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ABSTRACT

While electroencephalography (EEG) and magnetoencephalography (MEG) are well-established noninvasive methods in neuroscience and clinical
medicine, they suffer from low spatial resolution. Electrophysiological source imaging (ESI) addresses this by noninvasively exploring the neuronal
origins of M/EEG signals. Although subcortical structures are crucial to many brain functions and neuronal diseases, accurately localizing subcor-
tical sources of M/EEG remains particularly challenging, and the feasibility is still a subject of debate. Traditional ESIs, which depend on explicitly
defined regularization priors, have struggled to set optimal priors and accurately localize brain sources. To overcome this, we introduced a data-
driven, deep learning-based ESI approach without the need for these priors. We proposed a four-layered convolutional neural network (4LCNN)
designed to locate both subcortical and cortical sources underlying M/EEG signals. We also employed a sophisticated realistic head conductivity
model using the state-of-the-art segmentation method of ten different head tissues from individual MRI data to generate realistic training data.
This is the first attempt at deep learning-based ESI targeting subcortical regions. Our method showed excellent accuracy in source localization,
particularly in subcortical areas compared to other methods. This was validated through M/EEG simulations, evoked responses, and invasive
recordings. The potential for accurate source localization of the 4LCNNs demonstrated in this study suggests future contributions to various
research endeavors such as the clinical diagnosis, understanding of the pathophysiology of various neuronal diseases, and basic brain functions.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0226457

I. INTRODUCTION

Electroencephalography (EEG) and magnetoencephalography
(MEG) are noninvasive brain imaging techniques that measure the
electrical and magnetic fields generated by neuronal electrical activity.
In contrast, other noninvasive measurements, like near-infrared spec-
troscopy (NIRS) and functional magnetic resonance imaging (fMRI),
provide a low temporal resolution on the order of seconds due to their
reliance on hemodynamic responses.1 M/EEG offers high temporal

resolution on the millisecond order, directly reflecting the neuronal
activity.2 Nevertheless, M/EEG’s spatial resolution is limited by the vol-
ume conduction effect.3 Enhancement of the spatial resolution of M/
EEG will contribute to neurological applications, from diagnostics to
understanding various brain functions.

Many initiatives have been undertaken to enhance the spatial
resolution of M/EEG using electrophysiological source imaging
techniques (ESI).4 ESI represents an inverse problem that is inherently
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ill-posed, as there is no unique solution: multiple neural source combi-
nations can produce identical M/EEG signal distributions.5 Traditional
approaches require a priori assumptions, such as energy minimization
or spatial smoothness, to deduce a unique solution.6,7 However, the
complexity of brain activity makes setting optimal regularization priors
a significant challenge.

Recent advances in machine learning-based ESI techniques have
sparked interest due to their data-driven approach that circumvents
the need for explicitly defining a regularization term.8–10 These meth-
ods have demonstrated superior localization accuracy of estimated
sources in cortical regions, compared to traditional ESI methods.8–10

All the previous studies focused on estimating cortical activity, so the
effectiveness of machine learning-based ESI in localizing subcortical
sources still needs to be confirmed.

Subcortical structures are pivotal to numerous brain functions, as
highlighted in recent literature.11,12 Their dysfunction is implicated in
various diseases, such as Parkinson’s disease13 and epilepsy.14

Characterizing the electrical activity in subcortical regions is essential
yet challenging due to the limitations of noninvasive techniques and
the restrictions on invasive recordings to clinically relevant areas.
Contrary to the long-held belief that deep brain structures are not dis-
cernible via M/EEG, recent studies have shown the potential of these
techniques in detecting subcortical activity through simultaneous
M/EEG and invasive electrode recordings.15,16 These findings, along
with the remarkable success of machine learning-based ESI methods
in imaging cortical sources,8–10 suggest that such methods might also
be adept at accurately imaging subcortical activities.

In this study, we explored the accuracy of ESI using a deep learn-
ing approach for not only cortical but also subcortical sources (Fig. 1).
Based on the usefulness of convolutional neural networks (CNNs) in
various types of inverse problems such as x-ray image reconstruction,
sub-surface shear wave velocity estimation, and ESI,8,17,18 we devel-
oped a four-layer convolutional neural network (4LCNN) designed to
estimate source activity from M/EEG topography, which was trained
using a vast amount of training data from forward M/EEG simulations
based on a realistic head volume conductor model. The efficacy of our
4LCNN model for ESI was tested using a validation dataset created by
forward M/EEG simulations and two types of human experimental

data: (1) somatosensory evoked potentials (SEP) recorded by EEG and
(2) concurrent recordings from invasive brain electrodes and MEG
signals.

II. RESULTS
A. Overview of the present study

The architecture of our 4LCNN model (Fig. 2) is based on
ConvDip, a previously published CNN model for cortical source esti-
mation.8 Our study aimed to estimate not only cortical but also sub-
cortical source activity by enhancing the original CNN model to
increase its expressive ability. We increased the resolution of the input
M/EEG map, the number of kernels (filters), and expanded the convo-
lutional layers beyond those in ConvDip. Additionally, we upgraded
the EEG/MEG recordings and individual head conductivity modeling
compared to the previous study8 to capture the subtle differences
between deep brain region sources. We used a higher number of EEG/
MEG electrodes (160 channels) compared to the previous study (64
channels) and employed a more sophisticated realistic head conductiv-
ity model using the state-of-the-art head tissue segmentation model.19

Then, we compared the performance of the 4LCNN model with
ConvDip and two commonly utilized ESI methods—eLORETA20 and
the LCMV beamformer21—using the same set of simulations and
experimental data.

B. Simulation data

In the simulation, while we tested various noise levels in the EEG
signals [with signal-to-noise ratios (SNRs) ranging from �20 to
30dB], our primary focus was on EEG signals with SNRs between 5
and 30 dB, based on values reported in EEG studies on human subjects
in evoked potential protocols.22–24 Figure 3 shows examples of esti-
mated cortical source activity by 4LCNN, ConvDip, LCMV, and
eLORETA. The simulated sources were located in the medial part of
the right superior frontal gyrus [Fig. 3(a)] and the left middle temporal
cortex [Fig. 3(b)]. Visual inspection suggests that both 4LCNN and
ConvDip accurately estimated the location and spatial spread.
Conversely, the LCMV generally accurately estimated the location of
activity but exhibited large spatial spreads. Variations in noise level did
not seem to cause significant changes. eLORETA’s estimated activities

FIG. 1. Conceptual diagram of this study. This flow chart shows how a M/EEG forward model is created (a), how a 4LCNN and forward M/EEG simulation were used to predict
brain sources (b), and how the created 4LCNN model is validated (c).
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were dispersed at an SNR of 10 dB, but at higher SNR conditions, the
estimations appeared more focal and accurate. However, eLORETA
and LCMV failed to differentiate the left and right sides of the medial
part of the superior frontal gyrus separately [Fig. 3(a)].

Figure 4 and supplementary material Fig. 1 present examples of
estimated subcortical source activity. The simulated sources were
located in the right thalamus [Fig. 4(a)] and the left pallidum [supple-
mentary material Fig. 1(a)]. The 4LCNN method accurately estimated
the location and spatial spread of these examples [Fig. 4(b) and supple-
mentary material Fig. 1(b)], with no activity observed in the cortical
regions. This accurate estimation was consistent across SNR condi-
tions, with the exception of the left pallidum under the 10 dB SNR con-
dition [supplementary material Fig. 1(b)]. ConvDip estimated
activities near the subcortical structures without cortical activity for
both the right thalamus and the left pallidum [Fig. 4(c) and supple-
mentary material Fig. 1(c)]. However, the maximum activity was erro-
neously estimated in adjacent structures that were not the targets.
LCMV estimated maximum activities in the cortical regions for both
the right thalamus [Fig. 4(d)] and left pallidum data [supplementary
material Fig. 1(d)]. For the right thalamus simulation [Fig. 4(d)], while
broad activities were estimated within deep brain regions, the maxi-
mum activity was incorrectly localized in the medial orbitofrontal or
insular cortices. In the pallidum simulation [supplementary material
Fig. 1(d)], the maximum activity was wrongly estimated in the left
medial temporal lobe, with high activity scattered across several sub-
cortical regions. Similar to the cortical source simulation examples
(Fig. 3), the SNR condition did not significantly impact LCMV estima-
tion. For eLORETA [Fig. 4(e) and supplementary material Fig. 1(e)],
in lower SNR conditions, estimated activities were widely scattered

across cortical and subcortical regions, with maximum values mistak-
enly placed in the cortical regions for the examples of the right thala-
mus and the left pallidum. At a high SNR condition (SNR¼ 30),
eLORETA accurately located the maximum activity for both examples,
but the estimated activities were broadly distributed over several sub-
cortical and medial cortical regions [Fig. 4(e) and supplementary mate-
rial Fig. 1(e)].

We calculated three metrics (localization error, spatial dispersion,
and area under the precision-recall curve (AUPRC)) to quantitatively
evaluate the ESI performance of the 4LCNN compared to the other
methods (Fig. 5). The localization error (distance between the locations
of the sources with the maximum value of the simulated and estimated
data) of the 4LCNN was significantly lower than that of the other ESI
methods across all SNR conditions for both cortical and subcortical
sources [Fig. 5(a)] (p< 0.05, see the supplementary material Excel data
file for detailed statistical values). For cortical sources, the mean error
was below 10mm in the 4LCNN at SNRs higher than 10 dB, reaching
up to 6.6mm at an SNR of 30 dB. ConvDip showed relatively low
localization errors; however, eLORETA was more accurate than
ConvDip in high SNR conditions. Despite this, the mean error for
eLORETA was 9.3mm at an SNR of 30dB.

For subcortical sources [Fig. 5(a)], 4LCNN also showed superior
performance regarding localization error compared to other methods
(p< 0.05, see the supplementary material Excel data file for detailed
statistical values) except at an SNR of 5 dB, where no significant differ-
ence from LCMV was found. The mean error in the 4LCNN was
below 10mm at SNRs higher than 15 dB and decreased to 5.9mm at
an SNR of 30 dB. ConvDip generally had lower localization errors than
LCMV and eLORETA; however, eLORETA was more accurate than

FIG. 2. Architecture of the four layer convolutional neural network (4LCNN) to estimate source activity of M/EEG signals in the brain. The values from a simulated EEG data
were interpolated to obtain a 26� 26 matrix as an input (illustrated in the bottom left). The 2D matrix is sent to the subsequent four sets of convolution layers, which consists of
convolution, batch normalization (BN), and rectified linear unit (ReLU) sub-layers, have 32 convolution kernels of size 3� 3 pixels with zero-padding. The convolution layers
are followed by a dropout later (dropout rate: 30%) and fully connected (FC) layer consisting of 21 632 neurons. Finally, the output layer contains neurons corresponding to
activity of each source in the brain.
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ConvDip at an SNR of 30 dB. On the other hand, at SNRs below
25 dB, the error for eLORETA was larger than LCMV and ConvDip.

Spatial dispersion (spatial extent of sources) was consistently
lower in the 4LCNN compared to the other ESI methods in all condi-
tions for both cortical and subcortical sources [Fig. 5(b)] (p< 0.05, see
the supplementary material Excel data file for detailed statistical val-
ues). The 4LCNN tended to estimate source activity more focally than
the other two ESI methods.

The AUPRC, a comprehensive metric assessing the central loca-
tion and spatial extent of estimated sources, was significantly higher in
the 4LCNN than the other ESI methods across all SNR conditions for
both cortical and subcortical sources [Fig. 5(c)] (p< 0.05, see the sup-
plementary material Excel data file for detailed statistical values).

These results (Fig. 5) were derived from 300 simulations based on
head models from three participants for validation (100 for each).
Figure 2 of the supplementary material displays all three metrics for
each participant’s head model, showing consistent results with the
pooled data in Fig. 5.

We then examined the relationship between the simulated and
estimated activation area sizes (Fig. 6). As SNR increased, a stronger
positive correlation between simulated and estimated area sizes was
observed with the 4LCNN. For cortical sources [Fig. 6(a)], a moderate

to high positive correlation was noted (r¼ 0.43–0.68) at SNRs of 15 or
above. For subcortical sources [Fig. 6(b)], weak to moderate positive
correlations were observed (r¼ 0.32–0.41) at SNRs of 15 or above. In
contrast, negligible to very weak negative correlations were observed
(r¼�0.19 to 0.14) with the other ESI methods for both cortical and
subcortical sources.

In addition to the data with SNRs between 5 and 30 dB, Fig. 3 of
the supplementary material shows localization error, spatial dispersion,
and AUPRC for data with lower SNR conditions ranging from �20 to
0 dB. Compared to data with SNRs higher than 5 dB, all metrics for the
lower SNR data were largely worse. Even the 4LCNN, which demon-
strated localization errors of less than 20 and 30mm for cortical and
subcortical regions, respectively, at 5 dB, showed errors of around
50mm or more at 0 dB. Based on these results, these ESI algorithms
should be used with data of higher SNR.

C. SEP data

In addition to the simulation data, we further validated the
4LCNN model using real human data. For this purpose, somatosen-
sory evoked potential (SEP) data acquired with EEG from three
healthy participants (participant IDs: HY1–HY3) was utilized. It is

FIG. 3. Examples of estimated source activity of cortical sources by 4LCNN, ConvDip, LCMV, and eLORETA. Examples of estimated sources from EEG for the simulated sour-
ces in the medial part of the right superior frontal gyrus (a) and the left middle temporal cortex (b). Different noise levels were added to EEG simulations, and estimation results
for three different SNR conditions (SNR¼ 10, 20, and 30 dB) are shown.
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hypothesized that somatosensory information from median nerve
stimulation travels through the cervical spinal cord, medulla, thalamus,
and somatosensory cortex at approximately 11, 13–14, 16–17, and
20ms, respectively [Fig. 7(a)].25 SEP data from all participants exhib-
ited clear peaks corresponding to the SEP components [Figs. 7(a), 7(c),
and supplementary material Fig. 3]. From the SEP components, we
focused on the latter three as they originate from the brain. Each SEP
component presented distinct topographic maps [Fig. 7(d)], and these
maps were consistent across participants [Fig. 7(d) and supplementary
material Fig. 4]. The SNRs of the SEP components were 18.66 0.8 dB
(mean 6 SD), 20.16 1.3 dB, and 22.06 2.3 dB for the 13–14, 16–17,
and 20ms components, respectively.

We estimated source activity based on the topographic distribu-
tion of amplitudes from SEP components. The estimation results for
participants HY1, HY2, and HY3 are shown in Fig. 8 and supplemen-
tary material Figs. 5 and 6, respectively. Using the 4LCNN method
[Fig. 8(b) and supplementary material Figs. 5(b) and 6(b)], the 13ms
component’s activity was accurately localized in the medulla for all
participants, aligning with assumptions. For the 17ms component,
activity was localized in the left thalamus for two participants (HY1
and HY2). For the third participant (HY3), although the maximum
activity was found slightly above the left thalamus in the left caudate,
significant activity was also present in the left thalamus. The 20ms
component was consistently localized in the hand region of the left

FIG. 4. Examples of estimated subcortical source activity located at the right thalamus. (a) Simulated source activity is shown in surface and MRI views, with no activity in the
surface view as this example pertains to the right thalamus source. (b)–(e) Estimated source activity by 4LCNN, ConvDip, LCMV, and eLORETA are presented in (b), (c), (d),
and (e), respectively. EEG simulations incorporated various noise levels. Estimation results for three different SNR conditions (SNR¼ 10, 20, and 30 dB) are depicted.
Activities are displayed in surface and MRI views. MRI views are sliced at two different locations: one at sources with the maximum values in the simulated sources, and
another at the maximum values according to the targeted ESI method.
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primary somatosensory cortex for all participants. In summary, the
estimated source activity of SEP components was generally in accor-
dance with a neural pathway of the somatosensory system.26

ConvDip [Fig. 8(c) and supplementary material Figs. 5(c) and 6
(c)] estimated the maximum activity for the 13ms component in the
mesial lobe (HY1) and the brainstem (HY2 and HY3). For the 17ms
component, the maximum activity was misplaced in the right parietal
cortex (HY1), the left amygdala (HY2), and the left ventral diencepha-
lon (HY3), rather than the left thalamus. Estimated activity for the
20ms component was observed in the left primary sensory area

(HY1–HY3) and additionally in the left primary motor area for two
participants (HY1 and HY3).

LCMV [Fig. 8(d), supplementary material Figs. 5(d) and 6(d)]
incorrectly localized the maximum activity for the 13ms component in
the mesial lobe for all three participants, with either large (HY1) or mini-
mal (HY2 and HY3) medullary activity. All participants showed activity
across extensive areas of the cerebral cortex for the 17ms component,
with pronounced activity in the left sensorimotor area, mesial lobe, and
temporal lobe. The estimated activity for the 20ms component was
similar to that for the 17ms component.eLORETA [Fig. 8(e) and

FIG. 5. Quantitative evaluation of estimation accuracy in EEG simulation data. Violin plots illustrate the distribution of three different metrics (localization error of peak activity,
spatial dispersion, and area under the precision-recall curve (AUPRC)) based on 300 simulation data points from three participant head models (one hundred for each) in (a),
(b), and (c), respectively. The horizontal bars in the violin plots indicate the mean values. Bars above the violin plots denote significant differences between conditions
(p< 0.05, according to the permutation test with FDR correction).
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FIG. 6. Correlation of activation area (i.e., number of active sources) between simulated and estimated source activities of 300 simulation data from three participants’ head
models for cortical source simulation (a) and subcortical source simulation data (b). Each participant data are plotted as closed circles in a different color.
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supplementary material Figs. 5(e) and 6(e)] showed weak (HY2) or
strong (HY1 and HY3) activity in the brainstem for the 13ms compo-
nent, yet only HY1 correctly localized the maximum activity in the
brainstem (pons, not medulla). The other two (HY2 and HY3) exhibited
maximum activity in the temporal (HY2) and occipital cortices (HY3).
For the 17ms component, despite observing weak activity in the left
thalamus (HY3 and HY2), eLORETA incorrectly estimated large activity
areas in the left sensorimotor area. For the 20ms component, the pri-
mary activity was noted in the left primary sensory area; however, unlike
with 4LCNN, there was no distinct peak activity localized in the hand
sensory region.

We also analyzed the spatial dispersion of the estimated source
activity from SEP components (Fig. 9). As with the simulation data
[Fig. 5(b)], spatial dispersion for the 4LCNN was significantly lower
than that observed in the other ESI methods (4LCNN vs ConvDip:
p¼ 0.0083, effect size (ES)¼ 0.43; 4LCNN vs LCMV: p¼ 0.0032,
ES¼ 1.97; 4LCNN vs eLORETA: p< 0.001, ES¼ 1.61; ConvDip vs
LCMV: p< 0.001, ES¼ 2.01; ConvDip vs eLORETA: p¼ 0.020,
ES¼ 1.46; LCMV vs eLORETA: p¼ 0.76, ES¼ 0.14).

D. MEG, ECoG, SEEG data

To further evaluate the 4LCNN model on the real data, we con-
ducted ESI using the 4LCNN on MEG data and evaluated its accuracy
with simultaneously recorded invasive brain signal recordings from
SEEG and ECoG (Fig. 10) from three individuals with epilepsy (subject
IDs: EP1–EP3). The recordings were carried out in a resting state with-
out any epileptic seizures, lasting for 5 min and repeated four to six
times per participant. Since the 4LCNN is designed for analyzing single

source topographic maps, it cannot directly process continuously
recorded M/EEG signals, which are mixed signals from multiple sour-
ces. Resting-state brain activity consists of concurrent signals from
multiple sources. Independent component analysis (ICA) has been
used to separate these mixed signals into individual source activities.27

Most of the separated sources exhibit dipolarity,27 which is thought to
be generated by a single source in a localized brain region. Therefore,
the sources separated by ICA are considered applicable for the
4LCNN. Following a methodology from Hnazaee et al.,28 which inves-
tigated the localization accuracy of EEG sources using SEEG record-
ings, we applied ICA to separate the MEG signals into distinct sources
and evaluated the source localization accuracy using ESI methods.
Blind source separation (BSS) techniques, including ICA, are utilized
to extract single source activities of interest such as cognitive processes,
resting brain components, and epileptic discharges.29–31 Each indepen-
dent component (IC) includes a time course and a spatial pattern
(topography), and each topography can be applied to source localiza-
tion.30,31 Before this validation, we verified the accuracy of the ESI
methods using MEG simulation data (refer to supplementary material
Figs. 7 and 8), which produced results comparable to those obtained
with EEG simulation data (Figs. 5 and 6).

Source activities of ICs separated from MEG signals were esti-
mated. If the activity time courses of the ICs correlated with signals
from invasive electrodes, the Euclidean distance between the location
with the maximum activity in the estimated source activity and the
most correlated electrode was calculated. Examples from a participant
(ID: EP1) are provided in Fig. 11. Activation time series of two ICs
were correlated electrodes located at the temporal lobe (i.e., an ECoG

FIG. 7. Somatosensory evoked potentials (SEPs) in a participant (participant ID: HY1). (a) A diagram outlining the presumed neural pathway and latencies for SEP. (b) An
example of SEPs recorded across all 159 channels. (c) Global field potentials, representing the mean absolute amplitude across all channels, showing three distinct peaks cor-
responding to the components depicted in (a). (d) Topographic maps for the peak SEP activities, presented in both 2D and 3D.
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electrode) and the hippocampus (i.e., a SEEG electrode), respectively.
The topography maps of two correlated ICs are shown in Figs. 11(a)
and 11(b). Distances between the locations of maximum activity and
the most correlated electrodes in the temporal lobe and hippocampus
ranged from 7.3 to 38.5mm for all ESI methods (Fig. 11). Notably, in
this example, the 4LCNN method estimated a source location within
the hippocampus that was very close to the corresponding electrode
[7.3mm, Fig. 11(b)].

From the three participants, 14 ICs with correlated invasive
electrodes were identified. The SNR of the ICs was 10.16 2.2 dB
(mean 6 SD). The distances between the maximum activity loca-
tions of the estimated source activities and the corresponding most
correlated electrodes did not show significant differences among
the four ESI methods (4LCNN vs ConvDip: p¼ 0.51, ES¼ 0.15;
4LCNN vs LCMV: p¼ 0.51, ES¼ 0.28; 4LCNN vs eLORETA:
p¼ 0.51, ES¼ 0.48; ConvDip vs LCMV: p¼ 0.51, ES¼ 0.10;

ConvDip vs eLORETA: p¼ 0.51, ES¼ 0.27; LCMV vs eLORETA:
p¼ 0.51, ES¼ 0.21) [Fig. 12(a)]. Although the mean distances were
not different among the methods, focusing on sources which were
estimated spatially close to the correlated electrodes by the 4LCNN,
sources with the correlated electrodes placed in the deep brain,
cuneiform nucleus, and frontal pole were accurately estimated (dis-
tance ranged from 7.3 to 10.1mm). These accurately estimated
regions were relatively distant from the craniotomy site used for
implanting the invasive electrodes. Spatial dispersion of the esti-
mated source activity was also evaluated [Fig. 12(b)]. The spatial
dispersion in 4LCNN and ConvDip was significantly lower than in
LCMV and eLORETA (4LCNN vs ConvDip: p¼ 0.23, ES¼ 0.43;
4LCNN vs LCMV: p< 0.001, ES¼ 1.97; 4LCNN vs eLORETA:
p< 0.001, ES¼ 1.61; ConvDip vs LCMV: p< 0.001, ES¼ 2.01;
ConvDip vs eLORETA: p¼ 0.0030, ES¼ 1.46; LCMV vs eLORETA:
p¼ 0.76, ES¼ 0.14).

FIG. 8. Source activity estimation of SEP in a participant (participant ID: HY1). (a) Topographic maps depicting three peak SEP activities. (b)–(e) Estimated source activities
are presented in surface and MRI views, with (b)–(e) displaying estimations by 4LCNN, ConvDip, LCMV, and eLORETA, respectively. MRI views are sliced at sources with the
maximum values in 4LCNN and the target ESI method, respectively.
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III. DISCUSSION

This study is the first to show the feasibility of deep learning-
based ESI for subcortical sources. The inverse problem of M/EEG
source reconstruction, inherently highly ill-posed, has been tackled
with our 4LCNN, which leverages realistic head conductive models for
estimating cortical and subcortical activity from M/EEG data.
Compared to ConvDip, eLORETA, and LCMV, 4LCNN

outperformed them in various metrics through M/EEG simulation. Its
effectiveness was also confirmed by its generalizability to experimental
data, aligning with somatosensory pathways and invasive electrode
recordings. Although its localization accuracy was comparable to other
methods in datasets with concurrent invasive recordings, this might be
due to MRI’s limitations in accounting for ECoG-related brain defor-
mations post-electrode implantation, potentially undervaluing
4LCNN’s performance.32 Our findings highlight 4LCNN’s potential as
a highly accurate method for source localization for both cortical and
subcortical sources, suggesting future contributions in various neuro-
logical applications, from diagnostics to understanding cognitive and
motor functions.33

Because of the high ill-posed nature of the inverse problem of M/
EEG source reconstruction, most of the commonly used ESI methods
require a priori assumptions to obtain a unique solution by explicitly
setting regularization terms. Given the complex nature of brain activ-
ity, it is quite a challenge to set optimal regularization priors.33 Even
widely utilized LORETA variants, despite their effectiveness, can lead
to diffused estimations of activity.8,9,34 A previous study comparing
different ESI methods with various regularization priors indicated that
choosing between these methods involves a trade-off: smaller localiza-
tion errors (e.g., sLORETA) vs reduced spatial dispersion (e.g.,
MNE).35 Therefore, setting optimal regularization priors that ade-
quately reflect the features of M/EEG sources is a complex task.

Recent approaches have deployed artificial neural networks
(ANNs) to surmount this inverse problem, adopting a data-driven
approach that dispenses with regularization priors.8–10 For instance,
Hecker et al.8 showed that a shallow CNN-based ESI method,
ConvDip, could accurately estimate source localizations than conven-
tional ESI methods. However, the success of ANN-based ESI methods
has so far been demonstrated only for cortical sources.8–10 Therefore,
we explored the applicability of ANN-based ESI to both cortical and

FIG. 9. Spatial dispersion of estimated source activities from SEP signals.
Comparisons of spatial dispersion values among different ESI methods are shown.
The horizontal bars indicate significant differences (p< 0.05, paired t-test with FDR
correction). Data corresponding to each participant and SEP peak timing are differ-
entiated with various markers and colors.

FIG. 10. Conceptual diagram of the ESI method validation with simultaneous recordings of magnetoencephalographic (MEG), electrocorticographic (ECoG), and stereo-
electroencephalographic (SEEG) signals. The MEG signals were decomposed into independent components by independent component analysis (ICA). Similarity of time
courses of the ICs and intracranial signals were evaluated by the correlation coefficients. Then, assuming the source of the IC is located near the correlated electrode, we
tested localization accuracy of estimated sources and corresponding intracranial electrodes.
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subcortical sources using the 4LCNN, a model inspired by ConvDip
but enhanced to augment its expressive power.

In this study, 4LCNN showed the best performance across all the
four ESI methods for SNRs between 5 and 30 dB, which are typical
SNRs in event-related potential (ERP) and SEP studies.22–24 Regarding
the localization error for maximum value sources [Fig. 5(a)], mean
errors were below 10mm for SNRs higher than 10dB for both cortical
and subcortical sources. Remarkably, errors were as low as approxi-
mately 6.6 and 5.9mm for cortical and subcortical sources,

respectively, at an SNR of 30dB. The model’s robustness to noise and
its capacity to focus estimations more precisely than other ESI meth-
ods underscore its potential. This accurate estimation may be attrib-
uted to the nonlinearity introduced by ReLU layers.36 Additionally, the
augmented number of learnable parameters, due to enhanced input
2D topographic resolution, filters, and layers in 4LCNN compared to
the preceding CNN model (ConvDip8), likely contributed to the
improved accuracy in source localization estimation. Notably, even
though the 4LCNN was trained with 20 dB SNR data, it can accurately

FIG. 11. Typical examples of estimated source activity from independent components (ICs) obtained from MEG signals. For a participant (EP1), the most correlated electrodes
with the ICs were located in the left temporal lobe [an ECoG electrode, (a)] and the left hippocampus [a SEEG electrode, (b)], respectively. Estimated activities of the ICs are
shown in two sets of MRI views. MRI views are sliced at the most correlated electrode and an estimated source having the maximum value in the target ESI method,
respectively.
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localize EEG data across a wide range of SNR levels. Such robustness
to noise has also been reported in other ANN-based ESI methods.8,10

The generalizability can be attributed to batch normalization37 and
dropout layers.38

The 4LCNN estimates source activities more focally than other
ESI methods [Fig. 5(b)]. For instance, in a representative example
[Fig. 3(a)], 4LCNN could distinguish activities between the left and
right regions within the medial part of the superior frontal gyrus—a
task that poses challenges for conventional ESI methods like
eLORETA and LCMV. Conversely, ConvDip and 4LCNN achieved
more focal estimations of source activities. This increased focality, first
noted in studies introducing ConvDip. Such high focality probably
stems from high model’s expressive power, which is linked to its non-
linearity and complexity. While both ConvDip and 4LCNN benefit
from the nonlinearity provided by ReLU layers, the 4LCNN is a more
complicated architecture. Thus, 4LCNN provides more focal estima-
tions, even when trained on the same M/EEG simulation data as
ConvDip. The estimates derived by 4LCNN were not just focal, but
were able to follow source extent that was impossible with other ESI
methods (Fig. 6 and supplementary material Fig. 7).

The effectiveness of neural networks in ESI tasks heavily relies on
the traits of the training data, making the M/EEG simulation’s model-
ing a critical step for the successful application of ANN-based ESI
models to actual M/EEG data. To this end, we employed the state-of-
the-art brain segmentation method, CHARM, which automatically
generates a highly accurate segmented MRI with delineation of ten

different tissue types.19 Additionally, we incorporated MR-compatible
fiducial markers to precisely co-register MRI and EEG data. Such
efforts for making precise head model prevents deviations between
simulation-generated training data and actual measured M/EEG data,
and is thought to contribute to the generalization performance of the
created 4LCNN to real M/EEG data.

Validating 4LCNN with SEP data (Fig. 8 and supplementary
material Figs. 5 and 6) revealed its ability to accurately localize sources
in line with established neural pathways of the somatosensory sys-
tem.26 Invasive depth electrode recordings have provided evidence that
somatosensory information relays the medulla and thalamus from 14–
16ms and 16–18ms, respectively.25 The 14ms component showed
localized activity within the lower brainstem (medulla), although later-
alization remained undetected by the 4LCNN. The 17ms component
was localized in the left thalamus for two participants (HY1 and HY2),
while the third participant (HY3) also exhibited significant activity in
this region, albeit with the peak activity detected in the nearby left cau-
date. The somatosensory information by the median nerve stimulation
reaches around 20ms poststimulation.25 The 4LCNN successfully esti-
mated high activity in the somatosensory cortex’s hand area39 for all
participants for the 20ms component. Thus, the 4LCNN, although
trained by simulated data, is capable of providing highly accurate esti-
mations of source locations even when estimating activities in real
EEG data.

When applying 4LCNN-based ESI to time-series activities in M/
EEG data that involve complex overlapping from multiple sources, it is
challenging to directly input the raw signals into the 4LCNN, as the
model is trained to localize a single source. Hence, we employed ICA
to separate the M/EEG data into distinct signal sources40 and assessed
the source localization accuracy with ESI methods. The mean location
accuracy estimated by the 4LCNN was the most precise at 24.1mm;
however, it was not significantly different from the other ESI methods
[Fig. 12(a)]. Possible reason for the lack of superiority of the 4LCNN
in this validation is brain deformations resulting from the implantation
of ECoG electrodes. Such implantations can lead to deformations due
to electrode thickness, hematoma, and tissue swelling, causing unpre-
dictable and non-uniform brain shifts of up to 24mm in cortical areas
and up to 3mm in deeper structures.32 Following previous studies,28,41

we created the head models for ESI from pre-implantation MRI data,
because implanted electrodes distort MRI data. Thus, structural differ-
ences between the created head model and the head for which the sig-
nal was measured (an example shown in Fig. 13) potentially declined
ESI accuracy in all the methods, probably masking the differences in
estimation accuracy among the ESI methods. Notably, among the four
sources that were precisely localized by the 4LCNN [Fig. 12(a)], they
were located deeper or far from the craniotomy site, where less defor-
mation is anticipated. Although this finding is tentative, it suggests the
precise localization capabilities of the 4LCNN when an ideal head
model is used. To further validate the 4LCNN, datasets involving
simultaneous SEEG and MEG recordings without ECoG would be
preferable, because SEEG typically does not result in substantial brain
deformation.42 In previous research employing the LAURA method,
an advanced form of MNE, for ESI from concurrent SEEG and EEG
recordings, the source localization error ranged between 14.8 and
23.5mm. In comparison, the accuracy of the 4LCNN for the afore-
mentioned four sources, which are likely less impacted by brain defor-
mation, was superior (accuracy ranging between 7.3 and 10.1mm).

FIG. 12. Source estimation results of independent components obtained from rest-
ing state MEG signals. (a) Source localization accuracy. (b) Spatial dispersion of
the estimated source activity. (a) and (b) Data corresponding to each participant
and brain region are presented with different markers and colors, respectively. The
horizontal bars indicate a significant difference (p< 0.05, the permutation test with
FDR correction).
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Nevertheless, additional validation is necessary to further prove the
precise localization capabilities of 4LCNN due to the limited number
of sources and differing experimental conditions.

In addition to the brain deformation, another possible reason for
the lower performance of ESIs in the validation in the MEG experi-
ment is that ECoG and SEEG electrodes likely recorded activity from
multiple nearby sources. In this validation, we compared the estimated
source locations with the most correlated electrode positions.
Considering that the electrodes captured activity from several sources,
even if the electrodes showed some correlation with the estimated
source activity (r> 0.2), they were close enough to record the source
but likely not positioned at the center of the target source. As a result,
the localization performance of the MEG data in all ESI methods was
lower than in the simulation data. In a recent study, the activity of
MEG ICs and SEEG electrodes was compared, as in the current study,
but the target was interictal epileptiform discharges. That study dem-
onstrated stronger IC-SEEG correlations, suggesting that IEDs could
be considered a more reliable ground truth for validation of ESI meth-
ods. In addition to the IEDs, simultaneous intracerebral stimulation
and M/EEG recordings are a suitable method for the ESI validation
with reliable ground-truth. An open dataset that simultaneously mea-
sures intracranial stimulation and high-density EEG is available,43

although the stimulation sites are limited to cortical regions. Utilizing
this dataset will help further validate our ESI methods in future
studies.

Our model focally estimated the brain activity compared to the
other ESIs [Figs. 5(b), 9, and 12(b)]. The focality would be derived
from the model being trained to localize a single source cluster. This
model would be suitable for experimental paradigms where active
sources are assumed to be temporally separated such as the short
latency SEP experiment. However, brain activities in most cases are
more complicated and several sources are active at the same time. For

example, resting-state brain activity, which was used in the MEG
experiment in the present study, involves multiple brain regions, and
they are connected as functional network.44 Given the strong coupling
between the regions, it is possible that even separated components by
ICA do not reflect activity from a single brain region, which has a gap
from the 4LCNN model trained by single source cluster data. Thus,
the validation presented here has limitations due to the nature of the
recordings. To make a more reliable validation between the estimated
activity and intracranial recordings, we should either use experimental
paradigms that assume single-source activity, such as auditory brain-
stem response (ABR).45 Another way to overcome the limitation is to
extend our models for multiple source clusters. We can generate train-
ing data for the multiple source model by modification of the forward
simulation in this study. The deep learning-based ESI model for multi-
ple sources should be a more complex architecture than the 4LCNN,
considering the complexity of the brain activity.

Another limitation of the 4LCNN is that it was trained to work
on single time points of M/EEG data. As a result, while the model can
predict the location of sources, it is unable to estimate the temporal
dynamics of brain activity. Recent studies have succeeded in accurately
estimating both spatial and temporal brain activity of the cerebral cor-
tex using an approach that combines neural mass models (NMMs),
which can simulate realistic spatiotemporal brain dynamics, with deep
learning models.9,46 By incorporating such NMMs to generate more
realistic training data, the 4LCNN could achieve higher performance
when applied to real human data. Since CNNs are effective at aggregat-
ing spatial information, our 4LCNN could be developed into a model
capable of utilizing spatiotemporal information, such as CNN-LSTM
models that combine CNN with long short-term memory (LSTM)
layers commonly used for time series data.47 By integrating LSTM and
NMMs with our CNN-based approach, we may enable a more accu-
rate estimation of spatiotemporal brain activity both in cortical and

FIG. 13. An example of deformation of
the brain after implantation of invasive
electrodes from a participant (EP2). (a)
A T1 weighted MRI pre-electrode
implantation. (b) A T1 weighted MRI
post-electrode implantation. The area
supposed to be hematoma in the post-
surgery image is highlighted by a red
line. The same region is also highlighted
in the pre-surgery image.
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subcortical regions. The advantage of this new approach is that it
allows temporal dynamics to be analyzed, but it is expected that the
use of temporal information tied to a specific brain region will also
increase the spatial accuracy of the new approach compared to the
4LCNN.

One disadvantage of using 4LCNN is its high computational cost.
Compared to conventional ESI methods such as LCMV and
eLORETA, deep learning-based ESIs require model training time. For
instance, training 4LCNN took about four hours, while ConvDip took
around 50min on an Nvidia RTX A6000 GPU. Additionally, our
approach requires the preparation of training data through simula-
tions, which took approximately six minutes to generate 450 000 simu-
lated datasets on an Intel i7-12700k desktop processor. As for the
estimation times for 100 test data, while there were differences in com-
putation times across the ESIs, they were all short enough not to hin-
der the execution of studies: 0.11 s for 4LCNN, 0.01 s for ConvDip,
0.7 s for LCMV, and 6.1 s for eLORETA. Reducing the training time
for 4LCNN is an important aspect for future research. One potential
strategy is to modify the model’s output from electrical sources to
brain parcels based on anatomical MRI analysis, which could signifi-
cantly reduce the solution space.

IV. CONCLUSION

In conclusion, this study is the first to show the feasibility of deep
learning-based ESI for a single source in subcortical regions. We have
proposed a data-driven ESI framework with the 4LCNN combined
with a realistic head conductivity model. The results presented from a
series of accuracy validations involving both numerical simulations
and real human data demonstrate the high feasibility of the 4LCNN
for accurate M/EEG source localization of both cortical and subcortical
sources. The demonstrated potentials of the 4LCNNs in accurate
source localization in this study indicates their future contributions to
a range of research areas, including clinical diagnosis, understanding
the pathophysiology of various neuronal diseases, and basic brain
functions.

V. METHODS
A. Participants

For EEG data analysis, we obtained MRI and EEG data from three
healthy adult males aged 23–25 years (Participant IDs: HY1�HY3). For
MEG data analysis, MRI, MEG, Electrocorticographic (ECoG), and
stereo-electroencephalographic (SEEG) data were collected from three
patients suffering from intractable epilepsy undergoing pre-surgical clin-
ical assessment (participant IDs: EP1–EP3, aged 10–29 years).
Placements of invasive electrodes for EP1–EP3 are displayed in supple-
mentary material Figs. 9–11, respectively. Structural MRI and M/EEG
sensor position data were used for M/EEG simulation. M/EEG signals
were utilized to evaluate source estimation for implementations with
real data. ECoG and SEEG data were employed for the localization accu-
racy evaluation of estimated sources from the MEG signals.

B. EEG source estimation dataset

1. EEG electrode location acquisition

The locations of EEG electrodes were digitized using an optical
digitizing system (Brainsight, Rogue Research, Montreal, Canada). To
achieve precise co-registration of MRI and EEG electrodes, we attached

three donut-shaped multimodal (MR/CT) fiducial markers
(PINPOINT, Beekley Corp., Bristol, CT) with a hole size of 1.27mm
onto the left and right pre-auricular points (LPA and RPA) and the
forehead, and digitized their locations. The coordinate systems of the
electrode and MRI data were aligned based on these marker positions
using the Fieldtrip software.48

2. MRI acquisition

T1 (TR¼ 2400.0ms, TE¼ 2.2ms, 1mm isotropic resolution)
and T2-weighted (TR¼ 2500.0ms, TE¼ 272ms, 1mm isotropic reso-
lution) structural MRIs were obtained using a Siemens Prisma 3T
scanner (Siemens Medical Systems, Erlangen, Germany). As men-
tioned previously, three donut-shaped multimodal fiducial markers
were attached to the head during MRI data acquisition for precise co-
registration with EEG electrodes.

3. Forward model

We created forward models based on individual MRI data and
digitized electrode locations to generate M/EEG data by forward simu-
lation for generating training and validation datasets for 4LCNN. The
relationship between the recorded potential by M/EEG sensors and
brain source activity is expressed as follows:

x tð Þ ¼ Hs tð Þ þ e tð Þ; (1)

where t represents time, x (t) 2 Rn�1 is a vector of M/EEG signals mea-
sured by n sensors, H 2 Rn�m is a leadfield matrix describing the
electrical current flow from each dipole in the brain to every sensor, s
(t) 2 Rm�1 represents the source signal generated by m brain sources,
and e(t) 2 Rn�1 is the noise vector.

To simulate M/EEG data realistically and solve the inverse solu-
tion, we created a forward model based on anatomical head MRI
images and M/EEG electrode positions.

We utilized SimNIBS equipped with the complete head anatomy
reconstruction method (CHARM), which is a state-of-the-art tech-
nique, to automatically generate a highly accurate segmented MRI
image with ten tissues: white matter, gray matter, cerebrospinal fluid
(CSF), scalp, eyeballs, compact bone, spongy bone, blood, muscle, and
air pockets, based on individual T1 and T2 MRI images.19 A hexahe-
dral mesh was generated directly from the segmented MRI image
using the “prepare_mesh_hexahedral” function within the Fieldtrip
toolbox. To avoid staircase artifacts, we created geometry-adapted hex-
ahedral meshes, where mesh nodes at tissue boundaries were slightly
shifted to provide a smoother representation of the boundaries.49

Then, utilizing finite element method (FEM) approaches, we con-
structed highly realistic multicompartment volume conductor models
for forward EEG simulations. The conductivity (unit: S/m) of each tis-
sue type was set as follows based on a review article:50 white matter:
0.22, gray matter: 0.47, CSF: 1.71, scalp: 0.41, eyeballs: 0.5, compact
bone: 0.0046, spongy bone: 0.050, blood: 0.57, muscle: 0.32. The con-
ductivity for eyeballs was adopted from Haueisen et al.51 due to the
absence of this information in McCann et al.50

We employed T1 MRI data to obtain cortical surfaces and sub-
cortical anatomical regions for defining the locations and orientations
of the elementary dipole sources. The sources were placed on cortical
surfaces and within subcortical volumes in accordance with a previous
study.52 Initially, cortical surfaces were extracted using FreeSurfer.53
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Based on the cortical surface data, we created a high-resolution cortical
surface triangular mesh with the HCPWorkbench54 and resampled it to
approximately 8000 sources using the iso2mesh toolbox.55 The edge
lengths of the mesh were about 3–4mm. Subcortical parcellations were
obtained by FreeSurfer. The sources within subcortical volumes
were evenly distributed with a grid resolution of 3mm using the
“ft_prepare_sourcemodel” function in Fieldtrip. For cortical sources,
dipoles were placed with orientations normal to the cortical surface
mesh.56 For subcortical sources, triplets of orthogonal dipoles were situated
within the subcortical volumes.15 The leadfield matrix, which comprises
vectors of potential amplitudes received by electrodes from each dipole
source, was generated using the DUNEuro toolbox in Brainstorm.57,58

Furthermore, we developed a second forward model for valida-
tion of the 4LCNN. We modified the forward model used for training
M/EEG data to create the second forward model for the validation,
considering potential differences in brain-electric signal volume con-
duction between the actual head and our model, which cannot be pre-
cisely known a priori. We modified the electrode positions by adding
Gaussian noise (mean: 0mm, variance: 2mm) to the three-
dimensional coordinates of each electrode. Additionally, we altered the
tissue conductivity in the FEM solution by scaling the original values
by 1.2 or 0.8: white matter: 0.17 (original: 0.22), gray matter: 0.56 (orig-
inal: 0.47), CSF: 1.36 (original: 1.71), scalp: 0.24 (original: 0.41), eye-
balls: 0.6 (original: 0.5), compact bone: 0.0037 (original: 0.0046),
spongy bone: 0.060 (original: 0.050), blood: 0.46 (original: 0.57), mus-
cle: 0.38 (original: 0.32). All simulations in the validation section were
performed using the validation model, whereas the calculation of the
inverse solutions was based on the original model. The 4LCNN train-
ing data were simulated using only the original model. In this study,
the original and modified models are referred to as the training model
and validation models, respectively.

4. EEG simulations

We generated two different sets of simulated EEG signals: (1)
EEG data for training the 4LCNNmodel using the training model and
(2) validation data to test the constructed 4LCNN model against the
validation model.

Each simulation involved a cluster of dipoles within each brain
region for training the 4LCNNmodel and evaluating ESI methods.56,59

For the simulation, cortical surfaces were divided into 62 cortical
regions (31 regions per hemisphere) based on the Desikan–Killiany–
Tourville (DKT) parcellation atlas.60 Subcortical volumes were seg-
mented into 17 anatomical regions (brain stem, left and right thala-
mus, caudate, putamen, pallidum, hippocampus, amygdala,
accumbens area, and ventral diencephalon) as delineated by FreeSurfer
segmentation. The cortical and subcortical segmentations were con-
ducted using the recon-all pipeline in FreeSurfer. A source cluster for
each region was constructed using the cortical mesh sheet and subcor-
tical volume mesh described in the Forward Model section. Subcortical
volume mesh was created from sources within the subcortical volumes
using “delaunay” and “triangulation” functions in MATLAB. A single
seed source was randomly selected; then, K nearest neighbors within
the same brain region as the seed source were included in a cluster as
active sources, where K was randomly chosen from 1 to 3. The number
of dipoles in a cluster ranged approximately from 10 to 100. Dipole
moments (amplitudes) were set to 1.0, 0.95, 0.9, 0.85 (in arbitrary
units) for the seed and one, two, and three nearest neighbor dipoles,

respectively. The orientations for cortical sources were constrained to
be normal to the surface mesh, while subcortical source orientations
were randomly determined, with a single orientation used within a
cluster.61 For the simulated data, Gaussian noise was added to the gen-
erated EEG signals for 159 electrodes. The noise level was adjusted to
achieve a desired signal-to-noise ratio (SNR) in decibels (dB), defined
as follows:

SNR ¼ 20log10 rms Ysimulatedð Þ=rms Ynoiseð Þ� �
; (2)

where Ysimulated is a vector representing simulated EEG amplitude of
the 159 ch EEG electrodes, and Ynoise is a vector representing added
noise for the electrodes. The rms(x) is a function to calculate the root
mean square of a vector x.

For training the 4LCNN model, we simulated 100000 and 350 000
samples for cortical and subcortical sources, respectively, using the train-
ing model. For model evaluation, 100 samples were simulated for each
cortical and subcortical source estimation using the validation model.

5. Source estimation by convolutional neural network

In this study, we utilized the 4LCNN to estimate source activity
from M/EEG signals by addressing the M/EEG inverse problem. The
4LCNN model was specifically designed to estimate a single clustered
source from the spatial distribution map of M/EEG signals.

As a preprocessing step for EEG signals, we standardized the
amplitude of each spatial distribution map, comprising M/EEG signals
from electrodes at a given time instance, to have a zero mean and unit
variance. These maps were then transformed into input data for a 2D
CNN by interpolating onto a 2D image of size 26� 26. From this 2D
matrix, the 4LCNN model estimates the activity of distributed dipoles
within the brain. The design and training of the 4LCNN model were
performed using MATLAB’s Deep Learning Toolbox on an NVIDIA
RTX A6000 GPU.

The architecture of our 4LCNN model (Fig. 2) is based on
ConvDip, a CNN model for cortical source estimation.8 Our study
aimed to estimate both cortical and subcortical source activity by
enhancing the original CNN model to increase its expressive ability.
We augmented the resolution of the input M/EEG map and the num-
ber of kernels (filters) in the CNN and expanded the convolutional
layers beyond those in ConvDip. The first layer in the 4LCNN was a
convolutional layer with 32 filters, each of size 3� 3, employing zero-
padding. Each convolutional layer was followed by a batch normaliza-
tion (BN) layer37 to accelerate training and mitigate internal covari-
ance shift problems. A rectified linear unit (ReLU) function followed
each BN layer as the activation function. After four sets of convolution,
BN, and ReLU layers, a dropout layer with a dropout rate of 30% was
introduced to enhance the model’s generalizability. The final two layers
of the 4LCNNwere a fully connected layer and an output layer.

The 4LCNN model parameters were optimized using adaptive
momentum estimation (ADAM)62 with a learning rate¼ 0.001,
b1¼ 0.5, and b2¼ 0.999. The loss function utilized was the root mean
squared error (RMSE).

6. Evaluation metrics

We assessed the quality of inverse source estimation using three
performance metrics:
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I. Localization error: We calculated the Euclidean distance
between the locations of the sources with the maximum value
between the simulated and estimated data. This metric quanti-
fies the accuracy of the estimated source center.8

II. Spatial Dispersion: To assess the spatial extent of sources, we
calculated the spatial dispersion metric as follows:34

Spatial Dispersion ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1
aj rpeak � rjð Þð Þ2Xm

j¼1
ajð Þ2

vuuut ;

where m is the number of sources, aj and rj are the activity
intensity and location of source j, respectively, rpeak is the loca-
tion of source, which has the maximum intensity across all
sources, rpeak � rjð Þ is the Euclid distance between rpeak and rj.

III. Area under the precision-recall curve (AUPRC): We com-
puted the AUPRC to assess the accuracy considering both loca-
tion and spatial extent of sources. The AUPRC is more suitable
than other metrics, such as the receiver operating characteristic
(ROC) curve, for evaluating performance in imbalanced data-
sets like ours, which has a large imbalance between negatives
and positives.63 In our case, since simulated active sources are
limited in a cluster, AU-PRC was considered to be a suitable
method. The AUPRC quantifies the performance of a binary
classification system as its discrimination threshold T is varied.
The estimated sources are classified as active or inactive based
on whether their amplitude exceeds the threshold T. We then
tallied the true positives (TP), true negatives (TN), false posi-
tives (FP), and false negatives (FN) relative to the true sources.
Precision and recall were computed as follows:

Precision ¼ TP
TP þ FP

;

Recall ¼ TP
TP þ FN

:

In the AUPRC analysis, precision and recall form the y-axis and x-
axis, respectively. As T approaches 1, the number of positives
approaches zero, leading to recall nearing zero, while precision
becomes undefined (division by zero). At this limit, we used the preci-
sion value for the highest threshold below 1, assuming a horizontal
asymptote as described in a prior study.56 The PR curve was con-
structed by varying T from 0 to 1, and the AUPRC was integrated,
yielding a value between 0 and 1. The closer the value to 1, the better
the model’s performance.

7. Experiments of somatosensory evoked potentials

To validate the 4LCNN model with real EEG data, we employed
SEP experiments due to the accumulation of evidence supporting the
neural origin of SEP components. EEG and depth electrode recordings
have confirmed that somatosensory information from median nerve
stimulation propagates sequentially through the cervical spinal cord,
medulla, thalamus, and somatosensory cortex at approximate intervals
of 11, 13–14, 16–17, and 20ms, respectively.25 We administered elec-
trical monophasic square wave constant current pulses for a duration
of 200ms from a clinical constant current stimulator (DS7A,
Digitimer Ltd., Welwyn Garden City, United Kingdom) to stimulate

the right median nerve. The electrode pair was placed on the wrist of
the right hand. The current intensity was set to the sum of the motor
and sensory thresholds for each participant, in line with the
International Federation of Clinical Neurophysiology’s recommenda-
tions.64 Stimulation was applied 2000 times at a repetition rate of
4.98Hz, with the entire session repeated four times, totaling 8000 stim-
ulations. To maintain the participants’ attention to the stimulus,
pauses were included approximately every 45–90 s. During each ses-
sion, stimulation was paused randomly for about 2 s between 4 and 7
times. The duration of each session was approximately 7min, pauses
included. Participants were instructed to count the number of pauses
and report their count at the session’s end. All participants accurately
reported the number of pauses for all sessions.

EEG signals were recorded from 159 channels using an EEG
amplifier (ActiCHamp Plus, Brain Products, Germany) with active
electrodes (ActiCap Slim, Brain Products GmbH, Germany) at a sam-
pling rate of 5000Hz during the SEP experiment. Electrode impedan-
ces were maintained below 10kX, significantly lower than the
recommended impedance (<50 kX) for high-impedance EEG ampli-
fiers. The same three-dimensional electrode coordinates employed for
the head model creation were used, as the electrode position data were
measured immediately prior to the SEP experiment. The EEG signals
were bandpass filtered with a 4th order Butterworth filter at a cutoff
frequency of 100–250Hz.65,66 This high-frequency component was
selected to minimize baseline fluctuation and to separately evaluate
components occurring closely at 13–14, 16–17, and 20ms, correspond-
ing to the medulla, thalamus, and primary somatosensory cortex com-
ponents, respectively. SEPs from all participants exhibited distinct
peaks corresponding to these components. We estimated the source
activity of these components from the EEG spatial distribution map at
the peak times using the 4LCNN model. The noise level of SEPs was
evaluated using the SNR. The signal size was defined as the RMS of the
amplitude across all electrodes at the peak timing of each component,
while the noise level was defined as the mean RMS value during the
pre-stimulus period (from�50 to�5ms before the stimulation).

C. Validation with simultaneous recording of MEGs,
SEEG, and ECoG data

To further evaluate the 4LCNN model on the real data, we con-
ducted ESI using the 4LCNN on MEG data and evaluated its accuracy
with simultaneously recorded invasive brain signal recordings from
SEEG and ECoG (Fig. 10). This study included three patients diag-
nosed with epilepsy.

1. Data acquisition

We simultaneously recorded MEG, SEEG, and ECoG signals
from the participants in a resting state (with eyes closed, relaxed, possi-
bly asleep) for 5min. This recording was repeated four to six times per
participant, accumulating 20–30min of data for each participant. In
addition, we recorded “empty-room data” (with no subject present)
for 5min to assess the background noise in the MEG signals.

MEG data were recorded using a 160-channel whole-head MEG
system (MEG Vision NEO, Yokogawa Electric Corporation, Tokyo,
Japan). Participants lay supine in a magnetically shielded room with
five head-marker coils attached to their face. The positions of these
head-marker coils were measured before and after each MEG
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recording to determine the relative position and orientation of the
MEG sensors to the participant’s head. The MEG signals were sampled
at 2000Hz with a bandpass filter setting of 0.1–500Hz. To co-register
MEG data with individual MRI data, the three-dimensional locations
of 50 points on each participant’s scalp and facial surface were digitized
(FastSCAN, Polhemus, Colchester, Vermont, USA).

SEEG and ECoG electrodes were implanted, and their locations
in each participant are shown in supplementary material Figs. 9–11.
We collected data from 24 to 54 SEEG contacts and 42–70 ECoG con-
tacts, recorded at 2000Hz by a digital EEG system (EEG-1200, Nihon
Koden, Tokyo, Japan). All subcortical electrodes were referenced to
average potential of two electrodes placed subcutaneously or on the
cortex during the recordings. Initially, signals were filtered using a
bandpass filter ranging from 1 to 60Hz.

Pre- and post-implantation T1-weighted MRI scans were conducted
with Discovery MR750 (GE Healthcare, Chicago, U.S.A.; pre:
TR¼ 7.3ms, TE¼ 2.8ms, 1mm isotropic resolution; post: TR¼ 7.7ms,
TE¼ 3.5ms, 0.95mm isotropic resolution) for EP1 and SIGNA Architect
(GE Healthcare; pre: TR¼ 2300.0ms, TE¼ 3.0ms; post: TR¼ 10.0ms,
TE¼ 4.0ms, 1mm isotropic resolution) for EP2 and EP3.

MRI data were defaced using the AnonyMI algorithm67 to reduce
the risk of identification while conserving geometrical information
before stored in a processing workstation in accordance with the ethi-
cal policy. After electrode implantation, a CT scan was also performed
to ascertain the positions of the implanted electrodes with the
Aquilion Precision scanner (Toshiba Medical Systems, Tokyo, Japan).

2. Data analysis

We created 4LCNN models for estimating MEG source activity
using the same methodology as for EEG source estimation, with minor
modifications tailored for MEG. The spatial alignment of MEG sensors
and MRI data were based on the coordinates of the head surfaces digi-
tized during the MEG experiment and the head surfaces extracted
from T1-weighted MRI images. This alignment was achieved through
rigid-body transformations to minimize the distance of these points to
the head surface using the Brainstorm software. MRI and CT data
were also aligned using the “ft_convert_coordsys” function in
Fieldtrip. ECoG and SEEG electrode locations were then determined
using MRI and CT data via a pipeline designed for merging anatomical
images with intracranial electrode placement in Fieldtrip.68

MEG signals were bandpass filtered within a frequency range of 1–
60Hz, and then re-referenced with a common average reference (CAR)
technique.28 Subsequently, independent component analysis (ICA) was
performed using the “runica” function in the EEGLAB toolbox.69

Correlation coefficients (r) between the time courses of the independent
components (ICs) and the signals from SEEG and ECoG electrodes
were calculated. For each IC, if r values exceeded 0.2 for any electrode,
the electrode with the highest r was assumed to be most proximal to the
source of the IC. We then computed the Euclidean distance between the
estimated location of the IC and the corresponding electrode location.

D. Comparisons to other ESI methods

We compared the performance of the 4LCNN model with
ConvDip,8 a previously published CNN model for ESI, and two com-
monly utilized ESI methods—eLORETA20 and the LCMV beam-
former21—using the same set of simulations and experimental data.

ConvDip was trained with the same forward M/EEG simulation data
as the 4LCNN using MATLAB’s Deep Learning Toolbox. The
eLORETA and LCMV analyses were conducted using the Fieldtrip
software. Both eLORETA and LCMV require noise covariance infor-
mation among sensors. We utilized an identity matrix for the noise
covariance for the simulated EEG data because white Gaussian noise
was used in the EEG simulation. For MEG ICs, an identity matrix was
also employed since the noise covariance among sensors within a sin-
gle IC was indeterminate, following a recent study.30 For SEP data,
covariance matrices were derived from signals during the pre-
stimulation period (�50 to �5ms) in accordance with previous stud-
ies on evoked responses.8,70 The regularization parameter for the noise
covariance matrix in eLORETA and LCMV was set to SNR�1 for the
simulation and SEP data,56 and a default value of 0.05, as per
Fieldtrip’s settings, was used for the single ICs of MEG. The noise level
of individual ICs was evaluated using the SNR. The signal size was
defined as the RMS of the activity time courses of the ICs extracted
from the MEG signals using the unmixing vector obtained through
ICA, while the noise level was defined as the RMS of the activity time
courses derived from the empty-room MEG data using the same
unmixing vector applied for the signal size calculation.

E. Statistics

The normality of the datasets was evaluated using the Lilliefors
test. For all ESI methods, estimated activity was normalized to the peak
value across sources. With respect to the three performance metrics—
localization error, spatial dispersion, and AUPRC—for the accuracy vali-
dation with simulation data, the differences between the ESI methods
were statistically compared using a permutation test, a non-parametric
method,71 across each SNR condition and metric. The permutation test
was selected because the normality was not observed in all cases. P-
values derived from the permutation test were adjusted for multiple
comparisons using the false discovery rate (FDR) control method.72

We also explored the relationships of activation areas between
the simulated and estimated data in the simulation dataset. The activa-
tion area was defined as the number of active sources with a value
exceeding 0.5.

In the ESI analysis of SEP data from healthy participants, the spa-
tial dispersion metric was computed, as this metric can be determined
without true source activity information. Spatial dispersion was com-
pared among the ESI methods using a paired t-test with FDR correc-
tion since normality was confirmed.

In the ESI analysis of resting state MEG data from individuals
with epilepsy, both localization error and spatial dispersion were com-
pared among ESI methods using permutation tests with FDR correc-
tion due to the lack of normality in the datasets.

SUPPLEMENTARY MATERIAL

See the supplementary material for detailed statistical results,
individual data, and supportive additional data.
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