feature combinations to discover the best feature subsets. The
results are also shown in Table 1. After feature selection,

TABLE 1 | The results by using different features for phage enzymes prediction.

Combined vector
features

Original feature Optimal features

Accuracy Dimensions Accuracy Dimensions

GGDC + PseAAC 74.5% 550 83.1% 154

GTPC + CTD 67.8% 164 77.6% 35

GGDC + PseAAC
+ GTPC + CTD

72.9% 714 85.1% 191

GGDC, g-gap dipeptide composition; CTD, composition transition and distribution;
PseAAC, pseudo–amino acid composition; GTPC, grouped tripeptide composition.

FIGURE 1 | A plot showing the F-values for (A) discriminating phage enzymes
from nonenzymes and (B) discriminating phage hydrolases from other
enzymes.

TABLE 2 | The comparison of different classifiers for predicting phage enzymes.

Classifier Sn Sp Ac MCC AUC

KNN 0.98 0.16 0.702 0.232 0.664

RF 0.73 0.76 0.752 0.490 0.798

SVM 0.83 0.88 0.851 0.703 0.897

MLP 0.77 0.84 0.812 0.610 0.858

SVM, support vector machine; RF, random forest; MLP, multilayer perceptron;
KNN, k-nearest neighbors; Sn, sensitivity; Sp, specificity; Ac, accuracy; MCC,
Matthew correlation coefficient; AUC, area under receiver operating characteristic
(ROC) curve.

the highest Ac was obtained by using 191 features, which
was based on all features. Figure 1A was drawn to show
the F-value for all features. The above results implied that
the information of phage enzymes requires multiple types of
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TABLE 3 | The results by using different feature for discriminating phage
hydrolases from other enzymes.

Combined vector
features

Original features Optimal features

Accuracy Dimensions Accuracy Dimensions

GGDC + PseAAC 75.8 550 94.3% 61

GTPC + CTD 76.6% 164 86.4% 37

GGDC + PseAAC
+ GTPC + CTD

75.8% 714 92.7% 89

GGDC, g-gap dipeptide composition; CTD, composition transition and distribution;
PseAAC, pseudo–amino acid composition; GTPC, grouped tripeptide composition.

TABLE 4 | The comparison of different classifiers for discriminating phage
hydrolases from other enzymes.

Classifier Sn Sp Ac MCC AUC

KNN 0.70 0.89 0.814 0.588 0.863

RF 0.91 0.80 0.86 0.722 0.898

SVM 0.96 0.93 0.943 0.886 0.961

MLP 0.93 0.91 0.927 0.837 0.948

SVM, support vector machine; RF, random forest; MLP, multilayer perceptron;
KNN, k-nearest neighbors; Sn, sensitivity; Sp, specificity; Ac, accuracy; MCC,
Matthew correlation coefficient; AUC, area under receiver operating characteristic
(ROC) curve.

feature expressions. However, noises or redundant information
may be results in the poor predictive capabilities of other
groups, and the combining vectors of the first and second
groups cannot fully express the peculiarity of the samples,
which lead to its poor prediction effect. Subsequently, we
investigated the performance of four classifiers, including
random forest (RF), multilayer perceptron (MLP), k-nearest
neighbor (KNN), and SVM, whose input features are the
third set of 191-D optimal features. The result parameters
of four classifiers have been exhibited in Table 2. We
found the highest Ac of 85.1% and MCC of 70.3%. The
AUC reaches to 89.3% by using SVM. k-Nearest neighbor
has achieved the highest Sn of 98% with the lowest Sp
of 16%. Moreover, performance of RF has an Sn of 73%,
Sp of 76%, Ac of 75.2%, MCC of 0.490, and AUC of
0.798, respectively. Similarity, MLP obtained 77, 84, 81.2,
0.61, and 0.858%, respectively, for Sn, Sp, Ac, MCC, and
AUC. These data indicate that SVM is the most suitable for
distinguishing phage enzymes.

Discriminating Phage Hydrolases From
Other Enzymes
When a phage protein is predicted as a phage enzyme, it
is necessary to immediately judge whether the enzyme is a
hydrolase. Like phage enzyme prediction, the performances of
three combined vectors on phage hydrolase prediction were
also examined by using SVM with jackknife cross-validation.
As shown in Table 3, the three combined vectors were also
processed by the feature selection algorithm, which not only
improves the Ac but also greatly reduces the dimensions.
Obviously, ANOVA can remove redundant information from
features. It should be noticed that the optimal features (61-D)
obtained from GGDC combined with PseAAC could produce
the maximum Ac of 94.3%. This phenomenon indicates that
features with a large F-value in the second group are not
suitable for expressing hydrolases. The heat map for the
features is also drawn in Figure 1B. Similarly, we compared
the performances of different classifiers. In Table 4, KNN has
yielded Ac of 81.4%, whereas KNN has obtained Ac of 84.64%.
The performance of MLP is 93% Sn, 91% Sp, 92.7% Ac, 0.837
MCC, and 0.948 AUC. Support vector machine with Radial Basis
Function (RBF) as kernel function gained the best prediction
performance (94.3% Ac).

Performance Comparison With Existing
Methods
In order to prove that our proposed model performs better
than the model by Ding H. et al. (2016), who first used
computational methods to predict hydrolases, the performance
indexes of the two models were recorded in Table 5.
In discriminating phage enzymes from nonenzymes, our
model is better in Ac and Sp that are 85.1 and 88.0%,
respectively. In discriminating phage hydrolases from other
enzymes, all the evaluated indexes of our proposed model
are better than those of Ding H. et al. (2016). Indeed,
hydrolyzing enzymes adopt two types of features to encode
samples. Compared with Ding and colleagues’ experiment,
we have selected more kinds of features in the sample
expression, which makes the digital features of the sample
more informative.

DISCUSSION

The purpose of this study is to establish a predictive model
to predict phage enzymes and hydrolases. In fact, similarity
search could be used to perform sequence analysis and function

TABLE 5 | Comparison of predictive performance with exist method.

Ac Sp Sn

Discriminating phage enzymes from nonenzymes (Ding H. et al., 2016) 84.3% 81.7% 87.1%

This study 85.1% 88.0% 83.0%

Discriminating phage hydrolases from other enzymes (Ding H. et al., 2016) 93.5% 92.8% 94.5%

This study 94.3% 93.0% 96.0%

Sn, sensitivity; Sp, specificity; Ac, accuracy.
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prediction. However, the strategy cannot work well on low-
similar sequences. Especially, the phage genes display the extreme
diversity. Protein functions are inextricably linked to correlation
of nucleotides or residues, physicochemical properties, spatial
structure, and other information. Therefore, we used multiple
characteristics to represent phage and hydrolase, but this method
has some problems that multiple features contain too much
redundant information; different types of features are suitable
for different samples. On the basis of the feature selection
technique, promising results for phage enzymes and hydrolases
prediction were achieved. In the future, we will pay more
attention on deep learning, which has solved several protein
prediction problems (Peng et al., 2018; Wei et al., 2018a,
2019; Yu et al., 2018; Lv et al., 2019) and may get well
performance on this topic. Moreover, we will establish a free
webserver that facilitates users to download data and predict
phage hydrolases.
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