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Abstract

Background: Evolutionary history has provided insights into the assembly and functioning of plant communities, yet
patterns of phylogenetic community structure have largely been based on non-dynamic observations of natural
communities. We examined phylogenetic patterns of natural colonization, extinction and biomass production in
experimentally assembled communities.

Methodology/Principal Findings: We used plant community phylogenetic patterns two years after experimental diversity
treatments (1, 2, 4, 8 or 32 species) were discontinued. We constructed a 5-gene molecular phylogeny and statistically
compared relatedness of species that colonized or went extinct to remaining community members and patterns of
aboveground productivity. Phylogenetic relatedness converged as species-poor plots were colonized and speciose plots
experienced extinctions, but plots maintained more differences in composition than in phylogenetic diversity. Successful
colonists tended to either be closely or distantly related to community residents. Extinctions did not exhibit any strong
relatedness patterns. Finally, plots that increased in phylogenetic diversity also increased in community productivity, though
this effect was inseparable from legume colonization, since these colonists tended to be phylogenetically distantly related.

Conclusions: We found that successful non-legume colonists were typically found where close relatives already existed in
the sown community; in contrast, successful legume colonists (on their own long branch in the phylogeny) resulted in plots
that were colonized by distant relatives. While extinctions exhibited no pattern with respect to relatedness to sown
plotmates, extinction plus colonization resulted in communities that converged to similar phylogenetic diversity values,
while maintaining differences in species composition.
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Introduction

Recently, with the availability of phylogenetic information and

computational tools, evolutionary history has been shown to

provide insights into the assembly of plant communities

[1,2,3,4,5,6]. A number of studies have found that plant

communities are often non-random assemblages of the regional

plant species pool. In some cases, communities comprised species

that are more closely related to each other than expected by

chance [2,4,7,8], while in other communities, species are more

evenly distributed across the phylogenetic tree [4,7,8,9]; expecta-

tions are based on random samples of species selected from a

larger regional pool.

The interpretation of these phylogenetic patterns has been

challenging, as phylogenetic clustering or evenness may result

from a large number of ecological and evolutionary processes

[5,10,11,12]. For example, limiting similarity, or the concept that

ecologically similar competitors compete more intensely, has been

invoked as a mechanism underlying communities with an even

distribution of species across the phylogenetic tree [5,13], though

this may be countered by the uneven phylogenetic distribution of

competitively important traits [10]. Phylogenetic overdispersion or

evenness might also reflect historical processes of speciation in

sister taxa, such that sister taxa are not sympatric. Similarly,

underdispersion or clustering on the tree could reflect evolutionary

patterns of adaptive radiation and sympatric speciation or the

presence of conserved traits of particular clades that are favored

under specific abiotic conditions [5,8,14,15]. In fact, numerous

explanations have been proposed to explain each of these patterns.

A commonality of the vast majority of these studies is that they

examine communities in light of the species pool in a larger area,

and implicitly invoke mechanisms operating across multiple spatial

scales. For small-scale community phylogenetic patterns, those on

the order of meters or smaller, we expect that local interactions

could be drivers of local coexistence [16,17].

Recent work has also shown that experimental plant assem-

blages with more distantly related species result in greater biomass

production [18,19]. The hypothesized mechanism explaining this
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pattern is that distantly related taxa are more likely to be

functionally distinct or have lower niche overlap than closely

related taxa [18,19,20]. In a North American grassland experi-

ment, Cadotte and colleagues [19] show that phylogenetic

relationships explain variation in biomass production better than

a trait variation. Left unexplored is how natural community

assembly processes affect the relationship between phylogeny and

biomass production.

Here, we ask whether phylogenetic signal in plant community

assembly can be detected in experimentally assembled plots

undergoing natural colonization and extinction. We analyzed

plant community compositional data originally collected as part of

a BIODEPTH project in Switzerland [21]. This experiment

included 64 plots planted and maintained at 1, 2, 4, 8 and 32

species between 1995 and 2000, followed by two years when

natural extinction and colonization was permitted. Given that

communities were created experimentally, that plots remained

distinct, and that colonizations and extinctions came from a

diverse pool of species, the specific questions we addressed were:

1) What was the phylogenetic distribution of sown species in

the plots and how did this distribution change by the end of

the experiment?

2) a) What was the overall phylogenetic distribution of

colonists? ; b) Did species that successfully colonized a plot

differ from those that failed to colonize in their phylogenetic

distance from the plot community? We predict that species

distantly related to community residents should be more

likely to colonize, since they should occupy a relatively

unique niche.

3) What were the phylogenetic distances of species that went

extinct relative to those that persisted in a plot? If closely-

related species have the greatest overlap in resource

requirements, then we predict that species were more likely

to go extinct when close relatives were present.

4) Were changes in biomass production at the end of the

experiment related to changes in phylogenetic diversity

(PD), species richness or both? We expect that communities

with greater PD should be more productive, and commu-

nities that gain the most PD through colonization also show

the greatest increases in productivity, since greater PD

should equate with greater niche differences.

Results

By 2001, two years after experimental manipulations and

weeding had ceased, plots had converged in species richness

(Fig. 1). The mean number of colonizing species per community

varied from 7.12 species in monocultures to 1.25 species in the

most diverse communities. Colonists included species originally

used in the experimental plots and those from the surrounding

area and not included in a particular plot. Species extinctions per

community per year increased from less than 1% of the species per

plot in the years 1995–1999 (when treatments were maintained) to

10.9% in 2000 and a further 8.9% in 2001.

Species compositions between experimental communities be-

came more similar following cessation of weeding (mean Jaccard

index in 1998 = 0.12060.004, in 2001 = 0.37860.004; p,0.001,

see also Fig. 2a), however, there remained substantial composi-

tional variation among plots after two years. Further, plots

converged on similar mean nearest neighbor distances (MNND),

with especially large decreases in initially low-richness communi-

ties as other colonists were added (Fig. 2b). This might be expected

as new species colonize species-poor plots; we explore the

significance and phylogenetic patterns of these colonizations

below.

Comparison 1) Phylogenetic dispersion of treatment
communities

On average plots gained 3.51 species (sd = 6.03) and 1.28 units

of phylogenetic diversity (PD) (sd = 1.30), but the 32-species

treatments lost an average of 16.25 species (sd = 2.22) and 2.24

units of PD (sd = 0.705) (Fig. 3a). Interestingly, plot MNND

changed very little for these diverse plots and the low diversity

polycultures are centered on MNND change of zero (Fig. 3b).

Further, diversity change, through colonization and extinction,

resulted in an almost perfectly linear relationship between both

sown PD and the change in PD (F1,57 = 498.8, P,0.0001,

R2 = 0.90; Fig. 3c) and sown MNND and change in MNND

(F1,57 = 720.7, P,0.0001, R2 = 0.93; Fig. 3d). It appears as though

these plots are converging on PD of 2.62 (sd = 0.48) and MNND of

0.34 (sd = 0.12). Despite the remaining compositional variation

among plots (Fig. 2a), these results reveal a high degree of

phylogenetic convergence, where most higher-level clades are

represented within communities.

Comparison 2a) Are colonists a random subset of the
species pool as a whole?

Of the 59 plots, 57 were colonized by at least one non-sown species.

Species that colonized at least one plot were marginally phylogenet-

ically clustered across the regional species pool, mean nearest

neighbor distance (MNND) = 0.216, �xxrand (sd)~0:259 (0:030),
P = 0.08, suggesting some phylogenetic conservatism in colonizing

ability. In particular, legumes were good colonists (Trifolium repens

colonized 41 plots; T. pratense, 34 plots; and T. flavescens, 25 plots).

Since legumes comprise a diverse clade separated by a long

branch length from other groups, they can strongly influence

patterns of phylogenetic dispersion of plots where they colonize.

If legumes are removed from the pool of colonists, then colonists

Figure 1. The relationship between change in the number of
species in a plot and the number of species planted. Inset
histograms show the number of extinction and colonization events for
individual species.
doi:10.1371/journal.pone.0019363.g001

Community Phylogenetic Change
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are still significantly phylogenetically clumped relative to random

expectation (31 of 36 plots for which there was more than one

non-legume colonist were underdispersed with 11 plots signifi-

cantly so (P,0.05)); in particular, Plantago lanceolata (n = 37),

Arrhenatherum elatius (n = 33), Ranunculus acris (n = 29) and Tarax-

acum officinale (n = 28) were conspicuous colonizers.

2b) Does the success of colonists depend on sown plot
phylogenetic structure?

Given that successful colonists came from diverse lineages

phylogenetically (Asteraceae, Fabaceae, Plantaginaceae, Ranun-

culaceae and Poaceae), it is reasonable to ask whether the success

of colonists depends on sown phylogenetic structure. In 41

Figure 2. Detrended Correspondence Analysis of initial (dark grey) versus final (light grey) community compositional space (grey
envelopes delineate outer envelope of starting composition of plots) (a). Circles are initial plots and lines end at final composition. Plot
shows some compositional convergence, but substantial variation among plots remains. Convergence of mean nearest neighbor distances (MNND)
(b), where diverse plots (i.e., with 8 or more more species—grey dashed lines) maintain MNND patterns despite species extinctions and species-poor
plots (black solid lines) converge to high diversity MNND values.
doi:10.1371/journal.pone.0019363.g002

Figure 3. The relationship between planted diversity and diversity change in the experimental plots. Plot PD generally declined with
the number of species planted (a); there was substantial change in MNND for the low diversity plots, but little change in mean MNND (b); and there
appeared to be a linear relationship between planted PD and PD change (c), and between planted MNND and MNND change (d).
doi:10.1371/journal.pone.0019363.g003

Community Phylogenetic Change
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colonized plots, we found 10 plots in which MNND of colonists

was significantly different from random expectation, a result we

interpret as exhibiting phylogenetic signal (two plots would be

expected to exhibit signal by chance alone (at a= 0.05)). These

results were highly affected by legumes. If legumes are included in

the analysis, successful colonists tended to show a bimodal

distribution of MNND values (Fig. 4a), where the majority of

successful colonists either had close relatives or very distant

relatives in the sown plot. For seven of the 41 plots that were

colonized by multiple species, colonists were significantly phylo-

genetically underdispersed (P,0.05) and three were overdispersed

(P,0.05) relative to sown species. When we remove the legume

clade from the analysis, we still see a much larger mode of colonists

that have close relatives (Fig. 4b), now with 11 of 36 plots

colonized by multiple species underdispersed (P,0.05), and the

second mode is greatly reduced, without any overdispersed plots.

These underdispersed plots were not those found to be under-

dispersed initially, nor were they similar in other aspects, such as

the number of species (they ranges from 7 to 25 species at the end

of the study). In general, successful colonists were found where

close relatives already existed.

3a) Are species that went extinct in plots
phylogenetically clustered or overdispersed relative to
species pool as a whole?

Species that went extinct in at least one plot did not exhibit any

phylogenetic signal MNND = 0.215, �xxrand (sd)~0:224 (0:020),
P = 0.33. Compared to the colonizers, there were not nearly as

many extinction-prone species as good colonists (Lolium perenne

went extinct 17 times and Holcus lanatus, 8 times). However, the

most extinction-prone species were highly represented by grasses.

3b) Do species extinctions depend on plot phylogenetic
structure?

Species extinction did not appear to be related to the

phylogenetic structure of plots (Fig. 4c). In 55 plots where

extinctions occurred, there was no significant relationship between

extinction and MNND; in three plots, extinctions were signifi-

cantly clustered relative to the species that persisted (P,0.05), and

in one plot, extinction was over-dispersed (P,0.05). Again, we

expect three plots to be significantly different from random by

chance alone at a= 0.05, so we find that phylogenetic distance

does not generally predict extinctions in plots.

Because we did not know the sequence of colonizations and

extinctions in plots, we also ran the analyses with colonists as

established species in the plots; adding the colonists to plot

composition did not change the results (Fig. 4d). Since grasses

appeared to be more likely to go extinct, we reran the analyses

without grasses to see if there was a non-grass underlying pattern.

The removal of grasses did not affect the results (not shown).

Overall, no strong phylogenetic pattern in extinctions was evident

from the data.

4) Changes in community productivity
In 1998, when the plots were still weeded, there was a

significant, positive relationship between PD and biomass

(F1,57 = 15.52, P = 0.0002, R2 = 0.21; Fig. 5) and between biomass

and richness (F1,57 = 10.89, P = 0.002, R2 = 0.16), as also shown by

Pfisterer et al. [21] in these plots. However, as natural colonizations

and extinctions changed plot diversity, these relationships

weakened, resulting in non-significant relationships between PD

or richness and productivity (PD: F1,57 = 0.236, P = 0.629,

R2 = 0.01; Fig. 5; richness: F1,57 = 0.01, P = 0.942, R2 = 0.00).

For both years, biomass production was not significantly related to

plot MNND (Fig. 5). The reason for the loss of a significant

relationship between biomass and PD or richness was that plots

generally converged on PD, richness and somewhat on biomass,

though variation remained. The 1998 plots ranged in biomass

produced from 52.4 to 847.8 g/m2 (�xx~370:2, sd = 189.7 g/m2),

while in 2001 they produced from 112.3 to 760.3 g/m2 (�xx~336:4,

sd = 133.5 g/m2).

Plots planted with low PD had the greatest increases in biomass

production from 1998–2001, while high PD plots generally saw

decreases in productivity (F1,57 = 6.61, P = 0.013, R2 = 0.10; Fig. 5).

Figure 4. Density distributions of observed (solid line) and null (dashed line) MNND values between colonists and residents within
communities (a, b) and between extinct species and residents (c, d).
doi:10.1371/journal.pone.0019363.g004

Community Phylogenetic Change
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Specifically, there was a significant positive relationship between

biomass change and PD change, with plots that gained PD also

exhibiting increases in biomass production (F1,57 = 10.54,

P = 0.002, R2 = 0.16; Fig. 6). Biomass change was only marginally

related to changes in plot richness (F1,57 = 3.43, P = 0.07,

R2 = 0.06), and when both PD and richness change were included

in a single model explaining biomass change, PD change was a

significant term while richness change was not (PD: t = 2.712,

P = 0.009; richness: t = 20.828, P = 0.411). However, PD change

is confounded with the addition of nitrogen fixers to plots (Fig. 6).

In an ANCOVA, PD change was no longer a significant predictor

of biomass change (t = 0.152, P = 0.88), while the covariate,

legume presence, was significant (t = 22.372, P = 0.022). These

results are consistent with earlier analyses of plots showing that

legumes were both among the most common colonizers and

distantly related to other species, thus plots showing the greatest

increases in PD, were colonized by legumes.

Discussion

Using data from a long-term diversity experiment in which

communities were assembled at random from a regional pool, we

test predictions about how the relatedness of species to established

community members affects colonization success or ability to

coexist, i.e., the likelihood of local extinction. While we did not

find patterns of colonization and extinction that unequivocally

supported a particular mechanism or pattern, we did find that

phylogenetic relatedness affected community re-assembly.

Figure 5. Measures of phylogenetic diversity (PD and MNND) and biomass production in 1998, 2001 and the change in biomass
production. Regression line represents a statistically significant relationship.
doi:10.1371/journal.pone.0019363.g005

Community Phylogenetic Change
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Recent theoretical and a few experimental studies have shown

that both evolutionary and ecological processes can give rise to

assemblages built from mechanisms promoting differentiation (i.e.,

character displacement) and similarity (i.e., niche sharing)

simultaneously [16,22,23,24,25,26]. We found evidence that some

of the colonists tended to be closely related to residents (11 plots, if

legumes are excluded). Inclusion of the good-colonizing group,

legumes, created a more dichotomous pattern, with colonists being

either distantly or closely related to existing plot species (3 and 7

plots, respectively); this result was driven by initial experimental

composition of plots and whether plots had legumes or not.

Legumes themselves colonize plots with other legumes, and many

plots had all three species of Trifolium by the end of the experiment,

regardless of whether initial plot composition contained 0, 1 or 2

Trifolium species. This result is consistent with hints in other studies

that legumes might produce facilitative relationships [e.g., 27].

The apparent coexistence of these three Trifolium species could be

explained by the fact that since they descend from a recent

common ancestor, they share traits that confer a competitive

advantage in this habitat [10]. Similar fitnesses among these

species means that they only require small niche differences for

stable coexistence [10,16,28], with the proviso that our results are

from only two years and thus it is impossible to infer stable

coexistence.

In contrast to colonizers, species that went extinct in plots did

not exhibit any strong tendency to be more or less closely related

to other species planted in or colonizing a plot. A caveat to this

result is that there were not many taxa in which very close

relatives, like congeners, were represented in the species pool (two

Agrostis, three Festuca, three Trifolium, which tended to co-colonize

plots). So, if competitive exclusion occurs at this phylogenetic scale,

then 1) we lack power to detect it at this scale and 2) the lack of

congeners in communities may reflect niche-based processes that

have already removed taxa that cannot coexist. Highlighting this

lack of coexistence among closely-related species, grasses, as a

group, were more likely to go extinct than other groups. There are

two likely reasons for the susceptibility of grasses to extinction, the

first is that they are, as a group, competitively inferior to other

species, or that competition for limiting resources is severe within

grasses resulting in high rates of competitive exclusion [29]. Our

results also suggest that community assembly and change through

stochastic dispersal processes were likely not an explanation for

diversity changes —there was phylogenetic signal in terms of

which lineages were good colonizers (legumes) and which were

more prone to extinction (grasses).

Though there was some moderate compositional convergence

across plots over the duration of the experiment, communities

became much more convergent in the mean phylogenetic distance

separating plotmates than in actual species composition. More-

over, the amount of phylogenetic diversity gained or lost was well-

predicted by initial community phylogenetic diversity. However,

changes in phylogenetic diversity were not substantially different

than null models (Fig. S2), indicating that either average distances

within plots reflect average distances from the pool of species, or

that, because we lacked a true pool of potential colonists (i.e., those

that could disperse into a plot but did not successfully establish), we

lacked statistical power to evaluate phylogenetic change [30,31].

In another plant community change study, Fukami and colleagues

[32] compared compositional and plant trait changes over eight

years and found that communities showed trait convergence but

not compositional convergence [32]. Fukami et al.’s result implies

that while communities vary in composition, they tend to be

represented by sets of species with common suites of traits (in their

case, a multitude of life-history, belowground, phenological and

reproductive traits). Our results reveal that such convergence may

have an evolutionary underpinning, in which plots converge on

combinations of species selected from different lineages, perhaps

because they occupy more diverse trait space.

While communities with greater phylogenetic diversity in 1998

were more productive, once natural assembly and coexistence

mechanisms were allowed to operate, this relationship disappeared

[21]. Instead, PD converged, and subsequently failed to explain

variation in productivity. Other studies have shown PD–

productivity relationships in experimentally-maintained plant

communities [18,19]. However, this study shows that natural

community assembly may cause communities to reach convergent

richness and PD levels, a result indicating that diversity effects on

productivity may only be apparent during periods of biological

change [21]. Pfisterer and colleagues [21] hypothesized that the

convergence in richness and productivity observed in these plots

was a result of species redundancy, despite divergent composition

in these plots. We show that their species redundancy may be

better thought of as similarity due to shared evolutionary history.

Our results also reinforce the view that instead of the effects of

diversity on ecosystem function, researchers should be focusing on

the relationship between coexistence mechanisms and ecosystem

function [33].

Our data are based on only two post-treatment years of

colonization and extinction, and, while the mean number of

species in plots ended up being very close to that of the mean

number of species in the surrounding habitat, this was still only a

two year interval. Despite the short time scale, the most diverse

plots lost an average of 16.25 species, while monocultures gained

an average of 7.06 species. These are dynamic and rapid changes

in species numbers, and the fact that they converge on the natural

mean number of species within the same habitat is striking. The

convergence in species richness across plots, coupled with their

convergence on the richness per meter squared in the habitat as a

whole, and the convergence in phylogenetic distance separating

species within plots suggest some sort of stabilizing process. Other

studies have found that phylogenetic diversity in plots provides a

better explanation of resilience and productivity than simply

Figure 6. The relationships between the change in PD and
change in biomass production. Open circles are plots that were
initiated with a legume and ‘+’ represents plots not initiated with a
legume, but were subsequently colonized by one.
doi:10.1371/journal.pone.0019363.g006
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species richness [18,19]. It would be of interest to consider

dynamics over a larger time span. The immigration of early

successional, post-disturbance communities is part of a larger

continuum of long-term compositional changes. How do our

findings compare to successional dynamics over, say, 10–20 years,

or as old-fields transition into woody communities?

Another caveat to our results lies in the very strength of the

study—the experimental assembly of communities. Experimental

plantings may have put together some combinations species that,

for whatever reasons, typically do not coexist on very local scales.

Treatments were actively maintained to preserve initial compo-

sition, with 99% effectiveness, and such sustained disturbance may

have resulted in communities that are more susceptible to invasion

than naturally assembled communities. Despite these shortcom-

ings, the communities that species colonized, or went extinct in,

had been present for six years—with time to train soils for distinct

microbial communities [34] and to deplete nutrients in species-

specific ways –time to affect some of the features of habitats that

others have found central to patterns of species coexistence in

plant communities [35,36].

The final caveat is the fact that we use an incomplete species

pool to create our null models. There are species present at this

site that were not included in the experiment and did not

colonize the plots during the two years of post-treatment

monitoring. Depending on the mechanisms underpinning

successful colonization, the absence of non-colonizing species

could bias the null models [30]. For example, if colonization

ability is phylogenetically non-random, then the species pool

based on successful colonist will be non-random subset of the

regional phylogeny.

The assembly of natural communities is the result of a complex

interplay among multiple coexistence mechanisms, and our results

reveal that simple rules governing phylogenetic community

patterns cannot account for species colonizations and extinctions

[5,10]. The patterns we detected were very correlated with the

phylogenetic history and ecological impacts of key groups.

Legumes especially were both an ecologically influential group

(for plot colonization and productivity), and a well-defined clade

within our species pool, having diverged from a common ancestor

to sister groups more distantly than for other clades. The

combination of large ecological influence and phylogenetic

distinctiveness means that many overall patterns in the data set

were highly influenced by legumes. Assembly and productivity

patterns studied here make clear the need to understand

mechanisms driving assembly and coexistence, and not just the

resulting patterns of diversity.

Materials and Methods

In spring 1995, 64 grassland communities were experimentally

created in 4 m2 plots with 1, 2, 4, 8, or 32 plant species per m2 in

an experimental field near Basel, Switzerland (47uN, 08uE, 439 m

a.s.l.), as part of the European BIODEPTH project [for details see:

21,37,38]. These levels of species richness spanned the observed

average species richness of 14 species/m2 in the surrounding

grassland. Thirty-two different assemblages of species were created

by constrained random sample from a pool of 48 common

sympatric native local grassland species such that all polycultures

contained at least one grass species. We tested for deviation from

random in phylogenetic dispersion in community composition for

each plot based on the 48- species pool used at the start of the

experiment, given the almost-random procedure with which the

species compositions were initially set up by the BIODEPTH

groups. We report on this aspect in more detail below.

Each plot had a total density of 500 seedlings per m2 [38]; all

species were perennials. Each assemblage was composed of a

different set of species and all levels of diversity (combinations of

species richness and number of functional groups) were repre-

sented by several different assemblages. The 32-species assem-

blages were planted in replicate plots in two blocks. Four legume

monocultures were killed by pathogens; one polyculture was also

lost, leaving a total of 59 plots that we analyzed.

The 262 m plots were regularly weeded to prevent invasion

over four years from July 1995–September 1999. Initial weeding

also eliminated species originally present in the seed bank, which

consisted primarily of annuals germinating in 1995. After

September 1999, treatments were no longer weeded or maintained

and species were free to go extinct in, or colonize, each plot. Plots

were monitored once per year for species identities and rank

abundance for the next two years. Throughout the whole period

(1995–2001) plots were mowed twice during the growing season

(in June and September). Our analyses were all based on species

composition and aboveground dry biomass of plots at the end of

2001.

Phylogenetic analyses
Our general approach was to create phylogenetic trees for

several species pools. One pool was the original set of 48 ‘internal’

experimental species; a second ‘regional’ species pool was

comprised of these 48 internal species plus any other ‘external’

species that colonized any plot (an additional 12 species). We

constructed a phylogeny for these species (see Fig. S1 for

phylogeny and nodal support). For each of the 60 species, we

searched GenBank [39] for five gene sequences commonly used in

published angiosperm phylogenies: matK, rbcl, ITS1, ITS2 and 5.8s.

Of the 60 species, 49 had at least one gene represented in

Genbank and for the other 11 species, we used gene sequences

from a congeneric relative not included in these experiments [e.g.,

18,19]. Collectively, the species used in this experiment represent

many of the deep historical angiosperm bifurcations, relative to the

number of branches connecting close relatives. Therefore, the

effect on branch length estimates from using congeneric species is

likely minimal, because there are relatively few polytypic genera

and the effect of incorrect distance estimates at the subfamilial

level is minor compared to the many large distances. We also

included two representatives of early diverging angiosperm

lineages as outgroup species, Amborella trichopoda and Magnolia

grandiflora, which were removed prior to statistical analyses. For

these species we aligned sequences using the MUSCLE algorithm

[40]. We then selected best-fit maximum likelihood models of

nucleotide substitution for each gene using the Akaike Information

Criterion, as implemented in Modeltest [41,42]. Using the aligned

sequences and the best-fit models of nucleotide substitution, we

estimated a maximum likelihood phylogeny using the PHYML

algorithm with a BIONJ starting tree [43,44]. To assess nodal

support on maximum likelihood phylogenies, we report approx-

imate Likelihood Ratio Test (aLRT) scores. The maximum

likelihood tree is available in Fig. S1.

We assessed changes in phylogenetic structure using total

community phylogenetic distance [PD -which differs from Faith’s

PD [45] by not including the root from a regional species pool]

and mean nearest neighbor distance [MNND -see: 13], asking

whether changes in diversity correspond with increases or

decreases in species relatedness. We also examined patterns of

mean pairwise distance [MPD -see: 13], but conclusions do not

differ substantially from MNND and so were not reported. We

compared observed PD and MNND patterns to null distributions

from randomly resampling plot membership 1000 times. Null
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communities for experimental plots of more than one species were

drawn at random from the pool of 48 species under the constraint

that they had to have at least one grass species, because the vast

majority of plots contain grasses and the effect of not including the

long branch connect the monocots to dicots in null assemblages

overshadowed real patterns. The majority of experimental

communities were not significantly different than phylogenetic

relationships predicted by null communities, though there was a

tendency towards clustering. A total of 49 out of 59 communities

were not statistically different from random expectations of mean

nearest neighbour distances (MNND) (P.0.05) while 8 of 59

communities were significantly clustered and 2 were over-

dispersed (P,0.05). Thus, overall, there appeared to be no

consistent bias in the initial composition of plots. Moreover,

inclusion or exclusion of these plots had no effect on our overall

conclusions, thus we included the whole data set.

We took several strategies for analyzing and subsetting the data

by classifying species into those that were planted and remained in

a plot (‘‘persist’’), those that were planted into a plot in 1995 but

were absent from the plot in 2001 (‘‘extinct’’) and those that were

not planted in the plot but were present at the end of the

experiment in 2001 (‘‘colonize’’).

Further, we asked if the observed diversity patterns and change

were related to plot biomass production, using linear regressions.

We also accounted for the disproportionate productivity effect of

legumes (nitrogen fixers) colonization by using an analysis of

covariance relating biomass change to PD change. The covariate

was binary, representing either plots that initially included a

legume or plots initiated without a legume and subsequently

colonized by one (the 4 plots that were not initiated or colonized

by a legume were excluded from this analysis). All analyses were

done using R 2.9.1 (www.r-project.org) with phylogenetic

manipulations and analyses done using the packages APE [46]

and Picante [47], as well as functions and scripts written by the first

author (http://www.utsc.utoronto.ca/,mcadotte/R_scripts.html).

Supporting Information

Figure S1 Results of maximum likelihood phylogenetic analysis

on gene sequences for species used in the experimental plots, plus

two outgroup species (Amborella trichopoda and Magnolia grandiflora).

On the right is the full tree showing branch lengths from the

phylogenetic analysis and on the left is a rate-smoothed ultrametric

tree showing nodal support.

(DOC)

Figure S2 The relationship between planted PD and the

amount PD changed in plots (black dots and black dashed line)

is within the possible values from 1000 random samples for each

plot (grey circles and line).

(DOC)
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