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Abstract: Polypeptoids have attracted a lot of atteSDntion because of their unique structural charac-
teristics and special properties. Polypeptoids have the same main chain structures to polypeptides,
making them have low cytotoxicity and excellent biocompatibility. Polypeptoids can also respond to
external environmental changes by modifying the configurations of the side chains. The external
stimuli can be heat, pH, ions, ultraviolet/visible light and active oxygen or their combinations. This
review paper discussed the recent research progress in the field of stimulus-responsive polypeptoids,
including the design of new stimulus-responsive polypeptoid structures, controlled actuation factors
in response to external stimuli and the application of responsive polypeptoid biomaterials in various
biomedical and biological nanotechnology, such as drug delivery, tissue engineering and biosensing.

Keywords: stimulus-responsive; polypeptoid; biomaterials

1. Introduction

Responsive polymer materials can respond to changes in the external environment [1],
such as heat [2], pH [3], ions, electric field [4], magnetic field [5] and ultraviolet/visible
light [6], resulting in the change of their physical and chemical properties. Stimulus-
responsive polymers are usually able to produce conformational changes induced by the
changing environment to generate reversible microphase separation or self-assembly. These
unique properties make scientists pay great attention to stimulus-responsive polymers,
especially biopolymers that can be applied in drug delivery [7–9], tissue engineering [10,11]
and sensing [12,13] systems. The research focuses on designing materials with good
biocompatibility, low cytotoxicity and response to specific biological stimuli.

Polysarcosine is the polypeptoid with great water solubility, making it an outstand-
ingly interesting candidate for the synthesis of amphiphilic block copolymers. Polysarco-
sine is poly(N-methyl glycine) (PNMG). It was reported first by Wesseley and coworkers
in the 1920s and found good biological properties [14]. Interestingly, in early publications,
peptides and peptoids were not separated [15]. In 1992, Paul A. Bartlett defined oligomers
of N-substituted glycines as peptoids [16]. Later, Ronald N. Zuckermann introduced the
term polypeptoids for 30–36 residue long peptoids, thus establishing the commonly ac-
cepted terminology. In recent years, with the improvement of synthesis methods [17],
polypeptoids have attracted more and more scientists for their great biocompatibility
and other excellent properties. Many researchers have focused on applying polypeptoid
structures in the biostimulation response.

Polypeptoids have low cytotoxicity and good biocompatibility because of their struc-
tural similarity to polypeptides (Figure 1) [18–23]. Different from polypeptides, however,
polypeptoids show thermal transformation similar to synthetic thermoplastics, making
them suitable for various heat treatment methods [24]. Polypeptoids combine the prop-
erties of natural macromolecules and synthetic polymers, and become great candidates
as stimulus-responsive biopolymers. Polypeptoids can achieve their responsiveness to
environmental stimuli by linking different functional groups to backbone nitrogen atoms
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as side chains [25,26]. Nowadays the research on stimulus-responsive polypeptoids mainly
focuses on temperature, pH, light and reactive oxygen sensitivity. This review will discuss
the recent advances on stimulus-responsive polypeptoids, from synthesis, properties to
applications.
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Figure 1. Schematic diagram of the chemical structure of polypeptoid.

2. Polymeric Responsive Systems

With specific external stimulation, the macromolecular morphology and conformation
of the polymers change accordingly, leading to the change of the physical and chemical
properties of the polymers.

In a particular solvent, usually in water, a temperature-responsive polymer is sol-
uble in a specific temperature range, and too high or too low temperature will lead to
insolubility. Therefore, the material has a lower critical solution temperature (LCST) or
an upper critical solution temperature (UCST). In both cases, the phase behavior is de-
termined by the interactions between polymer-polymer and polymer-solvent. Generally
speaking, temperature-responsive polymers have components whose solubility varies with
temperature change. The polymer can form micelles consist of a hydrophilic shell and a
responsive hydrophobic core with adjustable solubility. External stimulation can cause
the polymer micelles to undergo a reversible phase transition. Polymers with tunable
LCST have attracted more and more attention in biological applications, such as biological
separation, intelligent surface, drug release, targeted drug delivery, etc. [27,28]. These
polymers are soluble below LCST, but phase separation occurs when heated above LCST.
For example, the temperature-responsive triblock copolypeptoid, poly (N-allyl glycine)
-b-Poly (N-methyl glycine)-b-Poly (N-decyl glycine), exhibits a sharp phase transition to
temperature in water. The polymer is soluble in water below LCST through the hydrogen
bonding with water molecules. When the temperature increases, the block with allyl
chains undergoes cloud point temperature (Tcp) transition due to dehydration to form
a hydrophobic domain [29]. Even though most temperature-responsive polymers have
LCST, some polymers exhibit UCST characteristics [30–34], such as polypeptoid modified
by thioglycolic acid. The polymer is soluble in water at the higher temperature. At low
temperature, the content of protonated moiety increases and the polymer solubility reduces.
This is because at high temperature, the phase transition is driven by thermally controlled
reversible hydrogen bonds, making the polymer water-soluble [35]. The phase transition
temperature can be controlled by changing the molecular weight, end group structure
and copolymer composition [36–38]. The polymer concentration and additives (such as
inorganic salts) also affect the phase transition temperature [39–41]. Due to the interactions
between polymer and solvent, LCST decreases with the increase of molecular weight. It
has been reported that the introduction of short hydrophilic outer blocks with DP 1 to DP 3
increased the LCST. For example, Winnik et al. reduced the Tcp of oxazoline from 48.1 ◦C
to 32.5 ◦C by coupling hydrophobic n-octadecyl groups to polymer chain ends [42].

PH is another commonly used external stimulus [43]. The unique property of pH-
responsive polymers is that the adjustment of pH value can easily cause the change of
interactions between ions and hydrogen bonds, resulting in reversible microphase separation
or self-organization [3]. The groups containing weak acids and bases, such as carboxylic acid,
phosphoric acid and amine, will change in ionized state according to different pH values.
Polymer conformation and solubility can change with pH when the ionizable groups are
linked to polymer structures. For example, carboxylic acid modified polypeptoids can easily
dissolve in alkaline solution but will become insoluble when pH is reduced. It is because that
more and more COO− groups become protonated with the decrease of pH value, making
the solubility of the polymer reduce and the solution become turbid [35]. PH-responsive
polymers can be used for pH triggered drug release and biosensor [44].
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Till now, temperature and pH response are the two most widely studied response
modes of stimulus-responsive polymers. However, due to the unique advantage that light
can be controlled in time and space, the photo response system is also desirable [45–47].
In addition, the photochemical reaction is considered a green synthesis pathway because
photons do not leave residues [48]. Some specific structures can exhibit a light viscosity
effect under ultraviolet irradiation, resulting in conformational contraction. Studies have
been made to prepare photo-responsive polymers by using this phenomenon. Photo-
responsive polymers usually need to introduce corresponding functional side chains, such
as diarylethene, o-nitrobenzyl and azobenzene [49–53].

Recently, some researchers have developed dual response polymers by combining
temperature response with pH response [54]. The temperature response can also be com-
bined with the photo response [55,56]. These kinds of materials have a bright application
prospect in the biocatalysis [57], drug carrier [58], coatings for protein adsorption [59],
signal control of sensors and micro engines [60].

3. Stimuli-Responsive Polypeptoid

There are two main synthesis methods of polypeptoids, solid-phase submonomer syn-
thesis and ring-opening polymerization (Figure 2). For oligopeptoids, the structures can be
precisely controlled by solid-phase submonomer synthesis to achieve specific responsiveness.
Different reactive side chains can be introduced using various primary amines in displacement
steps [61,62]. In ring-opening polymerization, primary amine and N-Heterocyclic Carbene
can be used to initiate cyclic N-substituted N-carboxylic anhydride (NCA) monomers to
obtain polypeptoids with longer molecular chains [63,64]. Studies have shown that polypep-
toids can also be prepared from N-substituted glycine N-thiocarboxylic anhydride (NTA)
monomers with primary amine as the initiator [65]. To achieve stimulus-responsive prop-
erties, multi-component reactions among isocyanates, aldehydes, acids and amines were
introduced [66]. The responsive polypeptoids have different structures and compositions,
including homopolymer, random copolymer, block copolymer and graft copolymer. Recently,
more and more attention has been paid to the stimulus-responsive polypeptoids, which have
broad applications in biomedicine and biotechnology.
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3.1. Temperature-Responsive Polypeptoid

Polypeptoids with methyl and ethyl side chains (i.e., polysarcosine and poly (N-
ethylglycine) (PNEG)) are readily soluble in water. In contrast, polypeptoids with longer
alkyl side chains (with more than three carbon atoms) are proved insoluble in water. Block
copolymers with hydrophilic and hydrophobic blocks can produce particular tempera-
ture response performance [67,68]. Zhang et al. used N-Heterocyclic carbene (NHC) and
primary amine to initiate Et-NCA and Bu-NCA to synthesize cyclic and linear poly [(N-
ethylglycine) -r-(N-butylglycine)] [P(NEG-r-NBG)] (Figure 3). The aqueous solution of
the produced polypeptoid copolymers became cloudy after heating and then clear after
cooling, which indicated a reversible phase transition of Tcp. Tcp is defined as the tem-
perature at 50% UV-visible transmittance (λ = 450 nm). The Tcp of cyclic P(NEG-r-NBG)
can be adjusted in the range of 20–60 ◦C by changing the composition of the copolymer.
However, the Tcp of the corresponding linear copolymer was 4−6 ◦C higher than that
of the cyclic analog with the same composition. The reason is the entropy loss of cyclic
polymer solution during phase transition is lower than that of linear polymer solution,
resulting in the decrease of Tcp [69]. Subsequently, Zhang et al. synthesized P(NEG-r-NBG)
macromonomer and then prepared corresponding polypeptoid bottle brush copolymers
with different main chain length and side-chain composition by ring-opening metathesis
polymerization (ROMP). The bottlebrush polymer is a kind of molecular structure with a
linear polymer main chain and dense polymer side chains. The spatial repulsion brought
by dense side chains can enhance the rigidity of the main chain and reduce the entangle-
ment between molecules [70,71]. Compared with linear P(NEG-r-NBG), the Tcp of the
synthesized bottle brush copolymer depends on the thermal history of the solution. There
is no noticeable turbidity change with the increase of temperature without any treatment
of the prepared bottle brush copolypeptoids. After thermal annealing of the polymer at
a temperature higher than Tcp, however, the bottle brush copolymer recovers its thermal
response behavior and produce reversible Tcp transition. Further study indicated that the
addition of inorganic salts can eliminates the dependence of Tcp transition on the thermal
history of the solution, thus restoring the thermal response behavior (Figure 4). The results
suggested that thermal annealing and salt addition can change the interactions between
polymer and solvent, and are helpful for polymer conformational recombination to produce
expanded to shrinked coil change. The addition of salt can enhance the synergy between
local concentration of amphiphilic polypeptoid chains and hydrophobic aggregation [72].
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Zhang et al. synthesized linear random copolypeptoid, poly [(N-ethyl glycine) 32-
ran-(N-butyl glycine17)]P(NEG32-r-NBG17) and grafted it onto silicon substrate by thiol-
ene click reaction (Figure 5a). Binding temperature-responsive polymer can affect the
hydrophobic properties of the surface. The coating can intelligently adjust the propensity
of the layer to adsorb or repel proteins or other biological macromolecules [73,74]. With the
increase of temperature, the size of P(NEG32-r-NBG17) nanostructures decreases, forming
a collapsed pattern. After cooling, the polymer chain stretched out to create a relaxing
pattern. Surface modified with temperature-responsive polymer, whose characteristics
change with temperature, can be widely used in surface-based sensor technology [75].

Molecular weight and composition of block copolymers will affect the size and shape
of aggregates in solution induced by temperature change. Schlaad group synthesized a
series of poly [(N-propylglycine) x-b-(N-methylglycine) y](PxMy) block copolypeptoids
with different block ratios. When the temperature was higher than Tcp, spherical micelles
with a diameter of about 50 nm formed in water. After annealing and crystallization,
micelles transformed into fibre intermediates and further packed into larger complex three-
dimensional structures with different shapes, such as flower (P70M23), oval (P70M42 and
P70M76) and irregular shapes (P70M153 and P70M290) [76]. Further study indicated that
the aqueous solutions of the prepared polypeptoid copolymer have two Tcp but one clear
point temperature (Tcl). The two Tcp are between 27 ◦C and 45 ◦C, and the Tcl lies between
the two Tcp. The aggregation behavior of the polymer in solution was accomplished in
several steps. When the first Tcp is reached, the hydrophobic block collapses and the
polymer chains self-assemble into large structures. When the temperature is further raised
to the Tcl, the formed aggregates recombine and break into smaller micelles, resulting in
clear solution. As the temperature continues to rise to the second Tcp, micelles begin to
crystallize and polymers can self-assemble into larger aggregate particles [77].
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Polypeptoids can achieve temperature response by containing both hydrophilic and
hydrophobic polypeptoid fragments, or having specific alkyl side chains that directly have
a thermal response in aqueous solution. Schlaad group prepared a series of regular poly
(N-C3 glycine)s (C3 = n-propyl, allyl, propargyl and isopropyl) with a molecular weight in
the range of 1.8–6.6 kg·mol−1 by ring-opening polymerization. Turbidity measurement
of the polymer aqueous solutions suggested that all of them showed LCST behavior ex-
cept poly (N-propargylglycine). It was found that Tcp increases in the order of n-propyl,
allyl and isopropyl as shown in Figure 6a [68]. Zhang et al. used poly (N-allylglycine)
as a thermoresponsive block to synthesize triblock copolymer, which can be made into
a temperature-responsive hydrogel. In low concentration (2.5–10 wt %) of water and
biological medium, the copolymer can undergo sol-gel transition. The sol-gel transition
was completely reversible, and the transition window was narrow. The gelation tempera-
ture (Tgel) can be adjusted between 26.2 ◦C and 60.0 ◦C by changing the polymerization
degree of different blocks. A core-shell-crown structure was formed below the Tgel, and a
hydrogel with a three-dimensional network structure was formed when the temperature
rose to Tgel (Figure 6b). This hydrogel can be injected through the No. 24 injection needle.
Related biological experiments showed that it can also induce chondrogenesis of hASCs
and quantitatively encapsulate water-soluble enzymes [29]. Polypeptoids, as analogues
of polypeptides, show as little cytotoxicity as peptides. Synthesis of thermoreversible
hydrogel formed at human physiological temperature is very attractive for their potential
applications in biological and medicine fields [78].
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from [68]. Copyright 2013, American Chemical Society. (b) schematic showing the proposed gelation mechanism of aqueous
solutions of the triblock copolypeptoids. Reprinted with permission from [29]. Copyright 2016, American Chemical Society.

The propargyl has three carbon atoms, but the hydrophobicity of poly (N-propargyl
glycine) won’t change with temperature change. The carbon-carbon triple bonds make
poly (N- propargyl glycine) to be easily modified by thiol light addition, copper-catalyzed
azide cycloaddition, ethylene oxide nucleophilic addition and heat-induced cross-linking.
Poly (N-propargylglycine), as a modular platform, can be utilized to achieve grafted
polypeptoid or ionic polypeptoid materials with specific responsiveness (Figure 7) [79].
Oligo(ethylene glycol) (OEG) moieties can show the thermal response of dehydration and
hydration in water with the change of temperature [80]. The temperature-sensitive OEG
unit can be introduced into the polypeptoid side chain by photoaddition and ring-opening
polymerization of thioalkyne. The synthesized polymer side chain has both OEG unit
and a thioether bond [81]. Compared with polyglutamate, pegylated polypeptoids have
better thermal processing properties because there is no chiral center or hydrogen bond
interactions in the main chain. Li et al. showed that the Tcp could be adjusted from 25 ◦C
to 60 ◦C by changing the molecular weight and polymerization degree of OEG unit. At the
same time, the thioether bond’s redox property on the side chain of the polymer can also
have a more noticeable impact on the Tcp of the polymer, thus providing a second stimulus
for the regulation of phase transition [82]. The synthesis of pegylated polypeptoids by
photoaddition of mercaptan and alkyne has the disadvantages of inaccurate modification
site and low efficiency. Li et al. synthesized glycosylated polypeptoid containing benzyl
side chain by Schiff base and reductive amination reaction to improve this method. In the
same way, the synthesized products still have thermal responsive aggregation behavior [83].
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Ring-opening polymerization can be used to prepare polypeptoids with long molecu-
lar chains, but it is challenging to design and synthesize polypeptoids with controllable
sequences. Solid-phase submonomer synthesis method can achieve polypeptoids with ab-
solute sequence order but suffers low efficiency. Tao et al. found that amino acids can react
with aldehydes and isocyanates in sequence to form polypeptoid structures. Polypeptoids
with controllable sequences can be easily synthesized by this iterative Ugi reaction of amino
acids, aldehydes and isocyanates [66]. The Ugi reaction produced alternating polypeptoids
with thermal response in a gradual growth mode, as shown in Figure 8. The Tcp of the
polymer aqueous solution can be adjusted between 27 ◦C and 37 ◦C by controlling the
molecular weight. Meanwhile, the molecular weight of these alternating copolymers can
be as high as 15 kg·mol−1. The alternating copolymer synthesized by the Ugi reaction not
only shows good water solubility (100 mg·mL−1), but also has the ability to resist protein
aggregation [84].
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3.2. PH-Responsive Polypeptoid

The polymers with pH responses can show the conversion of different folding states
in different pH environments. The sequence-controlled pH-responsive peptoid oligomers
can be prepared using a solid-phase submonomer synthesis method by repeating bromoa-
cylation and displacement steps [85,86]. Varying functional groups, such as carboxylic
acid, phosphoric acid, amine, etc., can be introduced by primary amine submonomers
in displacement steps. Kirshenbaum et al. synthesized a series of (s)-N-(1-carboxyl-2-
phenylethyl) glycine (Nscp) oligomers using tert-butyl L-phenylalanine as a submonomer
reagent (Figure 9). The carboxylic acid in the side chain of carboxyl phenylethyl is an
ionizable group, and the secondary folding structure containing the ionizing group can
show pH sensitivity. This is because electrostatic interactions in different pH environment
can lead to polymer conformation rearrangement [87].

By combining pH-induced conformational changes with fluorescence intensity changes,
polypeptoids can be used as biocompatible pH sensors. Amelia et al. labeled Nscp oligomer
with the fluorescent group 4-N, N-dimethylamino-1,8-naphthalenediimide (4DMN) [88].
In different pH environments, the conformational changes caused by carboxylic acid func-
tional groups regulate the fluorescence intensity due to the local environment change of
fluorophores. When the pH value was less than 4, the protonated –COOH content was
more. The polypeptoids (Figure 10) formed a compact secondary structure, which can
separate the fluorescent groups from the aqueous buffer. With the increase of pH value, the
fluorescence emission intensity decreased significantly. The fluorescence emission intensity
can change by 24 times between pH 2.2–7, making the 4DMN labeled Nscp be applied to
fluorescent polypeptoid pH sensor [89].
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Polypeptoids coating can be used as surface material of hospital equipment with
antifouling performance to prevent the growth of bacteria. Amelia et al. synthesized
oligopeptoids containing (s)-N-(1-carboxyethyl) glycine (Nsce), (s)-n-1-(naphthylethyl)
glycine (Ns1npe) and N-(2-aminoethyl glycine) (Nae). In phosphate buffer brine, the
synthesized products can be adsorbed on the bare silica surface. The adsorption of water-
soluble oligopeptoids on the silica surface can be affected by changing pH due to the
electrostatic interactions [90,91]. Moreover, the authors introduced aromatic naphthylethyl,
naphthylmethyl and phenylmethyl substituents, cationic aminoethyl substituents, neutral
methoxyethyl substituents, anionic carboxymethyl and carboxyethyl substituents into the
side chains of oligopeptoids. The results showed that different pH buffers could affect the
polymer’s adsorption to the phospholipid membrane. By controlling these substituents’
component content and polypeptoid sequence, the interactions between polypeptoids and
liposomes can change at different pH, which makes the polypeptoids applicable in the
physiological pH environment [92].

Li et al. introduced amino groups into peptoid side chains through ring-opening
polymerization and click chemistry. The results showed that the polymer was always
soluble in water at pH ≤ 12.9. When pH increased to 13.2, LCST behavior was observed
during heating. The Tcp of polymer decreased from 54 ◦C to 22 ◦C when pH increased
from 13.2 to 13.6. Such polymers have both pH and thermal response properties and can
be used in specific biomedical scenarios [35].
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3.3. Photo-Responsive Polypeptoid

Light has become a valuable, and convenient external stimulus because light can
be controlled in space and time and the light source is environmentally friendly and
easy to obtain. Photo-responsive polypeptoid is a kind of polymer that can produce
corresponding physical or chemical changes under the irradiation of light (such as ul-
traviolet, infrared, visible light, etc.). The main chain structure of polypeptoid is not
photo-responsive. The photosensitive group can be introduced into the side chains of
polypeptoid to achieve the overall photoresponse performance. These photo-responsive
groups can be azobenzene, spiropyran, o-nitrobenzyl, coumarin, anthracene, cinnamic
acid, thymine and diarylethene [93]. Many azobenzene functionalized polypeptoids have
been shown to undergo photoinduced conformational conversion. Under the irradiation of
different wavelengths of light, azobenzene groups can be converted reversibly between cis
and trans conformations. Kirshenbaum Kent research group synthesized peptoid oligomers
by solid-phase submonomer synthesis method and achieved photo responsiveness by dop-
ing photo-responsive azobenzene side chain. The results showed that the polymer has
cis confirmation due to p–p * transition under 325 nm light and has the characteristics of
trans azobenzene due to n–p * transition under 440 nm light. The photoisomerization of
azobenzene does not change the skeleton conformation of peptoids, but the orientation
rearrangement of the side chains occur under light (Figure 11) [94]. Zhang et al. prepared
diblock polypeptoids containing azobenzene side chains by ring-opening polymerization.
The diblock copolymer assembled into different morphologies by adjusting the polymer
components, including spherical and rod-like micelles. Furthermore, it was found that
the morphological transformation of the polymer under alternating ultraviolet–visible
(UV-vis) illumination is reversible [95]. The photoinduced anisotropy of azobenzoylated
polypeptoids has essential application prospects in optical information storage, optically
controlled molecular orientation, molecular switch and integrated optics.
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O-nitrobenzyl group is stable in an acidic and alkaline environment and has highly
controllable photochemical properties [96,97]. Li et al. synthesized a diblock copolymer
PEG-b-poly (n-(s- (o-nitrobenzyl)-thioethyl) glycine) (PEG-b-PNSN) by ring-opening poly-
merization. Under the irradiation of ultraviolet light, o-nitrobenzyl group was photolyzed
to produce a free mercaptan group, which spontaneously oxidized to form disulfide bond.
By controlling the chain length of PNSN, the diblock copolymers self-assembled into
different aggregates. With the increase of polymerization degree of hydrophobic block
PNSN, the polymer morphology changed from spherical, short columnar to vesicular. The
cross-linking of the disulfide bond formed by photooxidation can keep the nanostructure
stable. Simultaneously, in the presence of reducing agent glutathione (GSH), the sponta-
neous oxidation of the thiol groups to disulfide bonds under ultraviolet irradiation was
reversible, which made the cross-linking process reversible, as shown in Figure 12 [98]. The
nitrobenzyl-modified polypeptoids have great potential applications as photo-controlled
drug delivery materials, functional gels and photoelectric sensors [99].
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3.4. Redox- Responsive Polypeptoid

Compared with normal cells, there are higher concentrations of reactive oxygen
species in tumor and inflamed tissues [100–102]. This particular redox microenvironment
can be used in the design of responsive drug delivery systems. Usually, polymers sensitive
to oxidation include polymers containing selenium, tellurite, aryl oxalate, polysulfide and
phenylborate. Ling et al. synthesized redox responsive diblock copolymers containing hy-
drophilic segment polysarcosine (Psar) and hydrophobic segment poly (N-3- (methylthio)
alanine) (PMeSPG). The hydrophobic thioether side chain of PMeSPG can be transformed
into a hydrophilic sulfoxide side chain in the presence of reactive oxygen, as shown in
Figure 13 [103]. Redox-responsive polypeptoid has broad application prospects in the
related fields of cancer chemotherapy drug delivery.

Polymers 2021, 13, x FOR PEER REVIEW 13 of 19 
 

 

hydrophilic segment polysarcosine (Psar) and hydrophobic segment poly (N-3- (methyl-
thio) alanine) (PMeSPG). The hydrophobic thioether side chain of PMeSPG can be trans-
formed into a hydrophilic sulfoxide side chain in the presence of reactive oxygen, as 
shown in Figure 13 [103]. Redox-responsive polypeptoid has broad application prospects 
in the related fields of cancer chemotherapy drug delivery. 

 
Figure 13. Synthesis of PMeSPG-b-PSar block copolymers and their self-assembly. Reprinted with 
permission from [103]. Copyright 2019, American Chemical Society. 

4. Conclusions 
This review discussed the structural design and functional applications of different 

responsive materials constructed from polypeptoid frameworks. Polypeptoids have ex-
cellent biological properties such as low cytotoxicity and good biocompatibility, making 
researchers constantly introduce mature, responsive units to achieve their responsive 
properties. Many researchers have designed and prepared different polypeptoid struc-
tures responsive to environmental changes (such as temperature, pH, UV/Vis, ionic 
strength and reactive oxygen species). However, the research mainly focuses on temper-
ature response and pH response, and other responsive polypeptoids are still underex-
plored. According to the different responsiveness, polypeptoids can be used in drug de-
livery, tissue engineering, antifouling coatings for medical devices, intelligent surfaces, 
biosensors, etc. In the past ten years, responsive polypeptoid materials have been contin-
uously developed. Polypeptoids show a wide application prospect in many fields, but it 
is still difficult to be commercialized or go to the clinical trial stage. Future work includes 
introducing more responsive units into polypeptoid side chains to find more suitable mo-
lecular structures for different specific scenarios. Stimuli-reponsive polypeptoids can also 
be combined with DNA, glycoprotein and other materials to accelerate their clinical ap-
plications. 

Author Contributions: The manuscript was written through contributions of all authors. All au-
thors have read and agreed to the published version of the manuscript.  

Funding: This work was supported by National Natural Science Foundation of China (51803081). 

Conflicts of Interest: The authors declare no conflict of interest.  

References 

1. Gil, E.S.; Hudson, S.M. Stimuli-reponsive polymers and their bioconjugates. Progress in polymer science 2004, 29, 1173-1222, 

doi:10.1016/j.progpolymsci.2004.08.003. 

2. Vogt, A.P.; Sumerlin, B.S. Tuning the temperature response of branched poly (N-isopropylacrylamide) prepared by RAFT 

polymerization. Macromolecules 2008, 41, 7368-7373, doi:10.1021/ma801256k. 

Figure 13. Synthesis of PMeSPG-b-PSar block copolymers and their self-assembly. Reprinted with
permission from [103]. Copyright 2019, American Chemical Society.

4. Conclusions

This review discussed the structural design and functional applications of different
responsive materials constructed from polypeptoid frameworks. Polypeptoids have ex-
cellent biological properties such as low cytotoxicity and good biocompatibility, making
researchers constantly introduce mature, responsive units to achieve their responsive prop-
erties. Many researchers have designed and prepared different polypeptoid structures
responsive to environmental changes (such as temperature, pH, UV/Vis, ionic strength and
reactive oxygen species). However, the research mainly focuses on temperature response
and pH response, and other responsive polypeptoids are still underexplored. According to
the different responsiveness, polypeptoids can be used in drug delivery, tissue engineering,
antifouling coatings for medical devices, intelligent surfaces, biosensors, etc. In the past ten
years, responsive polypeptoid materials have been continuously developed. Polypeptoids
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show a wide application prospect in many fields, but it is still difficult to be commercialized
or go to the clinical trial stage. Future work includes introducing more responsive units
into polypeptoid side chains to find more suitable molecular structures for different specific
scenarios. Stimuli-reponsive polypeptoids can also be combined with DNA, glycoprotein
and other materials to accelerate their clinical applications.
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