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Protein misfolding refers to a process where proteins become structurally abnormal and 
lose their specific 3-dimensional spatial configuration. The histopathological presence of 
misfolded protein (MP) aggregates has been associated as the primary evidence of mul-
tiple neurological diseases, including Prion diseases, Alzheimer’s disease, Parkinson’s 
disease, and Creutzfeldt-Jacob disease. However, the exact mechanisms of MP aggre-
gation and propagation, as well as their impact in the long-term patient’s clinical condition 
are still not well understood. With this aim, a variety of mathematical models has been 
proposed for a better insight into the kinetic rate laws that govern the microscopic pro-
cesses of protein aggregation. Complementary, another class of large-scale models rely 
on modern molecular imaging techniques for describing the phenomenological effects 
of MP propagation over the whole brain. Unfortunately, those neuroimaging-based 
studies do not take full advantage of the tremendous capabilities offered by the chemical 
kinetics modeling approach. Actually, it has been barely acknowledged that the vast 
majority of large-scale models have foundations on previous mathematical approaches 
that describe the chemical kinetics of protein replication and propagation. The purpose 
of the current manuscript is to present a historical review about the development of 
mathematical models for describing both microscopic processes that occur during the 
MP aggregation and large-scale events that characterize the progression of neurode-
generative MP-mediated diseases.

Keywords: misfolded protein, prion-like hypothesis, mathematical modeling, neurodegeneration, therapeutic 
interventions

iNTRODUCTiON

Proteins, large molecules composed by amino acids, play a central role in biological processes 
and constitute the basis of all the living organisms. During different conformational phases of 
the proteins, their folding into compact three-dimensional structures is a remarkable example of 
biological self-assembly and complexity (1). Only correctly folded proteins have long-term stability 
in crowded biological environments, while a folding failure is traditionally associated with a variety 
of pathological conditions (1). Proteins that fail to configure properly are called misfolded proteins 
(MP). In particular, these are thought to disrupt the function of cells, tissues, and organs (2, 3) and 
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have been causally related to multiple conformational disorders, 
such as Prion diseases, Alzheimer’s disease (AD), Parkinson’s 
disease (PD), Creutzfeldt–Jakob disease, amyotrophic lateral 
sclerosis (ALS), and several other human degenerative disorders 
(see Figure 1) (1, 4–7).

Despite the biological importance of its negative effects, the 
mechanisms underlying MP seeding, aggregation, propagation, 
and/or effective toxicity spreading are not totally understood 
(15–17) and have been the subject of scientific controversy for 
decades (14, 18, 19). The high complexity of the underlying pro-
cesses, as well as the difficulties to extrapolate their effects from 
microscopic (e.g., molecular) to macroscopic (e.g., organs) scales, 
have become central obstacles toward the identification of con-
formational disease-specific triggering events. As a consequence, 
discrete advances have occurred in the development of effective 
therapeutic interventions.

For several decades, we have seen the emergence of different 
mathematical approaches aimed to complement our under-
standing of the biological mechanisms that lead to MP-related 
diseases. In a broad manner, mathematical models can be meth-
odologically categorized into two different classes. Namely, a 
large class of models designed to reproduce molecular-level 
processes (e.g. seeding, aggregation, short-range spatial 
spreading in any biological tissue), and a relatively small class 
of models that account for inter-regional macroscopic interac-
tions (e.g., long-range MP propagation in the human brain). 
The former class of models have been traditionally developed 
within the field of chemical kinetics, while the latter one is 
almost restrictive to neuroimaging studies. Unfortunately, both 
research fields tend to follow divergent paths. It is not hard to 
note that neuroimaging-based models invariably follow a single 
(large-scale) perspective, barely referring to pertinent models 
coming from the chemical kinetics field.

Motivated by the current lack of an integrative methodological 
perspective, in this article, we provide a comprehensive histori-
cal overview of mathematical models aimed to characterize MP 
seeding, aggregation, and propagation processes. The manuscript 
is organized in three sections. The first section offers an overview 
of models describing prion dynamics, particularly seeding, 
aggregation, and short-range spatial spreading processes. The 
second section reviews recent advances on the modeling of 
prion-like dynamics associated with neurological disorders. The 
third section highlights important aspects on modeling strategies 
for the development of drugs and therapeutic interventions in 
neurological diseases.

PRiON DYNAMiCS

Prion Aggregation: One-Dimensional 
Models
Pioneering mathematical models on prion dynamics (20) mainly 
focused on simulating the biological mechanisms of prion repli-
cation/aggregation previously described in Ref. (21, 22). By using 
ordinary differential equations (ODEs), Eigen (20) proposed a 
prototype model for the autocatalysis mechanism of Prusiner 
(21, 23), which intended to explain the conversion of a typical 

prion protein (denoted by PrPC) into an infectious agent protein 
(usually denoted by PrPSc). The autocatalysis mechanism, usually 
called either the template-assisted model or the heterodimer 
model (24) (see steps 3 and 4 in Figure 2), features a low rate 
production of PrPSc by spontaneous conversion of PrPC. The 
PrPSc protein then catalyzes the conformational change of PrPC 
by forming a heterodimer, which in turn, dissociates at faster rate 
into two molecules of PrPSc. However, the steady-state analysis 
(20) of the system describing this mechanism revealed unrealistic 
requirements for the rate constants. Consequently, the heterodi-
mer model would be, for instance, unable to replicate the long 
incubation period typically found in prion diseases.

In the same study, Eigen (20) extended the heterodimer model 
to a framework of a cooperative catalysis mechanism. In this new 
scenario, a threshold effect on the concentration of PrPSc would 
determine whether the system maintain the healthy PrPC state (i.e. 
stable concentration of PrPC) or turn (by an autocatalysis mecha-
nism) into a state of exponential production of PrPSc. Despite that 
extended model allows for a more meaningful values range for 
the rate constants, it is still unable to simulate realistic scenarios of 
prion replication. In order to overcome this limitation, Eigen (20) 
showed the need to suppress the linear autocatalysis component 
from the model. In fact, another disadvantage of the cooperative 
catalysis model is its tendency to generate dynamics of globular 
aggregates of PrPSc (26). This behavior clearly contrasts with the 
observations of fibrils of pathogenic PrPC actually conforming 
geometrically linear on a macroscopic level (22). Nevertheless, 
with the aim of keeping the argument of a threshold effect, Eigen 
(20) also simulated the Lansbury’s mechanism (22) of plaque for-
mation. In this mechanism, prion replication does not explicitly 
require a catalysis process but relies on nucleated polymerization. 
In this way, the steady-state analyzes in Ref. (20), in conjunction 
with the in  vitro models developed by Harper and Landsbury 
in Ref. (27), yield a mathematical formalization of the prion 
replication mechanism that is currently known as the nucleated 
polymerization model (NPM) (26, 28).

In summary, the NPM is characterized by four key aspects: (i) 
no replication occurs below a critical threshold of protein con-
centration (i.e., polymerization is very slow below a critical size); 
(ii) a lag time before polymerization for protein concentrations 
just above the critical threshold; (iii) a relatively rapid polymeri-
zation for protein concentrations well above the critical size; and 
(iv) the slow nucleation process can be bypassed by the intro-
duction of exogenous nucleus or seed (27, 29). A formalization 
of a mathematical model describing the dynamics of the NPM 
is due to Nowak et al. (28). In particular, that model describes 
how PrPSc aggregates can either elongate by the incorporation 
of a PrPC monomer or break into two new aggregates. These 
mechanisms of elongation and fragmentation of PrPSc are typi-
cally expressed by an infinite set of ODEs (see Eq. A1 in Appendix 
in Supplementary Material). As noted by Nowak et al. (28) and 
Masel et al. (26), that system of infinite ODEs can be closed by 
summation to yield an ODEs system of only three equations (Eq. 
A2 in Appendix in Supplementary Material). Remarkably, Nowak 
et al. (28) realized, for the very first time, the analogy between this 
model and popular epidemiological models for describing virus 
dynamics (30).
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FigURe 2 | Schematic representation of prion aggregation mechanisms. 
Native (sphere) prion molecules undergo conformational changes that lead to 
an abnormal (cube) configuration (Step 1). This event is unfavorable because 
the abnormal configuration is either unstable (Step 2) or sensitive to 
clearance. According to the template-assisted model (24), prions in their 
abnormal configuration interact with native prions (Step 3) and convert them 
into the abnormal configuration (Step 4). The NPM proposes that abnormal 
prions can interact with molecules in a similar state (Step 5), the oligomeric 
species formed are unstable and grow by the incorporation of abnormal prion 
molecules (Step 6) and dissociate (Step 7) until a stable nucleus is formed. 
Such a stable prion aggregate can then grow indefinitely from one or both 
ends and can also break into smaller fragments (Step 8) that act as new 
nuclei. Figure reproduced from Brundin et al. (25) with the permission of the 
journal.

FigURe 1 | Different neurodegenerative disorders present disease-specific MPs and characteristic anatomical progression patterns. (A) Aβ plaques in the cortex of 
an Alzheimer’s disease (AD) patient. (B) Tau neurofibrillary tangle in a neuron of an AD patient. (C) α-synuclein inclusion in a neuron from a Parkinson’s disease (PD) 
patient. (D) TDP-43 inclusion in a motoneuron of the spinal cord from a patient with ALS. Scale bars are 50 mm in (A) and 20 mm in (B–D). (e) In Alzheimer’s 
disease (AD), Aβ deposits are first observed in the neocortex (NC) and are then detected in all cortical, diencephalic and basal ganglia structures (in a caudal 
direction) and in the brainstem, and occasionally in the cerebellum (8, 9). (F) Tau aggregates develop in the locus coeruleus, then in the transentorhinal and ENT 
regions and subsequently in the hippocampal formation and in broad areas of the NC (10, 11). (g) In PD, the progression of α-synuclein pathology follows an 
ascending pattern from the brainstem to the telencephalon (9, 11). The earliest lesions can be detected in the olfactory bulb, and in the dorsal motor nucleus of the 
vagus nerve (DMX) in the medulla oblongata. At later stages, the α-synuclein aggregates are found more rostrally through the brainstem via the pons and midbrain, 
in the basal forebrain and, ultimately, in the NC. (H) In ALS, initial TDP43 inclusions are seen in the agranular motor cortex (AGN), in the brainstem motor nuclei of 
cranial nerves XII–X, VII and V, and in α-motor neurons in the spinal cord. Later stages of disease are characterized by the presence of TDP43 pathology in the 
prefrontal neocortex (PFN), brainstem reticular formation, precerebellar nuclei, pontine gray, and the red nucleus. Subsequently, prefrontal and postcentral 
neocortices, as well as striatal neurons, are affected by pathological TDP43, before the pathology is found in anteromedial portions of the temporal lobe, including 
the hippocampus (9, 12). AC, allocortex; BFB, basal forebrain; BN, brainstem nuclei; BSM, brainstem somatomotor nuclei; ENT, entorhinal cortex; MTC, 
mesiotemporal cortex; SC9, spinal cord gray-matter lamina IX; SN, substantia nigra; TH, thalamus. Figures (A–D) and (e–H) were adapted with permission from 
Ref. (13, 14), respectively.
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possibility of aggregation from a nucleated seed. Based on this 
observation, Nowak et al. (28) introduced a modified model that 
allows for a more realistic assumption: all PrPSc aggregates below 
a critical threshold size would become unstable and quickly dis-
sociate into pieces that return to a PrPC state. Therefore, a realistic 
aggregation mechanism would require a nucleation-based seed 
of at least a critical threshold size. Unfortunately, that modi-
fied model [see Appendix B in Supplementary Material in Ref. 
(28)] was not closed by summation as in the case of Eq. A1 and 
required further approximations. Nevertheless, Masel et al. (26) 
extended Nowak’s NPM for covering the possibility of a nucleated 
seed [see Eq. 8 in Ref. (26)] while also reducing the number of 
kinetic rates and making the system closed by summation. As 
in the case of Eq. A2, the Masel’s NPM can be also described 
by an epidemiological-like system of three ODEs (see Eq. A3 in 
Appendix in Supplementary Material). In comparison with the 
original formulation of Nowak et al. (28), the Masel’s model not 
only provided important mathematical simplifications but also 
facilitated the validation of the NPM dynamics with in vitro data.

Several modifications and extensions to the NPM has been 
proposed during the last two decades (31–36). A remarkable one 
was given by Greer et al. (33), which, rather than modeling the 
PrPSc dynamics through an infinite set of differential equations, 
considered a continuum of possible fibril lengths, written down 
by a transport partial differential equation (PDE). The PDE for-
malism turned out to be more accessible from the mathematical 
point of view and yielded three-dimensional epidemiological-like 
models. In addition, the PDE formalism enables the study of dif-
ferent aspects of prion dynamics, such as the distribution of prion 
fibrils and fragmentation processes (33). By relying on the Greer’s 
approach, Prüss et al. (34) provided a detailed characterization 
of the epidemiological-like behavior of the NMP. By making an 
analogy with the basic reproductive ratio (30) used in epidemio-
logical theory, Prüss et al. (34) defined a constant R0 as the number 
of secondary infections produced on average by one infectious 
prion (i.e., PrPSc). Thus, if R0 ≤ 1, the prion replication stops and 
the disease-fee equilibrium state turns out globally asymptotically 
stable. On the contrary, if R0 > 1, the prion replication persists as 
an asymptotically stable disease state.

As in the case of the discrete formulation of the NPM, some 
studies (37, 38) have focused on extending the Greer’s continu-
ous fibril length modeling (33) to more general frameworks (e.g., 

A detailed analysis [see Ref. (28)] of the Eq. A1 revealed a 
mechanism whereby aggregation could be initiated from a PrPSc 
monomer at a uniform rate, thus neglecting the (highly probable) 
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size-dependent kinetic parameters). Despite the mentioned 
advantages of the continuous formulation, some efforts have 
been put on investigating its mathematical connection with the 
discrete model, as well as the biological implications of such gen-
eralization (39). A more recent study (40) has demonstrated that 
the discrete formulation of the NPM can still be exploited in order 
to gain further insights about the dynamics of prion replication/
aggregation.

Prion Propagation: Spatial Spreading
The main motivation for considering neuronal transport of prion 
proteins seems to be given by early observations in animal models 
(41) about the latency between the appearance of PrPSc in the 
peripherical nervous system and its appearance in the central 
nervous system. This latency cannot be explained by the rate at 
which PrPC is converted into PrPSc at specific spatial location, but 
it is more likely related to the rate of spread between neighbor-
ing localities (42). The first attempt to simultaneously model 
processes of prion aggregation and neuronal transport inside 
the brain was given by Payne and Krakauer (42). Indeed, Payne 
and Krakauer (42) extended the template-assisted model (20, 23) 
of prion replication by adding a spatial spreading component 
consisting on the statistical assemblage of PrPSc molecules with a 
classical diffusion process. Note that, with the introduction of this 
spatial spreading component, Payne and Krakauer (42) overcame 
the main limitation (i.e. no disease latency) of the template-
assisted model. However, due to the acceptance of nucleated 
polymerization as a plausible mechanism for prion aggregation, 
incorporation of spatial spreading into the NPM seems to be a 
promising choice. With this aim, Matthäus (43) used the diffusion 
approach within the discrete NPM in order to model prion spatial 
spreading over simple (i.e., one-dimensional) domains like the 
spine or the mouse visual system (see Eq. A4 in Appendix in 
Supplementary Material). However, classical diffusion is better 
suited for modeling free movement of particles in homogenous 
medium, while the whole brain is a highly heterogeneous one. 
By acknowledging this limitation, Matthäus (43) proved that the 
solutions of the NPM model with one-dimensional diffusion fol-
low a traveling wave behavior. Despite such characterization pro-
vided a clearer interpretation about the prion propagation speed 
along pre-defined spatial domains, the proposed model cannot 
be reduced to a simpler epidemiological-like system. Besides, as 
pointed out by Matthäus in Ref. (43), it is not realistic to extend 
the isotropic diffusion approach to large multi-dimensional 
domains. Indeed, modeling diffusion in a homogeneous medium 
would force prions to spread with equal speed in all spatial direc-
tions. This is unlikely to happen in practice since in vitro models 
have proved that prions spread along the neuronal pathways (44), 
where infection may reach distant cells at the same time or even 
faster than neighboring cells (43).

By using a simplified approach, Stumpf and Krakauer (45) 
modified the epidemiological-like configuration of the NPM 
in order to incorporate spatial “connectivity” features into the 
temporal evolution of prion kinetics. Specifically, Stumpf and 
Krakauer (45) used a lattice domain to model the influence of cell 
connectivity and cell density in several prion diseases (see Eq. A5 
in Appendix in Supplementary Material). The main assumption 

in Stumpf–Krakauer’s model (45) is that PrPSc components 
spatially spreads along axons and dendrites by slow axonal trans-
port, where the rate of spread from cell to cell depend on the 
connectivity strengths. To our knowledge, Stumpf and Krakauer 
model constitutes the first successful attempt of incorporating 
brain connectivity features into prion diseases models described 
by epidemiological-like equations.

Summarizing, Matthäus (43) and Stumpf and Krakauer (45) 
were the first studies that attempted to fill the gap between two 
different modeling scales: reaction kinetics at molecular level and 
spatial spreading along a large (e.g., whole brain) and complex 
domain. Unfortunately, these pioneering studies have received 
little acknowledgment in subsequent studies about proteins 
propagation over large-scale brain networks. Due to its close 
relationship with current large-scale protein propagation models, 
we will provide more details about the network approach over the 
following sections.

PRiON-LiKe DYNAMiCS iN 
NeUROLOgiCAL DiSeASeS

Similarly to prion diseases, several neurodegenerative diseases 
(e.g., AD, PD, and FTD) are pathologically associated with the 
presence of MP (e.g., tau, Aβ, α-synuclein; see Figure 1) (15, 17, 
25, 46, 47). By using in vitro models, it has been demonstrated 
(48–50) that fibril aggregates of α-synuclein, tau and Aβ proteins 
self-propagate under biochemical mechanisms analogous to 
those described for prion aggregation/propagation. These obser-
vations in conjunction with several in vivo animal models (50, 51) 
established the founding of the so-called prion-like hypothesis of 
neurodegenerative progression. Under the prion-like hypothesis, 
the MP “infectivity” propagates from initial seed regions with 
a relative high concentration of pathogenic proteins to other 
“non-infected” brain regions. It should not be surprising that the 
development of mathematical models for aggregation/propaga-
tion of Aβ have followed concurrent paths with those of prion 
evolution.

Nucleated Polymerization of Aβ
As in the case of prions, the NPM has been accepted as a plau-
sible preliminary mechanism for Aβ aggregation/propagation 
(22, 27). However, early in  vitro studies (27, 52, 53) suggested 
that the actual mechanism of Aβ aggregation might be more 
complex than the classical NPM. Indeed, Aβ aggregation is 
a mechanism likely involving the formation of intermediates 
soluble micelles [also called protofibrils in Ref. (53)], which 
are in rapid equilibrium with APP monomers. Such interaction 
yields domains of high local protein concentration that facilitate 
the formation of fibril nucleus (27, 52, 54–56). As pointed out in 
Ref. (54), the formation of intermediates micelles had not been 
previously detected because the methods for quantification of 
Aβ aggregation at that time (e.g. Turbidity, Thioflavin T fluores-
cence) were only able to detect large polymeric structures such 
as Aβ aggregated fibrils. Using a Quasielastic Light Scattering 
technique, Lomakin et al. (52) proposed an in vitro model that 
facilitates a quantitative monitoring of the kinetics of Aβ fibrils 
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formation, and consequently, the detection of smaller polymeric 
structures. Based on that study, Lomakin et al. (54) formalized a 
mathematical model for describing the simultaneous temporal 
evolution of APP monomers, Aβ micelles and Aβ fibrils. While 
in the classical NPM the long latency phase was interpreted as 
the time required for nucleation, the findings of Ref. (52, 54) sug-
gest that it is rather the time required for formation of larger Aβ 
protofibrils (55–57). Based on this re-interpretation of the NPM, 
fibrillization of Aβ would be still a nucleation-dependent process 
that occur under two concurrent nucleation pathways: exogenous 
seeds and intermediates Aβ micelles.

As in the case of NPM, Lomakin’s model involved an infinite 
set of ODEs, one per each fibril length. That system can be closed 
by summation to yield a set of four differential-algebraic equa-
tions. There, two ODEs correspond to the temporal evolution of 
the total length of Aβ fibrils and the total concentration of Aβ 
aggregates, while two algebraic equations relate (by a conserva-
tion of mass condition) the number of APP monomers and Aβ 
micelles with the Aβ fibrils. Although Lomakin’s model was able 
to replicate the temporal evolution of the mass concentration of 
fibrils and the fibrils length, it did not consider any fragmentation 
process. Despite this limitation, Lomakin’s model constituted a 
successful attempt to mathematically model detailed mechanisms 
of Aβ fibrils and intermediates assemblies of different sizes.

Realizing that experiments in Ref. (52) had been conducted 
under nonrealistic physiological conditions, Murphy and Pallitto 
(58) carried out a thoughtful in vitro study to better characterize 
the properties of intermediates micelles during the process of 
fibrils formation. Using light scattering techniques, Murphy and 
Pallitto (58) were able to monitor the temporal evolution of the 
average length of fibrils, the average number of monomers in a 
fibril, as well as to compute the time to appearance of macroscopic 
Aβ aggregates. Based on this characterization of the Aβ assem-
blies [e.g., monomers, micelles, filaments (i.e. thin fibrils), (thick) 
fibrils, and aggregates], Pallitto and Murphy (59) proposed a 
detailed multi-steps model for Aβ aggregation kinetics. In that 
model, a nucleation mechanism was not assumed for the initial 
step of conversion of unfolded monomers into micelles but for the 
further self-association of micelles into a nucleus (59). This multi-
step mechanism also includes: (i) a cooperative (i.e., reversible) 
self-association of micelles into polymeric nucleus, (ii) elongation 
of nucleus into filaments by aggregation of micelles, (iii) lateral 
aggregation of filaments into fibrils, and (iv) fibril elongation via 
end-to-end aggregation (57, 59). As is usual in kinetic modeling, 
this multi-step mechanism translates into an infinite set of ODEs, 
which in turn, can be closed by summation to yield a set of eight 
ODEs. Note that the more types of Aβ assemblies included in the 
model, the greater the number of equations and kinetic constants 
rates. Fortunately, the master equations approach provides a 
unified framework for formulating kinetic equations for Aβ 
assemblies of any size (60, 61).

Master equations for Aggregation:  
A Modern Approach
The main idea underlying the master equations approach is to use 
principles of chemical kinetics in order to derive equations that 

explicitly account for the different microscopic processes involved 
in the proteins aggregation mechanisms (61). The ultimate goal 
is, from these (master) equations, to derive integrated rate laws 
that characterize the kinetics of protein aggregation. Although 
not explicitly developed in the specific context of Aβ, the master 
equations approach is currently established as the most general 
mathematical formulation for describing the kinetics of MP 
formation (60, 61).

Mathematical modeling of protein aggregation by master 
equations appeared in pioneering studies of filamentous growth 
phenomena (62). Under the basic principles of homogeneous 
nucleation, growth, and dissociation processes, Oosawa and Kasai 
(62) formulated a master equation for describing the time evolu-
tion of a population of filaments with different polymerization 
numbers. Similar to the NPM, the master equation is expressed 
by an infinite set of ODEs. It also relates directly to experimental 
measurements through the number and mass concentrations 
of the aggregates, which temporally evolve by a closed system 
of two ODEs, the so-called moment equations. Note that, in 
contrast to Masel et al. (26), the moment equations do not evolve 
as an epidemiological-like system. Instead, this system explicitly 
remarks its dependency on the concentration of free monomers. 
This discrepancy is given by the fact that, while Masel et al. (26) 
considered a free production of monomers at a constant rate, the 
master equations approach imposes the principle of conservation 
of mass. Thus, in the master equation approach, the time evolu-
tion corresponding to the monomer concentration only accounts 
for monomers consumed by incorporation into aggregates and 
monomers dissociated from aggregates, while keeping the total 
amount of monomers at a constant level (i.e., by conservation 
of mass).

Solving the moment equations yields the desired integrated 
rate laws that govern the reaction time course [see details in Ref. 
(61)]. Interestingly, a detailed analysis of the integrated rate law 
in Ref. (62) revealed that the actual role of the nucleation step 
was to generate new elongations seeds rather than facilitate the 
incorporation of monomers into aggregates. Even more, nuclea-
tion and growth processes seem to occur simultaneously [see a 
more detailed discussion in Ref. (61)], thus equally contributing 
to the length of the well-known lag phase observed on nucleation-
dependent processes. In addition, for the very particular case 
of all proteins in initial monomeric configuration, Oosawa and 
Kasai (62) showed that the early stages of the reaction time course 
follow a quadratic rate law, which is a feature of growth governed 
by a primary nucleation pathway. The integrated rate law also 
revealed the dependency of the reaction time course on a single 
parameter (in terms of the microscopic rate constants), which 
ultimately scales with many of the phenomenological observable 
measurements (e.g. half polymerization time, maximal growth 
rate) (61). In other words, the integrated rate law of protein aggre-
gation kinetics shows a scaling behavior. This feature has become 
a very important tool for understanding the protein aggregation 
process across different temporal and spatial scales [see an excel-
lent discussion about this property in Ref. (63)].

During the last few decades, the Oosawa theory has been 
extended (60, 64–67) to include mechanisms of fragmentation 
and heterogeneous (secondary) nucleation (collectively called 
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secondary pathways), where new aggregates could be also created 
at a rate depending on the concentration of existing aggregates. 
Extension of the Oosawa’s original formulation was mainly moti-
vated by a discovery showing that the mass concentration of actin 
(65) and hemoglobin S (67) polymers tends to increase more 
rapidly than a quadratic rate law. As a consequence, the master 
equation should include extra terms for describing fragmentation 
processes and a secondary nucleation at a rate proportional to the 
surface area of existing aggregates (61, 64) (see Eq. A6 in Appendix 
in Supplementary Material). Similar to Oosawa, Ferrone et al. (66) 
derived closed equations for the time evolution of the number 
and mass concentration of the aggregates (see Eq. A7 in Appendix 
in Supplementary Material). Unfortunately, those equations are 
not analytically integrable, which poses additional difficulties for 
the derivation of the corresponding integrated rate law. As an 
alternative to the classical global analysis of the integrated rate 
law, Ferrone et  al. (66) carried out a perturbation analysis for 
characterizing the early stages of the reaction time course [see 
a detailed explanation in Ref. (67)]. Such perturbation analysis 
revealed that the quadratic early-time growth rate predicted by 
Oosawa’s original theory is still valid when the reaction is domi-
nated by the primary nucleation process. By contrast, when the 
reaction is dominated by the secondary nucleation process, the 
early-time growth follows an exponential law.

At that point, the applicability of an integrated rate law 
including fragmentation and secondary nucleation seemed to be 
limited to the early stages of the reaction time course. Evidently, 
an alternative solution would be employing numerical integrators 
for solving the closed system of equations corresponding to the 
number and mass concentration of the aggregates. However, it is 
not recommendable due to the highly non-linear structure of this 
system. Besides, understanding the role played by the kinetic rates 
is extremely difficult when only numerical solutions are avail-
able. In order to overcome these limitations, Knowles et al. (60) 
introduced a new technique that has been one of the major con-
tributions to the kinetic theory of amyloid formation. Specifically, 
Knowles et al. (60) derived analytical solutions for the integrated 
rate law that extends its validity to the entire reaction time course. 
The main idea underlying this new technique is to use the early-
times solution as a starting point in order to solve the non-linear 
moment equations with an iterative strategy [see details in Ref. 
(60)]. Thus, closed-form integrated rate laws were presented for 
the case of fragmentation (60) and monomer-dependent second-
ary nucleation (64). Similar to the Oosawa theory, these integrated 
rate laws revealed the dependency of the reaction time course 
on two parameters that can be easily related to experimentally 
observed phenomenological variables (60, 61, 64).

Having an analytical formula for the integrated rate law 
becomes extremely important since it allows global fitting [see 
an excellent discussion in Ref. (68)] of experimental data under 
different conditions (e.g., changing monomer concentrations). 
For instance, in vitro data corresponding to the peptides Aβ40 
and Aβ42 fit very well to the theoretical model of Knowles et al. 
(60) which has clearly improved our understanding about the 
formation of Aβ aggregates (69–71). In fact, the analysis of such 
experimental data points to the secondary nucleation process 
as the mechanism responsible for the toxicity related to Aβ42 

aggregation (69). Moreover, a similar analysis (70) showed clear 
differences (in the relative importance of primary nucleation ver-
sus the secondary nucleation) between the molecular mechanism 
of aggregation of Aβ40 and Aβ42.

During the last few years, the master equations approach and 
the corresponding integrated rate laws have been subject of mul-
tiple investigations (72–78). Among them, it is worth remarking 
the contribution of Cohen et al. (76) which included mechanisms 
of spatial propagation within the master equations framework. By 
fitting the model to experimental data, Cohen et al. (76) found 
that the secondary pathways govern the speed of spatial propaga-
tion by diffusion.

To conclude this section, note that, solely from the mathemati-
cal point of view, modeling the kinetics of protein aggregation 
through master equations is still a very active research field (79). 
Not to mention the profound impact that this novel approach has 
produced in the quest of therapeutic techniques for reducing the 
toxicity associated to low molecular weight Aβ aggregates (79).

Coagulation Theory for Aggregation:  
A Road to Brain imaging Modeling
As in the case of the master equations approach, the coagulation 
theory described by Smoluchowski’s equations (80) also covers 
the general case of self-association among particles assemblies of 
different sizes. The first references to Smoluchowski’s equations 
in the context of Aβ aggregation appeared in Ref. (58, 59) for 
describing the axial elongation of fibrils by end-to-end aggrega-
tion of shorter fibrils. By using Smoluchowski’s equations, Craft 
et al. (81) proposed a polymerization model where the nucleation 
process appears implicitly incorporated within the mechanism 
of association of small size polymers (e.g., monomers, micelles, 
and filaments). This model includes processes of production and 
dissociation of monomers as well as elongation and fragmenta-
tion processes for Aβ polymers. Similar to Ref. (34) for the case 
of prion diseases, Craft et al. (81) defined a polymerization ratio 
R0 as the product of the production and elongation rates divided 
by the product of the degradation and fragmentation rates. The 
Aβ burden (i.e., total number of Aβ molecules) falls into a steady-
state level if the polymerization ratio R0 is less than one, and 
shows an increasing Aβ accumulation if this ratio is greater than 
one (81). A more formal presentation of the coagulation theory 
and Smoluchowski’s equations in the context of Aβ aggregation 
in vitro can be found in Ref. (82). (see Eq. A8 in Appendix in 
Supplementary Material).

An important turning point in the field of Aβ aggregation/
propagation mechanism modeling is due to Achdou et al. (83). 
That study settled the grounds for linking molecular mechanism 
of early aggregation/propagation of Aβ oligomers with modern 
imaging techniques for measurements of amyloid deposition 
in vivo. The mathematical approach followed by Achdou et al. (83) 
was also based on Smoluchowski’s equations. However, rather 
than writing down closed ODEs for the moments of polymer 
length distribution, Achdou et al. (83) truncated the infinite set of 
differential equations (see Eq. A9 in Appendix in Supplementary 
Material) at a large enough number N. Under this approxima-
tion, large aggregates composed of more than N monomers are 
not supposed to coagulate each other. Thus, the time evolution 
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equation corresponding to the truncation number N should be 
able to describe the summary of all Aβ assemblies composed of 
more than N monomers. In addition, Achdou et al. (83) realized 
that the Smoluchowski’s equations also provide a straightforward 
framework for incorporating processes of spatial propagation. 
Note, however, that Achdou’s model is only valid on small spatial 
domains (e.g., domain size comparable to a multiple of the size 
of a neuron), for which isotropic diffusion is a valid assumption. 
Under essentially the same assumptions, a straightforward gen-
eralization of Achdou’s model was given by Franchi and Tesi (84) 
which added fragmentation terms to equation (A9). As pointed 
out in Ref. (83) a major limitation is that this model is only able 
to simulate temporal trajectories up to the scale of microscopic 
processes occurring at the single neuron level.

The development of modern imaging techniques demands 
alternative models and the possibility to probe them at greater 
macroscopic scales. With this aim, a large-scale model was 
recently proposed by Bertsch et al. (85). Specifically, Bertsch et al. 
(85) coupled a set of truncated Smoluchowski’s equations to a 
kinetic-type transport equation that models the spreading of neu-
ronal damage by neuron-to-neuron prion-like transmission. A 
major advantage of such modeling is the ability to incorporate two 
different temporal scales evolving over the same spatial domain: 
a rapid temporal scale (e.g. hours) for modeling microscopic 
processes of Aβ polymer agglomeration (by Smoluchowski’s 
equations); and a slow (e.g., months, years) scale to account for 
the longitudinal progression of AD (by the transport equation) 
(85). In that model, Bertsch et al. (85) assumed that oligomers 
of length greater than N can be measured by neuroimaging tech-
niques (e.g., PIB-PET), as well as the parameter that controls the 
neuronal damage (e.g., FDG-PET). Note that Bertsch’s modeling 
approach is the first study that attempts to build a bridge between 
the microscopic and macroscopic processes that characterize the 
impact of Aβ aggregation on the onset and clinical progression of 
AD. Although still insufficient, some effort has been already put 
on checking the mathematical correctness and internal consist-
ency of that model (86, 87).

The Network Approach: Modeling  
inter-regional Propagation
As it was already mentioned, modeling spatial spreading of prion 
proteins and MP by a homogeneous diffusion process is not a 
realistic choice in large spatial domains like the whole brain. 
Indeed, prion proteins and MP can spread long nerves and “infect” 
distant regions (44). Thus, for the very first time, Matthäus (43) 
used the so-called network approach for covering this scenario. 
There, a mathematical representation of a network consisted of 
a set of nodes and edges, where the nodes represented neuronal 
cells and the edges characterize whether two cells are connected 
(e.g., in the form of a synapse) or not (43). Using this simple 
mathematical framework, Matthäus (43) described the spread of 
prion protein infection along a network of inter-connected neu-
rons by a discrete Susceptible-Infected epidemiological model 
(30). In this kind of models, the network nodes are classified 
into susceptible and infected nodes, where the susceptible ones 
become infected if at least one of their connected neighbors is 
already infected. Thus, in contrast to a homogeneous diffusional 

spread, the network approach models a rapid infection spread 
within clusters of highly connected neurons, and propagation to 
other clusters via long-distance connections (43).

The network approach (43) does not only model the influ-
ence of the network topology on the speed of the MPs spread 
but it is also flexible enough to handle different spatial scales. 
Correspondingly, Matthäus (88) formulated a system of reac-
tion–diffusion equations by coupling kinetic equations of the 
heterodimer model with discrete diffusion terms to account for 
transport on networks. There, the network nodes can represent 
distant regions covering large spatial domains, thereby overcom-
ing the limitations of Ref. (43). In this approach, the diffusion 
term at each node is spatially approximated by a sum of flows 
among neighboring nodes, such that the prion protein concentra-
tion is transported to the neighbors of the node and vice versa 
(88). Unfortunately, the reaction–diffusion equations formulated 
by Matthäus (88) have not been extended to nucleated polymeri-
zation mechanisms of prion replication.

While Matthäus (43, 88) modeled microscopic processes at 
the neuronal level, more recent macroscopic approaches have 
focused on the large-scale connectivity of the whole brain. In 
this line, Raj et al. (89) proposed a macroscopic network diffu-
sion model (NDM). In the NDM, the number of MP afferents 
from a given brain region to any other region uniquely depends 
upon the disease concentration factors in both regions and 
upon the anatomical connection strength between them. This 
model was initially explored with structural atrophy data (89) 
and posteriorly with FDG PET metabolism (90), reproducing 
in both cases characteristic spatial distributions of MP effects on 
a relatively small sample of late-onset AD subjects. In addition, 
this diffusion model has been recently extended to account for 
impulsive sources of brain atrophy patterns over the brain con-
nectivity network (91). As a main limitation, the NDM does not 
consider mechanisms of clearance and production of MP. Instead, 
the disease-related factors have no causal interpretation and 
accumulate gradually in the absence of any source and/or system 
resistance. By considering a more realistic scenario, Iturria-
Medina et  al. (92) introduced an epidemic spreading model 
(ESM) that simultaneously accounts for the regional capacity to 
produce/clean MPs and the topological information of the brain’s 
anatomical network (see Eq. 10). When applied to the study of 
late-onset AD using Aβ PET data, that model was able to repro-
duce Aβ deposition patterns at the individual level. In line with 
recent experimental results (93, 94), the ESM also identifies that 
reduced Aβ clearance, and not Aβ overproduction as the primary 
cause of Aβ deposition. Importantly, as highlighted in the ESM 
study (92), the cognitive and clinical states of the AD patients can 
only be partially explained by the mechanisms of Aβ production, 
clearance, and spatial propagation.

Beyond MPs: An integrative Modeling 
Approach
The existence of detailed pathological mechanisms and hypoth-
eses for AD progression (49, 95–98) has motivated the consid-
eration of a more integrative multifactorial modeling approach 
for MP formation and propagation (98–102). Early remarkable 
papers published by Edelstein-Keshet and Spiros (98) and Luca 
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et  al. (102) looked into detail at the underlying mechanism of 
deposition, uptake, removal, and degradation of Aβ. In particular, 
Edelstein-Keshet and Spiros (98) focused on modeling the inter-
action among Aβ deposits, glial cell, inflammation, and secreted 
cytokines, as well as the corresponding stress, recovery, and death 
of neuronal tissue. The numerical simulations carried out in Ref. 
(98) have helped to fill the gaps between hypothesized interac-
tions and downstream consequences among different processes 
occurring during the AD progression. For instance, it was shown 
that an amyloid clearance deficiency could saturate the system and 
push it to toxic Aβ levels, yielding a state of competition between 
protective and toxic effects. Importantly, Edelstein-Keshet and 
Spiros (98) showed, for the very first time, a mathematical model 
where severity of AD does not need to correlate with sensitivity of 
neurons to amyloid fibers. In this way, Edelstein-Keshet and Spiros 
(98) highlighted the necessity of more integrative mathematical 
formulations that be able to consider AD and other neurodegen-
erative diseases as multifactorial, inter-dependent processes.

In the same line, Puri and Li (99) presented a (microscopic 
scale) mathematical approach for describing the dynamics of 
critical components in AD pathogenesis. Formulated in terms 
of ODEs, that model describes well-known interactions among 
microglia, astroglia, neurons, and Aβ. The main feature there is 
to use neuronal death as a surrogate for senile amyloid plaque 
formation. Numerical simulations using that model indicates that 
inflammation might be used as an early biomarker for AD since 
microglia-related alterations can occurs long before apparent 
senile plaques formation (99). Similarly, Hao and Friedman (101) 
recently formulated a set of ODEs for describing microscopic 
processes of AD that included neurons, astrocytes, microglias, 
peripheral macrophages, as well as Aβ and hyperphosphorylated 
tau proteins. Based on numerical simulations, Hao and Friedman 
(101) suggested that a combination of inflammatory processes by 
cytokines and accumulation of Aβ plaques are key elements in 
accelerating the progression of AD. By following an integrative 
macroscopic approach, Iturria-Medina et  al. (100) proposed a 
multifactorial causal model (MCM) in order to simultaneously 
account for macroscopic MP effects, regional multifactorial 
causal interactions, and pathological propagations through 
physical networks (e.g., axonal and vascular connectomes). The 
MCM (100) considers that, once a factor-specific event (e.g., Aβ 
deposition, vascular dysregulation, and structural alterations) 
occurs in a given brain region or in a set of regions, it can directly 
interact at the macroscopic level with other biological factors and 
alter their states. These alterations can also propagate through 
anatomical and vascular connections to other brain areas, where 
similar factor-factor and spreading mechanisms may occur in a 
positive feedback mechanism (see Figure 3 and Eq. 11).

THeRAPeUTiC iNTeRveNTiON 
MODeLiNg

Usually, chemical kinetic models of proteins aggregation are used 
as a surrogate to therapeutics interventions in vitro. The general 
idea is to simulate how a therapeutic intervention (e.g., drugs, 
antibodies, and molecular chaperones) might inhibit certain 
microscopic aggregation processes. Then kinetic rates of protein 

aggregation can be estimated and compared under both natural 
and inhibition conditions. For instance, monitoring kinetic rates 
as function of a hypothetical drug dose might help to extrapolate 
small drug dosages inherent of in vitro environments to dosages 
more closely resembling in vivo conditions (103).

Within the formalism of the simplest NPM (e.g., Eq. A3), two 
main strategies have simulated a therapeutic intervention on the 
kinetics of MPs (103). In this pioneering study, Masel and Jansen 
(103) used mathematical models to simulate the inhibition of 
amyloid propagation with three main approaches: (i) by lowering 
the effective monomer concentration of unfolded proteins; (ii) by 
blocking growing polymer ends; and (iii) by increasing the poly-
mer breakage rate (see Figure 4). They found that therapeutics 
following the second strategy would provide promising results, 
while the remaining ones may be ineffective or even accelerate 
the amyloid formation process at low drug dosages (103). Indeed, 
any attempt of breaking up protein polymers into smaller pieces 
might yield undesired effects since small oligomers are more 
prone to propagate and spread neurotoxicity.

As discussed in a previous section, Craft et al. (81) established 
a non-linear relationship between the polymerization ratio R0 and 
the total Aβ burden, where R0 determines two different regimes: a 
steady-state of Aβ burden or a super-critical regime of continuous 
Aβ burden increase. By using an empirical relationship between 
Aβ burden and clinical dementia scores (CDR), Craft et al. (81) 
explored a potential therapeutic treatment based on the reduc-
tion of the polymerization ratio. Since the polymerization ratio 
depends on four different kinetic rates, several treatment strate-
gies could be easily simulated in this context: (i) the reduction of 
Aβ monomers production rate, (ii) the enhancement of fragmen-
tation, (iii) the enhancement of the clearance (i.e., degradation) 
rate, and (iv) the reduction of the elongation rate. In fact, around 
the time that paper was originally submitted [although originally 
submitted in 2001 (81), only appeared published in 2005], several 
treatment approaches following some of these strategies appeared 
promising in preclinical studies (104–106).

Note that the assessment of different treatments scenarios is 
usually carried out in two main steps. First, one assumes that 
a hypothetical change (e.g., by treatment) on the appropriate 
kinetic rates and then substitutes those modified rates into the 
original model in order to evaluate the post-treatment dynami-
cal states. The therapeutic treatments simulations carried out 
in Ref. (81) suggested three different possible outcomes: (1) a 
reduction of Aβ burden from a pre-treatment steady state to a 
post-treatment steady state; (2) a transition from a pre-treatment 
Aβ burden increasing state to a post-treatment steady state; and 
(3) a reduction in Aβ burden increasing from a pre-treatment 
super-critical state to a post-treatment super-critical state. 
Importantly, as pointed out by Craft et al. (81), the failure of a 
potential drug to reduce the total Aβ burden may not necessarily 
be associated to drug inactivity but rather to a late intervention 
during the super-critical state. Besides, Craft et al. (81) showed 
that any drug treatment based on clearance rate enhancers might 
be more effective in reducing the total Aβ burden than those 
based on polymer fragmentation enhancers.

The previous therapeutic intervention modeling was general-
ized in Ref. (107) by the simulation of the accumulation and 
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spreading of Aβ among the brain, CSF, and plasma. Note that the 
proposed compartmental model does not only consider produc-
tion and degradation of Aβ polymers within the brain but also 
accounts for sources and losses due to transport to and from the 
plasma and CSF (107). The numerical simulations carried out in 
Ref. (107) suggest that potential drugs based on the production of 
Aβ inhibitors (e.g., by enhancing clearance rate) are likely to reduce 
Aβ burden in the brain, CSF and plasma. By contrast, any drug 
based on favoring polymers fragmentation and blocking polymers 
elongation may also reduce Aβ burden in the brain but may not 
reduce (or even cause a subtle transient increase) Aβ levels in CSF 
and plasma. By following similar ideas, Das et al. (108) proposed 
a two-compartment model for the distribution of the γ-secretase 
inhibitor between the plasma and the CSF, and its effect on the 
Aβ concentrations in the two compartments. The steady-state 
analysis of this model reproduced a primary γ-secretase inhibitor 
effect that caused a decrease in Aβ concentration in both CSF and 
plasma. However, the model also captured an overshoot of Aβ in 
the plasma compartment, which was explained by an off-target 
effect (attenuation of the Aβ clearance rate) of the γ-secretase 

inhibitor. Das et al. (108) concluded that any effective Aβ-reducing 
drug would have to necessarily account for more detailed kinetic 
mechanisms of Aβ production and clearance.

More recent studies such as Ref. (109, 110) used a stochastic 
modeling approach for simulating discrete versions of simple 
ODEs describing MP aggregation processes. Similar to Ref. (81), 
Proctor et al. (109) showed that a small decrease in the dissociation 
rate of Aβ monomers is enough to increase the chance of appear-
ance of intermediate Aβ toxic species (e.g., dimers, oligomers). 
In addition, numerical simulations showed that any potential 
antibodies therapy against the formation of Aβ dimers would 
have large benefits as an early intervention strategy. Similarly, 
Proctor et al. (110) studied a model that accounts for a simultane-
ous intervention on Aβ and tau pathology. Thus, Proctor et al. 
(110) was able to show that therapies based on Aβ immunization 
would not only be able to reduce the amount of senile plaques 
but also produce small reductions in levels of soluble Aβ species, 
phosphorylated tau proteins, and neurofibrillary tangles.

Undoubtedly, a renovated interest on therapeutic interven-
tion modeling has been motivated by the recent advances in the 
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field of chemical kinetics and protein aggregation (111–117). 
In Ref. (116), Arosio et  al. used the chemical kinetic approach 
to model the interaction between molecular chaperones and 
different protein species. The main idea there was to identify 
which microscopic reaction steps (i.e., primary nucleation, 
elongation, fragmentation, and secondary nucleation) where 
perturbed by the binding of the molecular chaperones to certain 
protein species (116). By using the master equations approach 
and the corresponding reaction profile for the total fibril mass 
concentration, Arosio et  al. (116) compared the estimated 
kinetic rate constants in the absence and presence of different 
concentrations of molecular chaperones. Note that this kinetics 
profile analysis required a new mathematical development [See 
the Supplementary in the external Ref. (116)] for extending 
the master/moments equations formalism for modeling the 
binding between molecular chaperones and different protein 
species (e.g., monomers, fibril end, and fibril surface). For the 
particular case of the Aβ42 protein, such analysis revealed that 
the action of particular molecular chaperone (termed DNAJB6) 
inhibits the primary nucleation process. By contrast, the pres-
ence of another molecular chaperone (termed proSP-C Brichos) 
produces a reduction in the secondary nucleation rate (116). Note 
that Arosio et  al. (116) also analyzed more complex scenarios 
where specific molecular chaperones might simultaneously affect 
different microscopic processes (e.g., elongation and secondary 
nucleation) that characterize the aggregation of the Aβ42 protein. 
In summary, Arosio et al. (116) provided a detailed modeling of 
different combination of mechanisms through which molecular 
chaperones might suppress amyloid aggregation. These results 

open up a research avenue where molecular chaperones and 
other classes of compound might be used as potential therapeutic 
agents in MP-related diseases.

Similarly, Habchi et  al. (113) used the chemical kinetics 
approach for developing a rational drug discovery strategy that 
takes into account the specific microscopic steps in the aggrega-
tion of the Aβ42 protein. Analogous to the case of molecular 
chaperones, a potential drug compound could bind to differ-
ent species of Aβ42 and selectively affect specific microscopic 
steps during the aggregation process (113). The strategy then 
proceeds by monitoring the kinetic profiles of Aβ42 fibril 
formation in the absence and presence of particular potential 
drugs. Remarkably, by following the master equations modeling 
approach, Habchi et al. (113) reported that an anticancer drug 
(termed bexarotene) disturbs the primary nucleation step in the 
Aβ42 aggregation, delays the formation of toxic oligomers and 
completely suppresses Aβ42 deposition. This is a general frame-
work that yields a systematic drug discovery strategy aimed 
to identify a variety of small molecules (112) and antibodies 
(115) that not only target the onset of aggregation but also the 
secondary nucleation step responsible for the proliferation of 
toxic Aβ42 oligomers.

Unfortunately, large-scale models based on phenomenological 
imaging-based features of protein aggregation (e.g., models based 
on the brain network approach) have not yet taken advantage of 
the outstanding advances on therapeutic interventions using the 
chemical kinetics approach. In this direction, Iturria-Medina et al. 
(100) used a theoretical control analysis to predict multifactorial 
intervention effects required to revert brain biomarkers from an 
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TABLe 1 | Summary of the most significant studies presented in the manuscript. These studies established turning points from either, the mathematical modeling point 
of view or the ability to describe truly biological processes.

Study Main features Relevance validation

Oosawa and Kasai (62)  – Infinite set of ODEs
 – The system can be closed to a moment equations 

model
 – Analytical expressions for integrated rate laws based on 

a primary nucleation mechanism

 – Introduced the master equations formalism 
for protein aggregation modeling

 – Validation with actual 
in vitro data of different 
proteins

Nowak et al. (28)  – Infinite set of ODEs
 – The system can be closed to an epidemiological-like 

model
 – Steady states described by a reproductive ratio 

constant
 – Does not consider spatial spreading

 – The first reference to analogy with 
epidemiological-like systems

 – Numerical simulations of 
prion diseases

Masel et al. (26)  – Infinite set of ODEs
 – Nucleated polymerization model considers the 

formation of a nucleated seed of critical size
 – The system can be closed to an epidemiological- 

like model
 – Steady states described by a reproductive ratio 

constant
 – Does not consider spatial spreading

 – Description of quantification of kinetics 
constants using actual data

 – Validation with actual 
in vitro data of prion 
diseases

Masel and Jansen (103)  – Infinite set of ODEs
 – The system can be closed to an epidemiological- 

like model
 – Does consider the inhibition of amyloid propagation
 – Does not consider spatial spreading

 – The first approach to therapeutic  
intervention from the modeling point of view

 – Numerical simulations of 
drugs effects on prion and 
amyloid-related diseases

Stumpf and Krakauer (45)  – Epidemiological-like system of ODEs
 – Does consider spatial spreading

 – The first time attempt to account for effects  
of local neuronal connectivity

 – Numerical simulations of 
prion diseases

Craft et al., (81)  – Infinite set of ODEs
 – No explicit specification of an intermediate  

nucleation mechanism
 – Steady states described by a reproductive ratio 

constant

 – The first attempt of describing drugs through  
a steady-state analysis

 – Showed for the very first time the potential 
effectiveness of drug treatments based on 
clearance rate enhancers

 – Numerical simulations 
of potential therapeutic 
treatments for reduction of  
Aβ burden

Greer et al. (33)  – Finite set of PDEs
 – The system can be closed to an epidemiological- 

like model
 – Steady states described by a reproductive ratio 

constant
 – Does not consider spatial spreading

 – The PDE formalism improved the 
mathematical analysis as compared to the 
infinite set of ODEs

 – A more detailed characterization of the 
epidemiological-like behavior of the NMP

 – Validation with actual 
in vitro data of prion 
diseases

Matthäus (43)  – Infinite set of partial differential equations (PDEs)  
with diffusion terms

 – Does consider spatial spreading in small 1D domains
 – Does consider epidemiological-like models on 

macroscopic large-scale networks

 – The first reference to macroscopic models 
using the network approach

 – Validation with actual 
in vitro data of prion 
diseases

 – Simulation of prion spread 
in the mouse visual system

Knowles et al. (60)  – Infinite set of ODEs
 – The system can be closed to a moment equations 

model
 – Analytical expressions for integrated rate laws that 

account for mechanisms of fragmentation and 
secondary nucleation

 – Detailed characterization of the protein 
aggregation kinetics by explicit expressions  
of integrated rate laws

 – The integrated rate laws are valid for the 
entire time course reaction

 – Validation with actual 
in vitro data of different 
proteins

Achdou et al. (83)  – Finite set of PDEs with diffusion terms
 – Does consider spatial spreading in small 3D  

domains

 – The first attempt of linking kinetics Aβ 
formation and propagation with modern 
imaging techniques for measurements of 
amyloid deposition in vivo

 – Numerical simulations of 
Aβ in Alzheimer’s disease

Iturria-Medina et al. (92)  – Epidemiological-like system of ODEs
 – Does consider spatial spreading
 – Does consider the actual large-scale topology of brain 

networks
 – Does consider mechanism for regional production and 

clearance of misfolded protein (MP)

 – The first computational model highlighting  
the direct link between structural brain 
networks, production/clearance of MP

 – The first model validation through parameter 
estimation from actual imaging data

 – Validation through 
numerical estimation of 
model parameters from 
actual amyloid PET data

(Continued)
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Study Main features Relevance validation

Bertsch et al. (85)  – Finite set of PDEs with diffusion terms couple to a 
kinetic-type transport equation

 – -Does consider spatial spreading in small 3D domains

 – The first attempt to simultaneously modeling 
microscopic and macroscopic effects of Aβ 
propagation

 – Incorporation of two different temporal scales 
evolving over the same spatial domain

 – Numerical simulations of 
Aβ in Alzheimer’s disease

 – Empirical comparisons 
with actual PET data

Habchi et al. (112)  – Infinite set of ODEs
 – The system can be closed to a moment equations 

model
 – Analytical expressions for integrated rate laws that 

account for mechanisms of fragmentation and 
secondary nucleation

 – Introduced a rational drug discovery strategy 
based on the master equations formalism

 – Discovery of small molecules that inhibit 
specific microscopic steps of Aβ42 
aggregation

 – Validation with actual 
in vitro Aβ42 data

TABLe 1 | Continued
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advanced disease stage to a clinical normal state. In particular, 
Iturria-Medina et al. (100) used a multifactorial causal model as 
an in  silico evaluator for comparing the macroscopic effects of 
multiple possible interventional treatments. Their results pro-
vided an efficient ranking of multiple AD interventions, which 
might explain why recent single-target Aβ-based therapies failed 
to improve clinical outcomes in AD (118, 119).

CONCLUSiON

In this paper, we intended to provide an historical overview of 
the development of mathematical models for aggregation and 
propagation of MP in neurological diseases. Our main goal was 
to put in contact the neuroimaging community with important 
studies of MP chemical kinetics modeling, which have not been 
traditionally acknowledged but constitute a solid framework for 
a better understanding of neurological diseases evolution. We 
have mostly followed a chronological presentation of only those 
mathematical models that, in our opinion, established turning 
points from either the mathematical modeling point of view or 
the ability to describe truly biological processes. As a summary 
of our presentation, we selected the most important of those 
contributions and present them in Table 1. Note that in the main 
text, we have barely presented an overview of the mathematical 
formulation and the corresponding biological interpretation 
involved in those models. Besides, in order to facilitate our 
exposition, we have used a unified mathematical notation that, 
in some cases, might differ from the original formulation (see 
Appendix in Supplementary Material).

We mainly focused our presentation on those models that 
simulate microscopic processes of nucleation-dependent mecha-
nisms of MP formation. These kinds of (microscopic scale) models 
provide a unique theoretical framework for relating microscopic 
processes to macroscopic kinetic profiles of protein aggregation. 
Thus, the most accepted model for the formation of protein 
aggregates relies on a variety of microscopic processes, including 
primary nucleation, fibril elongation, fibril fragmentation, and 
secondary nucleation, which are collectively summarized by a 
macroscopic kinetic profile that follows a characteristic sigmoi-
dal shape. The procedure by which highly reproducible kinetic 
measurements are fitted to this sigmoidal profile allows for (i) 
detailed characterization of protein aggregation mechanisms in 
terms of underlying molecular events and (ii) the development of 

drugs and early therapeutic interventions that might inhibit some 
of those molecular events. Among other lessons, we have learned 
that an increase in the monomer concentration of MPs as well a 
reduction of the monomers clearance rate yield an increase in the 
growth rate of amyloid formation. This simple lesson highlighted 
the importance of systematically incorporating chemical kinet-
ics models into strategies of drugs discovery. In fact, it has been 
suggested (112) that the failure of current therapeutic strategies 
against AD can be attributed to a limited understanding of the 
molecular mechanisms by which the tested compounds interact 
with different species of protein aggregates.

On the other hand, we also presented macroscopic scale mod-
eling approaches that mainly account for the large-scale connec-
tivity of the brain and the indirect phenomenological mapping of 
the underlying molecular mechanisms of protein aggregation. In 
line with the network degeneration hypothesis (25), the macro-
scopic NDM of Ref. (89) supported that MP propagation follows 
disease-specific anatomical patterns. Similarly, the ESM of Ref. 
(92) highlighted the importance of considering intra-regional MP 
generation/clearance and the inter-regional spreading through 
the anatomical connections. In addition, by using a multifactorial 
causal model, Iturria-Medina et al. (100) concluded that late-onset 
AD it is not caused by a unique dominant biological factor (e.g., 
vascular or Aβ deposition) but by the complex interplay among 
multiple relevant biological interactions. Taken together, those 
large-scale mathematical models point to a lack of an integrative 
perspective as the main cause for the failure of therapeutic strate-
gies against AD.

Undoubtedly, there is still a gap to fill for properly modeling 
underlying microscopic processes of protein aggregation and their 
effects on the progression of the associated neurological diseases, 
as measured by in vivo imaging techniques and the assessment 
of the patient’s cognitive condition. Indeed, despite recent efforts 
(85), most of the large-scale models for protein aggregation still 
need to incorporate additional components in order to deal 
with two different temporal scales and spatial domains. Namely, 
the small-scale where microscopic aggregation processes occur 
relatively fast and the large-scale where protein deposits accumu-
late over a long-time period. We hope that future studies about 
pharmacokinetic modeling of in vivo protein binding using PET 
imaging might shed light on those unresolved issues and yield 
systematic drug discovery strategies under a broader, integrative 
perspective.
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