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Abstract

Adherence is a major factor in the effectiveness of the injectable extended-release naltrexone as a relapse prevention
treatment in opioid use disorder. We examined the value of a variant of the Go/No-go paradigm in predicting extended-
release naltrexone adherence in 27 detoxified opioid use disorder patients who were offered up to 3 monthly extended-
release naltrexone injections. Before extended-release naltrexone, participants performed a Go/No-go task that comprised
positively valenced Go trials and negatively valenced No-go trials during a functional magnetic resonance imaging scan.
Errors of commission and neural responses to the No-go vs Go trials were independent variables. Adherence, operationalized
as the completion of all 3 extended-release naltrexone injections, was the outcome variable. Fewer errors of commission and
greater left accumbal response during the No-go vs Go trials predicted better adherence. These findings support the clinical
potential of the behavioral and neurophysiological correlates of response inhibition in the prediction of extended-release
naltrexone treatment outcomes in opioid use disorder.
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Introduction

Opioid use disorder (OUD) caused approximately 50 000 deaths
worldwide and accounted for over 40% of all substance abuse-
related deaths in 2013 (Naghavi et al.,, 2015). OUD is driven
mainly by the reinforcing effects of opioid agonists mediated
by the p-opioid receptor (MOR) (Wise and Koob, 2014). A major

mechanism of MOR-mediated reinforcement is the inhibition
of GABAergic input into the ventral tegmental area leading to
an increase in dopamine release in the nucleus accumbens
(NAcc) (Fields and Margolis, 2015). Naltrexone (NTX) is an opioid
antagonist that competitively binds to the MORs and blocks the
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Significance Statement

Opioid use disorder (OUD) is an acute public health problem. Injectable naltrexone (XR-NTX) is the only extended-release opioid
antagonist approved for treatment of OUD in the United States. Given its high pharmacological efficacy, the outcomes of XR-NTX
depend largely on adherence. Nonadherence is almost invariably associated with relapse to opioids and often a fatal opioid over-
dose. These facts underscore the importance of prospectively identifying OUD patients at a high risk of an early dropout from
XR-NTX treatment. In the present study, we found that errors of commission and nucleus accumbens fMRI response during a
modified Go/No-go paradigm predicted adherence to XR-NTX in 27 OUD patients. These findings suggest that impaired function-
ing of the nucleus accumbens during executive and affective processing constitute a risk factor for treatment failure in OUD.

effects of opioid agonists. Although oral NTX is used clinically
for relapse prevention in detoxified OUD patients, its effective-
ness has been severely limited by poor adherence (Comer et al.,
2006). A monthly injectable extended-release NTX (XR-NTX)
was developed to overcome this obstacle and shown to be more
effective than oral NTX in reducing opioid craving and prevent-
ing relapse (Krupitsky et al., 2011; Tanum et al., 2017; Shi et al.,
2018). Recent studies also show that while the overall long-term
effectiveness of XR-NTX is comparable to that of the oral agonist
buprenoprphine/naloxone, there is considerable individual vari-
ability in treatment response, including adherence (Krupitsky
et al.,, 2011; Lee et al.,, 2018; Tanum et al., 2017). Nonadherence
to XR-NTX is particularly challenging because it almost invari-
ably indicates a relapse to opioids. Unlike agonist medication-
assisted treatments (MATs), resuming XR-NTX after relapse
often requires repeating the detoxification. Discontinuation of
XR-NTX may also increase the risk of accidental overdose due to
reduced tolerance to opioids, leading to heightened sensitivity to
the dose of opioids that patients had been accustomed to prior
to detoxification (White and Irvine, 1999). These facts under-
score the importance of uninterrupted adherence to XR-NTX
treatment and the need to identify those at high risk of an early
dropout. The value of the clinical and self-report measures to
prediction of XR-NTX adherence has been limited (Nunes et al.,
2015). Although functional magnetic resonance imaging (fMRI)
does not have recognized clinical applications in the treatment
of addiction, there is a growing literature reporting its use to
predict treatment outcomes in the research settings (Falk et al.,
2011; Wang et al., 2015; Volkow and Boyle, 2018).

Substance use disorders are characterized by repeated and
compulsive seeking of drug rewards despite acknowledged
negative consequences (Moeller and Goldstein, 2014). Inhibitory
control deficits that significantly contribute to the development
and maintenance of such a behavioral pattern have been stud-
ied using the “Go/No-go” paradigm (Donders, 1868/1969; Luijten
et al,, 2014; Smith et al., 2014). In this paradigm, a response pre-
potency is created by requiring participants to respond to fre-
quently presented “Go” stimuli and to inhibit such prepotent
response to infrequently presented “No-go” stimuli. Prior stud-
ies have shown deficits in response inhibition in cocaine and
tobacco users compared with healthy controls (Luijten et al.,
2014; Smith et al., 2014). Moreover, inhibitory training has been
shown to reduce future alcohol intake in drinkers (Houben et al.,
2011). However, it remains inconclusive whether impaired inhib-
itory control is associated with OUD and its treatment (Luijten
et al,, 2014; Smith et al., 2014).

In the present study, we used a previously reported modi-
fied Go/No-go paradigm, in which the affectively positive and
potentially rewarding stimuli (e.g., flowers) require the frequent
Go response and the affectively negative and potentially aver-
sive stimuli (e.g., snakes) signal the infrequent No-go trials
(Goldman et al., 2015). This modification made the task more

intuitive than the original version because humans are predis-
posed to approach positively valenced stimuli and avoid nega-
tively valenced ones (Chen and Bargh, 1999; Goldman et al.,
2015). It mitigates technical difficulties that individuals with
substance use disorders exhibit on tasks involving abstract
stimuli, such as low motivation to perform accurately and dif-
ficulty following instructions. In the modified Go/No-go task,
more errors of commission (i.e., false-alarm responses on No-go
trials) are associated with more aggressive behavior, inattention,
and hyperactivity problems among adolescents at high risk for
substance use disorders (Goldman et al., 2015). Similar tasks are
also able to differentiate between patients with mood disorders
(e.g., depression, mania) and healthy controls (Elliott et al., 2004;
Erickson et al., 2005). These findings support the external valid-
ity of the modified paradigm.

The present study is the first to our knowledge to apply a
Go/No-go paradigm to the prediction of adherence to XR-NTX
treatment in OUD patients and to use fMRI to explore the under-
lying neural mechanisms. We hypothesized that OUD patients
who made fewer errors of commission at baseline would show
better adherence to subsequent XR-NTX treatment. Adherence
was operationalized as the completion of a 3-month XR-NTX
treatment program (Tanum et al., 2017; Shi et al., 2018). Another
goal of the study was to explore the neural mechanisms of
adherence using fMRI during the performance of our modified
affective Go/No-go task. We focused on the following regions
of interest given their significant role in addiction as well as
their involvement in affective or reward processing and execu-
tive functions: the NAcc (Zink et al., 2006; Fields and Margolis,
2015), the amygdala (Koob and Le Moal, 2008), the right inferior
frontal gyrus (IFG) (Goldstein and Volkow, 2011; Aron et al., 2014),
and the dorsal anterior cingulate cortex (dACC) (Goldstein and
Volkow, 2011; Shackman et al., 2011).

Methods

Participants

Twenty-nine individuals with OUD were enrolled. Two were
excluded due to excessive errors of omission on the Go/No-go
task (>99% missed response on Go trials). The demographic
characteristics of the remaining 27 participants are summa-
rized in Table 1. All participants gave written informed con-
sent to participate in the protocol, which was approved by the
University of Pennsylvania Institutional Review Board. See the
Supplementary Information: inclusion and exclusion criteria.

Procedure

After the informed consent procedure, participants com-
pleted baseline assessments including the Structured Clinical
Interview for DSM-IV-TR (American Psychiatric Association,
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Table 1. Participant Characteristics (mean = SD)

Variable All Adherent vs Nonadherent P Value
N 27 14 vs 13

Years of age 28.74+£9.71 32.00 + 11.60 vs 25.23 + 5.73 .069
Sex 20M,7F 9M,5Fvs11M,2F .228¢
Race 24 Cau, 3 AA 12 Cau,2 AAvs 12 Cau, 1 AA .247¢
Ethnicity 3 Hispanic 2 Hispanic vs 1 Hispanic .586%
Years of education 14.04 + 1.65 14.00 + 1.71 vs 14.08 + 1.66 .907
Using prescription opioids 27 14 vs 13 1.000°
Using heroin 11 7vs4 .309¢
Errors of commission (%) 39.38 + 18.15 30.83 + 13.98 vs 48.58 + 18.03 .008
Errors of omission (%) 3.76 + 4.65 3.57 +3.81vs 3.97 +5.57 .828
Left NAcc response 3.20 +3.29 4.70 +2.58 vs 1.58 + 3.29 .011
Right NAcc response 3.62 £3.41 4.55+3.16 vs 2.61 + 3.51 144

Abbreviations: Cau/AA, Caucasian/African American; M/F, male/female; NAcc, nucleus accumbens.

P values were obtained from 2-sample t tests, except as below.
ay? test with df = 1.

2000). See the Supplementary Information: additional clinical
assessments.

The fMRI session was conducted after detoxification and
before the first XR-NTX injection. The Go/No-go fMRI task was
adopted from previous research (Goldman et al.,, 2015). The Go
stimuli included 122 positively valenced pictures (e.g., sweets),
and the No-go stimuli were 38 negatively valenced pictures (e.g.,
snakes). Each trial consisted of a stimulus displayed for 300 mil-
liseconds, followed by a 1700-millisecond baseline period dur-
ing which a crosshair was displayed. Pseudo-random order of
the stimuli and baseline periods was generated using optseq?2
(https://surfer.nmr.mgh.harvard.edu/optseq).

Twenty-three participants received the first XR-NTX
injection 2.22 + 7.54 (mean + SD) days after the fMRI ses-
sion (range = 0-36). Seventeen received the second injection
31.53 +3.04 days after the first injection (range = 28-41). Fourteen
received the third injection 30.29 + 5.61 days after the second
injection (range = 23-47). See the Supplementary Information:
study medication.

Data Analyses

fMRI data were preprocessed and subjected to individual-level
analysis of the “No-go vs Go” contrast. Group-level t tests were
applied to anatomically defined left NAcc, right NAcc, left amyg-
dala, right amygdala, right IFG, and dACC masks to identify sig-
nificant voxels at the threshold of family-wise error-corrected
a < 0.05/6 = 0.0083. See the Supplementary Information: MRI
data acquisition and analysis.

Adherence to XR-NTX was operationalized as the comple-
tion of all 3 XR-NTX injections and treated as the outcome vari-
able (1 = completion; 0 = otherwise). A logistic regression model
was tested for each of the 7 predictors: rate of errors of com-
mission, and the neural responses of the left NAcc, right NAcc,
left amygdala, right amygdala, right IFG, and dACC. The neural
responses were extracted from the peak activation voxel in the
masks. Because 7 predictors were tested, P values were corrected
for false discovery rate (FDR) following the Benjamini-Hochberg
procedure with o = 0.05 (Benjamini and Hochberg, 1995). Receiver
operating characteristic (ROC) analysis was conducted to evalu-
ate each model. Predictive accuracy was expressed as the area
under the ROC curve (AUC) and its 95% bootstrap confidence
interval (BootCI). The maximum prediction accuracy (MaxAcc)
was calculated at the optimal cut point. Significant models were

validated using a leave-one-out cross-validation. Commonality
analysis was conducted to determine the unique and common
contributions of the significant predictors in terms of the propor-
tions of the explained variance of the outcome variable. See the
Supplementary Information: prediction analyses.

Results

Participant demographic and clinical characteristics are sum-
marized in Table 1. There were greater responses during No-go
vs Go trials in the left NAcc (k = 64, Z = 4.18, x/y/z = -6/12/-2),
right NAcc (k = 79, Z = 4.44, x/y/z = 6/6/-4), right IFG (k = 45,
7 = 3.49, x/y/z = 48/34/18; k = 2, Z = 3.34, x/y/z = 52/16/32),
and dACC (k = 534, Z = 4.98, x/y/z = 2/42/16; k = 391, Z = 4.88,
X/ylz = —4/34/-8; k = 31, Z = 3.94, x/y/z = -2/-14/38; k = 31,
Z = 3.89, x/y/z = 2/-14/34). The bilateral amygdala responses did
not differ between the No-go and Go conditions. The number
of errors of commission was negatively correlated with the left
NAcc response (r = —0.39, P = .04) and marginally positively with
the dACC response (r = 0.34, P = .08), but not with the responses
of other regions of interest (Ps > .30).

Logistic regression revealed that fewer errors of commission
predicted better treatment adherence (ROC-AUC = 0.79, 95%
BootCI = [0.58,0.93], MaxAcc = 74.04%, ¥*(1) = 7.69, uncorrected
P =.006, FDR-corrected P = .025; see Figure 1A). Greater left NAcc
activity during the No-go vs Go trials also predicted better adher-
ence (ROC-AUC = 0.82, 95% BootCI = [0.53,0.96], MaxAcc = 88.89%,
¥%(1) = 7.22, uncorrected P = .007, FDR-corrected P = .025; see Figure
1B). Neural activity at the right NAcc, bilateral amygdala, right
IFG, and dACC was not significantly associated with adherence
(ROC-AUC = 0.49 to 0.71, MaxAcc = 55.56% to 70.37%, x*(1) = 0.03—-
2.36, uncorrected Ps > .12, FDR-corrected Ps > .29). The predictive
power of errors of commission and left NAcc response were vali-
dated by leave-one-out cross-validation (cross-validated ROC-
AUC =0.73 & 0.76, Ps < .01, MaxAcc = 74.07% and 85.19%).

Commonality analysis showed that 15.66% of variance in
adherence was uniquely accounted for by errors of commission,
13.93% uniquely by left NAcc response, and 17.39% commonly
by both, leaving 53.03% of variance unexplained.

Discussion

Our findings are consistent with the hypothesis that OUD
patients who were better able to inhibit prepotent Go responses
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Figure 1. Receiver operating characteristic (ROC) curves for the logistic regression models predicting adherence to 3 months of extended-release naltrexone (XR-NTX)
treatment in opioid use disorder. (A) Fewer errors of commission predicted better adherence to XR-NTX; area under the ROC curve (ROC-AUC) = 0.79, 95% bootstrap
confidence interval (BootCI) = [0.58,0.93]. (B) Greater left nucleus accumbens response to the No-go vs Go trials predicted better adherence to XR-NTX; ROC-AUC = 0.82,

95% BootCI = [0.53,0.96].

on the No-go trials were more adherent to XR-NTX treatment.
fMRI data showed that the No-go condition induced greater
NAcc, right IFG, and dACC responses compared with the Go
condition and that left NAcc response was positively associ-
ated with XR-NTX adherence. The behavioral performance and
left NAcc response achieved 74% and 85% accuracy in predict-
ing adherence, respectively, suggesting that if these findings are
confirmed, the affective Go/No-go paradigm may be of clinical
interest in predicting XR-NTX treatment outcomes in OUD.

The affective Go/No-go task probes 2 different behavioral
components: an affective component that requires processing
the positive and negative stimuli, and an executive component
that involves inhibiting the prepotent behavioral response.
Deficits in both domains are characteristic of substance use
disorders (American Psychiatric Association, 2000). Clinically,
patients frequently encounter the challenge of recognizing
aversive consequences of drug use and suppressing compulsive
drug-seeking behavior. The design of the current Go/No-go task
maximizes its external validity by making it congruent with the
fact that these deficits often co-occur. Indeed, errors of commis-
sion on this task were associated with OUD treatment adher-
ence in the current study. The external validity is also evidenced
by a previous study, which showed that the rate of errors of com-
mission on this task was associated with aggressive behavior,
inattention, and hyperactivity symptoms in adolescents at high
risk for substance abuse (Goldman et al., 2015).

The activation of the NAcc during the affective Go/No-go
task is consistent with its role in action monitoring/selection
(Floresco, 2015) and processing of salient stimuli (Zink et al,,
2006). Prior research has elucidated drug-induced neuroplasti-
city in the NAcc and its association with the maintenance and
relapse of drug use (Volkow and Morales, 2015; Scofield et al.,
2016). The current study complemented the literature by show-
ing that baseline left NAcc response positively predicted XR-NTX
adherence in OUD. Similarly, Kober et al. (2014) found that base-
line NAcc response in treatment-seeking cannabis users dur-
ing the Stroop task predicted posttreatment abstinence. It is

possible that substance use-induced changes in the brain, such
as abnormal dopamine signaling in the NAcc and other meso-
corticolimbic regions, contribute to the vulnerability to nonad-
herence. Development of adjunct interventions to restore NAcc
functioning may help to improve adherence in those vulnerable
individuals.

Our commonality analysis showed that errors of commis-
sion and left NAcc activity each accounted for a substantial
proportion of unique variance in XR-NTX adherence, suggest-
ing that behavioral and neural measures are complementary
in the prediction of adherence. Nevertheless, 53% of variance
remained unexplained by either predictor or their combination,
suggesting that there is room for improvement in the predic-
tion of XR-NTX adherence. This is consistent with the concept of
addiction as a multi-determined disorder that involves several
domains of neurocognitive alterations. Examples of such altera-
tions not captured in the current study include elevated reactiv-
ity to drug-related cues (Shi et al., 2018) and denial of illness
and need for treatment (Moeller and Goldstein, 2014). Individual
differences in these domains may account for the unexplained
variance. Another approach to improving prediction of adher-
ence is to apply state-of-the-art statistical techniques. Recent
advances in statistical methods such as machine learning (Orru
et al,, 2012) and network analysis (Pariyadath et al., 2016) has
enhanced the power of fMRI in addiction research. These analyt-
ical techniques have the potential to advance our understand-
ing of the neurobiological mechanisms of XR-NTX adherence.

Our study also has a number of caveats. First, the affective
Go/No-go task design did not allow dissociating the affective
and executive contributions to the task response. The absence
of amygdala activation in the No-go vs Go contrast suggests that
the participants may have reduced sensitivity to aversive stim-
uli. We hope that our initial findings will enable future research
on the mechanisms probed by the task to determine the rela-
tive contributions of its affective and executive components.
It is also important for future research to examine whether
and to what extent our findings can be attributed to individual
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differences in learning and memory deficits or associated with
concurrent disorders, such as concomitant stimulant abuse or
depressive disorders. Second, we did not find significant differ-
ences in the demographic and clinical characteristics between
adherent and nonadherent patients. This is consistent with pre-
vious findings that experimental cognitive and neural variables
may be more sensitive predictors of health-related outcomes
than the observational measures based on self-report (Falk
et al., 2011). However, these negative findings may also have
been due to the limited sample size of our preliminary study,
which was not designed to detect small effects. Particularly, we
found that the adherent patients were marginally (P = .069) older
than the nonadherent ones (see Table 1), a trend-level difference
that could nevertheless be associated with higher levels of brain
maturation and lower impulsivity. Future research with larger
samples may determine more accurately how neural and cogni-
tive measures combined with advanced statistical techniques
compare with demographic, clinical, and other self-report
measures (Volkow and Boyle, 2018). Finally, our results raise
the question of whether our approach could be applied to the
prediction of XR-NTX adherence at pretreatment time points
further away from the time of last opioid use (e.g., 2 weeks or
more after detoxification). Although we expect that intact cog-
nitive and affective processes probed by the current paradigm
will remain important for treatment adherence regardless of the
duration of opioid abstinence before treatment is initiated, this
would require experimental confirmation.

In conclusion, fewer pretreatment errors of commission and
greater left NAcc activity during the affective Go/No-go task
were associated with better subsequent adherence to 3 months
of XR-NTX treatment in patients with OUD. These findings point
to the potential mechanisms of adherence that could inform the
development of clinically relevant behavioral and neurophysi-
ological predictors of adherence.
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