
����������
�������

Citation: Li, D.; Li, G.; Li, J.; Xu, S.

Wearable Crop Sensor Based on

Nano-Graphene Oxide for

Noninvasive Real-Time Monitoring

of Plant Water. Membranes 2022, 12,

358. https://doi.org/10.3390/

membranes12040358

Academic Editors: Olga

Evgenevna Glukhova and

Andrzej Lewenstam

Received: 7 January 2022

Accepted: 21 March 2022

Published: 24 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

membranes

Article

Wearable Crop Sensor Based on Nano-Graphene Oxide for
Noninvasive Real-Time Monitoring of Plant Water
Denghua Li 1,2,3 , Ganqiong Li 1,2,*, Jianzheng Li 1,3 and Shiwei Xu 1,2,3,*

1 Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
lidenghua@caas.cn (D.L.); lijianzheng@caas.cn (J.L.)

2 Key Laboratory of Agricultural Monitoring and Early Warning Technology, Ministry of Agriculture and Rural
Affairs, Beijing 100081, China

3 Research Center of Agricultural Monitoring and Early Warning Engineering Technology, Beijing 100081, China
* Correspondence: liganqiong@caas.cn (G.L.); xushiwei@caas.cn (S.X.)

Abstract: Real-time noninvasive monitoring of crop water information is an important basis for
water-saving irrigation and precise management. Nano-electronic technology has the potential
to enable smart plant sensors to communicate with electronic devices and promote the automatic
and accurate distribution of water, fertilizer, and medicine to improve crop productivity. In this
work, we present a new flexible graphene oxide (GO)-based noninvasive crop water sensor with
high sensitivity, fast responsibility and good bio-interface compatibility. The humidity monitoring
sensitivity of the sensor reached 7945 Ω/% RH, and the response time was 20.3 s. We first present the
correlation monitoring of crop physiological characteristics by using flexible wearable sensors and
photosynthesis systems, and have studied the response and synergistic effect of net photosynthetic
rate and transpiration rate of maize plants under different light environments. Results show that
in situ real-time sensing of plant transpiration was realized, and the internal water transportation
within plants could be monitored dynamically. The synergistic effect of net photosynthetic rate and
transpiration of maize plants can be jointly tested. This study provides a new technical method to
carry out quantitative monitoring of crop water in the entire life cycle and build smart irrigation
systems. Moreover, it holds great potential in studying individual plant biology and could provide
basic support to carry out precise monitoring of crop physiological information.

Keywords: graphene oxide; sensor; crop water; noninvasive; monitoring

1. Introduction

Water is the lifeblood of agriculture and plays an important role in plant photosyn-
thesis, transpiration, and temperature regulation; the growth rate of plants is significantly
affected by water status [1]. Dynamic and accurate monitoring of crop water and intelligent
on-demand supply is very important to improve crop productivity. According to the exist-
ing water use efficiency, the water for agricultural irrigation will increase by approximately
36% by 2030, and the shortage of water resources has become the main restrictive factor for
global food security [2,3]. In the traditional agricultural production mode, irrigation mostly
depends on the experience and judgment of farmers. Flood irrigation leads to a large waste
of water in agricultural production. Thus, smart irrigation technology should be developed
urgently for the efficient utilization of water resources. Intelligent sensors and information
monitoring are the bases and the “five senses” of smart agriculture. Therefore, developing
accurate and efficient crop water monitoring sensors and smart irrigation equipment is
greatly important.

Conventional technologies, such as remote sensing spectral imaging [4], infrared
fluorescence [5], Raman spectroscopy [6] have been developed for monitoring plant physio-
logical information. However, these techniques have low cost-benefit and are vulnerable to
low-noise signals and interfering weather conditions, and the accuracy and timeliness are
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insufficient [7]. Pressure chambers are a widely accepted plant-based method, but they are
unsuitable for automatic monitoring systems because the technology is slow and invasive to
plants [8]. Rapid and continuous tracking of a plant’s internal physiological traits remains a
challenge for the current silicon-based sensing technologies, due to the mismatch between
the rigid sensor and the soft bio-organism, which can either cause damage to the plant
or intervene in its normal physiological process. Therefore, although these technologies
have played an important role in plant information monitoring, their practical application
still has many deficiencies, including discontinuous monitoring, low sensitivity/specificity,
high cost, and time/labor consuming, far below the requirements for smart agriculture.
Therefore, developing new methods that can monitor, track, and predict plant water and
health status in real-time with high reliability and improved signal-to-noise ratio is urgent.
This method will help to continuously monitor crop water at the plant and leaf levels to
timely optimize and adjust plant growth conditions and improve crop productivity.

New opportunities to address these problems emerged recently owing to the tremen-
dous advances in flexible electronic technology [9,10]. Many efforts had been exerted on
the research of developing plant bioelectronics sensors based on nanofilms, which convert
plant life related chemical signals into electrical signals effectively [11,12]. The integration
of nano-electronic technology and plant science provides a new approach for the digital
and accurate monitoring of plant water and other life information. Key performance in-
dicators, such as linearity and sensitivity of the sensor, are mainly affected by the sensing
materials. Effective materials should be explored for the plant physiological water sensing.
Graphene oxide (GO) has shown great potential for detecting humidity due to its unique
two-dimensional nanostructure and huge specific surface areas. GO based sensors have
attracted the attention and favor of researchers and were widely used in gas detection [13],
toxicity detection [14], biosensor [15], and mechanical sensing [16,17]. GO has been widely
considered a compromise between the interesting properties of graphene and the synthesis
price and complexity. Large numbers of oxygen-containing functional groups in the GO
nanolayers interact with the water molecules of environmental objects easily, making it an
ideal candidate for humidity sensing [18,19]. Despite a few successful examples of moni-
toring external characteristics, such as the temperature and humidity on the leaf surface,
and growth of plant organs [20–22], there is still a great challenge to develop noninvasive
wearable crop physiological sensors with high sensitivity, fast response–recovery rate, and
ultralow limit of detection. Moreover, studies on the correlation monitoring between wear-
able sensors and key physiological information (e.g., photosynthesis information) are limited
and have not been reported yet. Therefore, monitoring the communication between plant
physiological behaviors and their surrounding environment is greatly valuable, as well as
analyzing the correlation between plant water information and photosynthesis performance.

In this study, we present a wearable resistive-type crop water sensor based on nano-
material that can harmlessly cohabitate with the plant and continuously track the water
transportation in the plant, which is one of the most critical physiological characteristics for
a plant, indicating the growth status, water consumption, and photosynthetic intensity [23].
We first present the correlation monitoring of crop physiological characteristics by using
flexible wearable sensors and photosynthesis instruments and have studied the response
and synergistic effect of net photosynthetic rate and transpiration rate of maize plants
under different light environments. By taking advantage of the GO nanomaterials and
nanofabrication, our sensor has high sensitivity, fast response rate and biocompatibility. We
believe that our work holds great potential in studying individual plant biology, and could
provide basic support to carry out precise monitoring of crop physiological information
and build smart planting systems.

2. Materials and Methods
2.1. Materials

The reagents used in the experiment are absolute ethanol, concentrated sulfuric acid
(98%), KMnO4, H2O2 (5%) HCl, deionized water, acetone, and isopropanol. The maize



Membranes 2022, 12, 358 3 of 15

plants (Huawei 6, Beijing Baofeng Seed Co., Ltd., Beijing, China) were grown in an arti-
ficial climate chamber of the Agricultural Information Institute of Chinese Academy of
Agricultural Sciences.

2.2. Preparation of GO

GO was prepared by oxidizing graphite powder based on a modified Hummers
method reported elsewhere [24,25]. Typically, 1 g of natural graphite was mixed with 0.5 g
of sodium nitrate and added to 23 mL of cold concentrated H2SO4 in an ice water bath.
KMnO4 (3 g) was added gradually with vigorous stirring for 2 h, and the temperature of the
mixture remained below 20 ◦C. The mixture was transferred into a constant temperature
water bath at 35 ◦C and continuously stirred for 0.5 h. Distilled water (80 mL) was slowly
added, and the mixture was allowed to remain at 90–98 ◦C for 15 min. Then, 5% H2O2 was
added to the solution until the solution turned bright yellow. The mixture was filtered using
a Buchner funnel, and the solid material was washed with 5% HCl and excess deionized
water until the filtrate obtained a pH value of 7. Finally, the filter cake (GO) was dried
in a vacuum oven at 100 ◦C for 12 h and stored until use. Then 50 mg GO powder was
added into deionized water (10 mL); the reagent bottle was mixed by shaking and then
dispersed by an ultrasonic instrument for 1 h. The ultrasonic frequency was 37 kHz, and
the ultrasonic power was 100 W to prepare a stably dispersed GO solution (5 mg/mL).

2.3. Preparation of Polyimide (PI) Flexible Substrate Sensor

The preparation of the interdigital electrode structure was completed by MEMS tech-
nology. Chromium film with a thickness of 20 nm and gold film with a thickness of 100 nm
was deposited on a PI flexible substrate. First, the PI substrate was ultrasonically cleaned in
acetone solution and ethanol solution to remove metal ion pollution and particle pollution,
and then the water on the surface of the glass sheet was blown off with dry and clean N2
and fully dried in the drying oven. Second, a layer of uniformly covered chromium and
gold film was evaporated on the PI substrate; 20 nm thick chromium film and 100 nm thick
gold film were grown on the insulating substrate by magnetron sputtering. Third, a uni-
form layer of photoresist was spin coated on the substrate surface by a glue homogenizer,
and then the UV exposure process was carried out on the substrate surface by using the
photoresist and the photoresist mask plate. Then, the mask pattern was developed in the
developing solution. After photolithography, the electrode pattern of the photoresist was
formed on the surface of the chromium gold metal film. Finally, the device was wet etched,
and the interdigital electrode pattern was obtained. The line width and line distance of the
interdigital electrode were 50 µm. GO ink drops were dipped on the interdigital electrode
substrate by dip coating method to form a thin film, which was annealed at 110 ◦C for
1 h. To facilitate the installation of the sensor onto the leaf surface, two stomatal vapor
exchange supports were adhered to the two sides of the graphene pattern, thereby creating
an approximately 500 µm thick air gap between the sensitive layer and the leaf. The air
gap allows air exchange between inside and outside of the gap space to avoid water vapor
accumulation. The main structure diagram of the device is shown in Figure 1.
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2.4. Characterizations and Testing

The surface microstructure and morphology of the prepared materials were investi-
gated using a field emission scanning electron microscope (SU8020, Hitachi, Tokyo, Japan).
The humidity sensing properties were investigated by exposing the fabricated sensor in
various relative humidity (RH) values, which were achieved by several saturated aqueous
solutions. Saturated solutions of LiCl, MgCl2, Mg(NO3)2, NaCl, KCl, and KNO3 in a closed
vessel were used to obtain 11%, 33%, 54%, 75%, 85%, and 95% RH levels, respectively. The
experiments were performed at room temperature.

The electrical properties of the proposed sensor prototype under various RH levels
were measured using a precision electrochemical workstation (ECW-SA5120S, SINO AG-
GTECH, China). Sensitivity (S), which was used to characterize the sensor performance,
was defined as S = ∆Z/∆RH (unit: Ω/%RH), where ∆Z is the sensor response change in
impedance, and ∆RH is the RH change. The hysteresis error was defined as a deviation due
to hysteresis between upscale-going and downscale-going indications in terms of the full
measured quantity. The sorption/desorption hysteresis of humidity sensors was studied by
sequentially exposing sensors to 11%, 33%, 54%, 75%, 85%, and 95% RH for water sorption
and then to 85%, 75%, 54%, 33%, and 11%RH for desorption of water. The exposure time at
each relative humidity was 10 min. The time required by a sensor to achieve 90% of the
total resistance change was defined as the response or recovery time.

The impedance of the sensor mounted on plants was measured using an LCR meter
(Wayne Kerr, 4100, Wayne Kerr Electronics, London, UK), which was connected to a PC
through a LAN interface for data acquisition. The light response curve of photosynthesis
was measured by a portable photosynthesis measurement system (LI-6400, LI-COR Inc.,
Lincoln, NE, USA).

3. Results and Discussion
3.1. Characterization of Sensing Films

Morphology and defect characteristics of the film were investigated. This is helpful to
analyze the sensitive property, mechanism and characteristics of the film. This is also helpful
to guide the optimization of the preparation of sensitive films and improve the sensing
performance. The microscopic structure of the as-synthesized GO films was explored using
the SEM image in Figure 2. Figure 2a,b shows the surface of the sensitive films, indicating
that GO has a typical layered and wrinkled silk-like structure. An ultrathin sheet structure
with few thin ripples within the plane can be observed, reflecting a uniform 2D structure of
the carbon sheets [26]. The highly wrinkled structure of GO films is expected to be effective
for high sensitivity and increasing the surface area. Elemental analysis of the material film
by Energy Dispersive Spectrometer (EDS) shows that the content percentages of elements C
and O were 60.1% and 36.4%, respectively (Figure S1). The high content of oxygen indicates
that the functional groups are rich. Thus, the GO sheets become more hydrophilic and
humidity sensitive. Figure 2c,d shows a cross section of the sensitive films, presenting
the layer-by-layer sheets attached to the interdigital electrode and flexible substrate. The
thickness of the sensitive films is approximately 2 µm from their cross section images. A
thin film sensor is proposed by taking advantage of the excellent processability of GO
aqueous dispersion. According to previous studies, a humidity sensor based on a film
sorbs and de-sorbs water through different processes; the former can be ascribed to the
“surface adsorption” which is determined by the properties and surface morphology of thin
films. After the surface process, other slower sorption/desorption mechanisms, such as
diffusion or relaxation, occur. In most cases, the response time of the system is determined,
and it is strongly dependent on the thickness of the sensitive film [27]. Therefore, a sensor
with a large specific surface area and a thin film is expected to exhibit a faster response.
The quality and defect condition of GO films were investigated and compared with rGO
films by Raman spectroscopy experiments (Figure S3 of the Supporting Information). This
technique is a powerful tool for investigating ordered and disordered nanocarbons. The
Raman spectrum of GO and rGO films were characterized by the presence of bands at
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1350 cm−1 (D band) and 1580 cm−1 (G band). ID/IG ratios (where ID and IG are the D-
band and G-band Raman intensities) are widely used to evaluate the quality of carbon
materials [28]. As shown in Figure S2, the ID/IG ratio of GO was 0.97, and the ID/IG ratio
of rGO was 0.60. This implies that the defect ratio of GO is much higher than that of rGO.
Although there are many defects in GO films and the conductivity is not high in dry air,
the defects in the films played an important role in the adsorption of water molecules. The
molecular interactions between the increased water and charged groups in GO would make
the GO sensor have high proton-conductive sensitivity to water molecules [29].
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3.2. Sensor Properties and Impedance Analysis

To study the humidity sensing performance and sensitivity of the device, the impedance
of the device in a saturated salt solution with different relative humidity and test frequen-
cies was measured. Figure 3 shows the impedance–RH properties of the sensor with a
voltage of 0.2 V, and different measured frequencies of 10 Hz to 200 kHz. As the RH
level increases, the impedance of the sensor decreases monotonically. The mechanism
supporting the sensitivity of GO to humidity may be the result of electrostatic interactions
between water and GO [30]. This finding can be interpreted as follows: the absorbed water
molecules are beneficial to strengthen the polarization effect and increase the conductivity.
This can be attributed to the fact that GO film not only has a high surface area volume
ratio but also has a large surface vacancy density and a large number of oxygen-containing
functional groups, including carboxyl and hydroxyl groups. The frequency evidently influ-
ences the impedance–RH property, especially in the low RH range. Corresponding to the
same relative humidity, the impedance value decreases with the increase in frequency. This
condition could be due to the water molecules that cannot be polarized at high frequency.
The polarization speed of the water molecules cannot cope with the rapid electrical field
changes in the high-frequency region, resulting in the reduction of the resistance charac-
teristics of the device [31,32]. As shown in the inset of Figure 3, the best linearity of the
impedance–RH curve appears at the frequency of 100 Hz. Thus, the frequency of 100 Hz is
selected for the measurement of sensitivity and response time in this work. The humidity
sensing characteristics of the devices are different under different frequency conditions. The
impedance of the device is greatly affected by the frequency in the low humidity section
(<50% RH) and almost coincides with the high humidity section.
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The hysteresis of humidification and desiccation measured over an RH range of
11–95% RH is shown in Figure 4. The measured voltage and frequency are 0.2 V and 100 Hz,
respectively. The black curve in the figure indicates the adsorption process (measured
from low to high RH), and the red curve indicates the desorption process (measured in the
opposite direction). The resistance changes between 6.7 × 105 and 9.2 × 103 with respect
to the RH range of 11–95%, showing the high sensitivity of the sensor. The impedance
of the sensor decreases by approximately two orders of magnitude with increasing RH
from 11% to 95%. The humidity monitoring sensitivity of the sensor reached 7945 Ω/% RH.
The excellent humidity sensing performance of GO film is due to its large number of
hydrophilic groups, and vacancies are chemically attached to the defect or the edge sites on
basal planes [33]. The response of the element impedance in semi logarithmic coordinates
shows good linearity (Figure S3), and the maximum humidity hysteresis of the sensor
is approximately 5.3% RH. This result indicated that the sensor shows good reliability
and repeatability.

Membranes 2022, 12, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 4. Hysteresis characteristic of the GO-based sensor at 100 Hz. 

The response recovery characteristic is an important parameter to evaluate the per-
formance of the sensor. The response recovery speed of the device from 11% RH to 95% 
RH humidity environment was measured. Figure 5 shows the response–recovery charac-
teristics of the sensor measured at 0.2 V and 100 Hz. The response and recovery times 
represent the time required for the sensor to achieve 90% of the total impedance change 
when the fabricated sensor was exposed to the target gas [34]. The response time from 
11% RH to 95% RH of the device at room temperature is approximately 20.3 s, and the 
recovery time is slightly longer, approximately 77.9 s. As the response and recovery time 
is strongly dependent on the thickness of the sensitive film, and the film thickness pre-
pared in this work is micron level (2 μm, Figure 2d) but not nano level, the response speed 
of the sensor may be affected. As expected, a faster response would be obtained by pre-
paring thinner sensing layers [35]. The response time is shorter than the recovery time 
meaning it takes a longer time to desorb water than to absorb it into the sensing layer. The 
reason for the formation of moisture stagnation may be the energy required for the two 
processes of moisture absorption and dehumidification is different. The water molecules 
adsorbed on the surface of sensitive materials may require more energy to separate from 
the element surface. Therefore, the element resistance cannot return to the resistance value 
during moisture absorption at the same time. These results agree well with previous re-
ports [36,37]. In addition, the reversible cycles of the sensor show that the impedance can 
be fully restored to the initial impedance value and confirmed that the sensor possessed 
acceptable reproducibility at room temperature. Fifteen-cycle response-recovery experi-
ments of GO based sensors were conducted to verify the sensing repeatability (Figure S4 
of the Supporting Information). The long-term stability of the sensor was measured for 21 
days (Figure S5). As shown in Figure S5, both the impedance and capacitance of the sensor 
show minor variation in the long term, implying acceptable long term stability of this sen-
sor. 

Figure 4. Hysteresis characteristic of the GO-based sensor at 100 Hz.



Membranes 2022, 12, 358 7 of 15

The response recovery characteristic is an important parameter to evaluate the perfor-
mance of the sensor. The response recovery speed of the device from 11% RH to 95% RH
humidity environment was measured. Figure 5 shows the response–recovery characteristics
of the sensor measured at 0.2 V and 100 Hz. The response and recovery times represent the
time required for the sensor to achieve 90% of the total impedance change when the fabri-
cated sensor was exposed to the target gas [34]. The response time from 11% RH to 95% RH
of the device at room temperature is approximately 20.3 s, and the recovery time is slightly
longer, approximately 77.9 s. As the response and recovery time is strongly dependent on
the thickness of the sensitive film, and the film thickness prepared in this work is micron
level (2 µm, Figure 2d) but not nano level, the response speed of the sensor may be affected.
As expected, a faster response would be obtained by preparing thinner sensing layers [35].
The response time is shorter than the recovery time meaning it takes a longer time to desorb
water than to absorb it into the sensing layer. The reason for the formation of moisture
stagnation may be the energy required for the two processes of moisture absorption and
dehumidification is different. The water molecules adsorbed on the surface of sensitive
materials may require more energy to separate from the element surface. Therefore, the
element resistance cannot return to the resistance value during moisture absorption at
the same time. These results agree well with previous reports [36,37]. In addition, the
reversible cycles of the sensor show that the impedance can be fully restored to the initial
impedance value and confirmed that the sensor possessed acceptable reproducibility at
room temperature. Fifteen-cycle response-recovery experiments of GO based sensors were
conducted to verify the sensing repeatability (Figure S4 of the Supporting Information).
The long-term stability of the sensor was measured for 21 days (Figure S5). As shown in
Figure S5, both the impedance and capacitance of the sensor show minor variation in the
long term, implying acceptable long term stability of this sensor.
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Figure 5. Dynamic response–recovery curves of RH sensitivity of the GO-based sensor at room
temperature.

3.3. Sensing Mechanism of the GO Layered Films

Analyzing the complex impedance spectrum of materials could help analyze the
sensitive mechanism of materials. To analyze the different sorption mechanisms at various
RH values, complex impedance spectra (CIS) were adopted to interpret the conductivity
processes that occurred in the sensor. GO sensors were tested in the humidity bottle with
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different RH values. The real part, imaginary part, and complex angle of its complex
impedance at different frequencies were measured, and then the complex impedance
curve with the real part of the complex impedance value as the horizontal axis and the
imaginary part as the vertical axis was plotted. Figure 6 shows the semi-circular CIS
curves at various RH values. As shown in Figure 6a, the complex impedance diagram
of the humidity sensor is mainly semi-circular at low RH values of 11% RH and 33% RH.
Alongside continuously increasing RH to 75% RH, the semi-circular behavior observed
in the low-frequency range is depressed and a straight line appears. When the humidity
increases to 85% RH and 95%, the semi-circular structure of the complex impedance
diagram almost disappears and changes into a straight line (as shown in Figure 6b). The
shape of the complex impedance curve changes with the change in relative humidity,
indicating that the conductive mechanism changes accordingly under a different relative
humidity. The sensor has different conductivity types, that is, different types of carriers
under different humidity conditions. The semicircle is typical of the relaxation mechanism
exhibited by resistance–capacitance parallel circuits. Therefore, the semicircle results
primarily from the intrinsic impedance of the material [38]. The curvature of the semicircle
decreases as the RH increases, thereby reflecting the decrease in the intrinsic impedance
and increase in interaction between the sensing film and water [39]. The chemically
adsorbed water molecules dissociate at the boundary and defects of GO film to produce
protons. The protons and the electrons of the GO material participate in conduction. In
addition to resistance and capacitance, diffusion and interface phenomena of ions also
play an important role in the physical phenomena of electrical conductivity. Therefore,
with the further increase in humidity (>85%), the dominant straight line in the CIS reflects
the enhanced ionic conductivity behavior [40], which may stem from the ionic and/or
electrolytic conductivity. The water molecules physically adsorbed on the GO surface form
a water film and ionize protons. Protons easily combine with water molecules to form
hydrated hydrogen ions (H3O+) when water molecules are abundant. Thus, the main
conductive mode of the material at this time would be hydrated hydrogen ion conduction.
Full comprehension of the sensing mechanism of the film under various RH revealed
here would help to guide the design of materials with better performance, such as higher
sensitivity, faster response speed and better stability. The GO based sensor with a high
density of active sites and greatly increased interfacial areas between the active sensing
regions can significantly improve sensing properties [41]. The sensitive mechanism of
ultra-thin graphene film capable of ultrafast induction has been revealed elsewhere [36].
Thus, the fabricated RH sensor with ultrathin GO films and modified functional groups
would exhibit the most excellent sensing performance.
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3.4. In Situ Water Movement Monitoring within Plants

Water transport is a critical process for plants. Crops need water to maintain normal
growth, reduce body temperature, and transport nutrients [42]. When plants are subjected
to water stress, it affects their hydraulic characteristics and hinders plant water transmis-
sion [43]. Therefore, real-time dynamic monitoring of crop water is greatly important to
evaluate the adaptability of crops to water stress and adjust the reasonable growth environ-
ment of crops. The leaf, as one of the most important organs of plants, is the main place of
photosynthesis and transpiration, and the real-time monitoring of its water is particularly
important. Water movement within a crop from the roots to the lower and upper leaves
was monitored using flexible GO-based RH sensors. The sensing mechanism is based on
changes in the electrical impedance of GO in different moisture environments. During
transpiration, when the stomata are open, water in the leaves evaporates from the leaf
stomata, increasing the local humidity level on the leaf surface. The stomata of most herbs,
such as maize, are more distributed on the lower surface of leaves. Consequently, plant
transpiration could be monitored in real time by installing sensors on the lower surface of
leaves and recording the electrical signals, which do not affect the normal photosynthesis
of plants. In addition, by installing multiple RH sensors on different leaves of a plant,
the key time point at which significant water transpiration occurs at the leaves could be
tracked, quantifying water transport time via the xylem from the roots to each of the
measured leaves.

Figure 7a shows the real-time monitoring of RH using the sensors installed and
attached to the lower surface of the eighth and ninth leaves of maize plants. The black and
the red curves are the monitoring data of the sensors installed on the eighth and the ninth
leaves, respectively. The testing was initiated 20 min before irrigation. The leaf moisture
content of the eighth leaf was 74.2% using the drying and weighing method [44]. The
sensor monitoring curve of maize leaves was steady before irrigation, suggesting that the
leaf water evapotranspiration was stable. After irrigation, the lower and upper sensors
exhibited an impedance decrease and an increase in RH at 41.6 and 73.5 min, respectively.
Therefore, less time was required for the water to be transported from the roots to the
eighth leaf than from the roots to the ninth leaf, and the time interval is 31.9 min. Thus, the
water transport time via the xylem from the roots to each of the measured leaves could be
quantified. The maize root system gradually absorbs water in the soil after irrigation. Water
is transported from the root to the stem and then flows to the leaves from the bottom to
up. The time of water reaching the leaves increases with the distance from the leaves to the
roots. When the water reaches the leaves, the cell water flowing to the sensor monitoring
area gradually increases, and the transpiration and the concentration of evaporated water
vapor gradually increase. Therefore, the impedance of the device gradually decreases. The
sensor impedance decreased and gradually stabilized, suggesting that the water transport
gradually reached a stable state after reaching the leaf tissue, and the leaf water content
was 85.7%. That is, the leaf water content increased by 11.5% after irrigation compared
with that before irrigation. Figure 7b,c shows that the leaf tissue of water deficient maize
plants showed evident morphological changes before and after irrigation. Water deficit
directly affects the physiological and biochemical processes and morphological structure of
crops, as well as the crop growth, yield, and quality. The proposed sensor can monitor the
transpiration water of crops 24 h a day. By building the Internet of things system, a new
technical method is provided for carrying out the quantitative monitoring of crop water in
the entire life cycle and building a new intelligent irrigation system in the future.
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3.5. Correlation Monitoring of Light Regulated Transpiration and Photosynthesis

In addition to water conditions, light significantly affects the transpiration of plants.
The performance of the GO sensor on monitoring light-regulated transpiration was also
tested. Figure 8 shows the impedance variation of the sensor attached to the lower surface
of a maize leaf as a response to irradiation intensity over time. The maize plant to be tested
was placed in the artificial climate chamber and was irrigated normally, and the temperature
of the artificial climate chamber was set at 25 ◦C. As shown in Figure 8a, the impedance
decreases rapidly with the increase in irradiation intensity. The impedance was 183.2 kΩ
when the light was off and 0.75 kΩ when the lighting was 18 klx, showing 244.3 times
changes in the impedance of the sensor. Moreover, when the lighting was gradually turned
down until finally turned off, the impedance of the sensor gradually increased accordingly
to a stable level of 181.4 kΩ, which is close to the initial impedance value. Figure 8b
shows that the impedance decreases dramatically when the irradiation intensity increases
from 0 klx to 18 klx, indicating the high sensitivity of the sensor for irradiation-regulated
transpiration sensing. According to previous reports, photosynthesis and transpiration
of plants share a common path, that is, through the guard cells to adjust the stomatal
opening, carbon dioxide diffuses into the leaves and water diffuses out, although they
are two relatively independent processes [45,46]. The degree of stomatal opening affects
photosynthesis and transpiration [47]. These results suggest that the flexible GO-based
RH sensor has potential applications in the real-time monitoring of plant photosynthetic
physiological information.
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We used the sensor and portable photosynthesis measurement system to jointly test
the response and synergistic effect of net photosynthetic rate (Photo) and transpiration rate
(Trmmol) of maize plants under different light environments to investigate the performance
of the leaf sensor in the real-time monitoring physiological water information of maize
plants. Figure 9 shows the transpiration rate and net photosynthetic rate of a growing crop
leaf as a response to the light intensity at 25 ◦C. When the light intensity increased from 0 klx
to 18 klx, the transpiration rate increased from 0.05 mmol m−2 s−1 to 0.99 mmol m−2 s−1,
and the transpiration rate increased from −0.49 µmol m−2 s−1 to 9.34 µmol m−2 s−1. The
net photosynthetic rate and transpiration rate of maize increased with the increase in light
intensity and showed a linear increasing relationship. However, no light saturation point is
found within the light irradiation intensity of 18 klx.
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Figure 10 displays response the curve of the impedance of the GO-based sensor and
transpiration rate under different irradiation intensities in a 3D coordinate. The curve of the
GO-based sensor is nearly linear, and the impedance shows a negative linear correlation
with irradiation intensities and transpiration rate. The calibration curve of transpira-
tion sensing shows a good linear relationship in the trmmol range of 0–1 mmol m−2 s−1

(Figure S6), and the regression coefficient is 0.999. The result provides a possibility for
detecting transpiration in growing crops using a GO-based sensor as the signal transducer.
The plant growth rate is significantly affected by water status because water plays an
important role in plant physiological processes. The GO-based wearable sensor technol-
ogy would be useful to monitor the physiological water information of crops in real time
and provide a convenient and effective tool for early monitoring and early warning of
drought disasters. In the future, by studying the changes in water evaporation and net
photosynthetic rate of crop leaves with light intensity, soil moisture, and other growth
environments, as well as establishing the correlation, we can improve the understanding of
the adaptability of crop physiological characteristics to growth environment, and therefore,
reduce crop loss in the agricultural industry in the future. In addition, by using wireless
sensor networks (WSNs) consisting of multiple plant sensors (Figure S7), smart and pre-
cision agriculture systems can be formed, providing an efficient solution to improve our
capability of planting management.
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4. Conclusions

In summary, a novel flexible GO-based noninvasive crop water sensor with high
sensitivity, fast response rate and good biocompatibility was proposed. The sensor can
harmlessly cohabitate with the plant and continuously track the water transportation in the
plant, indicating the growth status, water consumption, and photosynthetic intensity. In situ
real-time sensing of plant transpiration was realized, and the internal water transportation
within maize plants could be monitored dynamically. Combining the GO-based sensor
and photosynthesis measurement system, the synergistic effect of net photosynthetic rate
and transpiration of plants under different light environments were revealed. All these
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demonstrate that the GO-based wearable sensor technology would be a convenient and
effective tool for early monitoring and early warning of drought disasters in real time. By
studying the changes in water evaporation and net photosynthetic rate of crop leaves with
light intensity, other growth environments, as well as establishing the correlations, we can
improve the understanding of the adaptability of crop physiological characteristics to the
growth environment, and therefore, improve the crop productivity in the future. More
generally, this study provides a new technical method to carry out quantitative monitoring
of crop physiological information in the entire life cycle and to build a new intelligent
planting system.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes12040358/s1, Figure S1: Elemental analysis of the
material film by Energy Dispersive Spectrometer (EDS); Figure S2: The Raman spectra of rGO and
GO. Figure S3: Hysteresis characteristic of the GO based sensor at 100 Hz; Figure S4: The fifteen-cycle
response-recovery curve of GO based sensor. Figure S5: The long-term stability of the sensor. Figure
S6: Calibration curve of maize plant leaf transpiration sensing; Figure S7: Schematic diagram of
application scenario of the GO based flexible sensor for in situ real-time tracking of plant information.
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