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Abstract: Macrolide antibiotics have received criticism concerning their use and risk of treatment
failure. Nevertheless, they are an important class of antibiotics and are frequently used in clinical
practice for treating a variety of infections. This study sought to utilize pharmacoepidemiology
methods and pharmacology principles to estimate the risk of macrolide treatment failure and quantify
the influence of their pharmacokinetics on the risk of treatment failure, using clinically reported
drug–drug interaction data. Using a large, commercial claims database (2006–2015), inclusion and
exclusion criteria were applied to create a cohort of patients who received a macrolide for three
common acute infections. Furthermore, an additional analysis examining only bacterial pneumonia
events treated with macrolides was conducted. These criteria were formulated specifically to ensure
treatment failure would not be expected nor influenced by intrinsic or extrinsic factors. Treatment
failure rates were 6% within the common acute infections and 8% in the bacterial pneumonia
populations. Regression results indicated that macrolide AUC changes greater than 50% had a
significant effect on treatment failure risk, particularly for azithromycin. In fact, our results show that
decreased or increased exposure change can influence failure risk, by 35% or 12%, respectively, for
the acute infection scenarios. The bacterial pneumonia results were less significant with respect to the
regression analyses. This integration of pharmacoepidemiology and clinical pharmacology provides
a framework for utilizing real-world data to provide insight into pharmacokinetic mechanisms and
support future study development related to antibiotic treatments.

Keywords: macrolide antibiotics; treatment failure; drug–drug interactions; pharmacoepidemiology

1. Introduction

Antibiotic-resistant bacteria and the failure of antibiotic treatment are major healthcare
concerns of the modern world [1]. Macrolide antibiotics were once considered first-line
antibiotics against a variety of infections, such as acute respiratory infections, acute otitis
media and acute sinusitis, among others. However, significant increases in treatment
failure with macrolides have been observed over the past decade with reports of up to 45%
in some regions of the United States, primarily due to complications such as resistance
development [2,3]. In fact, due to this risk of treatment-resistant bacteria, macrolides have
been removed from multiple clinical guidelines [4–6]. However, macrolides remain to
play a critical role in the treatment of multiple infections, including community-acquired
pneumonia, nontuberculosis mycobacterium, some sexually transmitted diseases and have
even been explored for COVID-19 [7].

In addition to the bacterial resistance, macrolide use has been limited by adverse drug
events. In fact, telithromycin, a ketolide derivative intended to overcome macrolide-related
resistance mechanisms, was removed from the US market due to cardiotoxicity issues [8].
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Given the clinical importance of this class of antibiotics, there is a need for innovative
methods to better understand the pharmacology of macrolide antibiotics and how clinical
use can be optimized for the minimization of treatment failure in real-world applications.

Clinical macrolide antibiotic treatment failure is typically associated with poor drug
adherence, drug absorption or antibacterial resistance [9]. Recently, attention has increased
on characterizing the influence of macrolide pharmacokinetic/pharmacodynamic (PK/PD)
properties on treatment failure and the emergence of resistance [10]. It has been shown
that the length of macrolide sub-minimum inhibitory concentrations (MIC) contributes to
the rate of resistance mutations [11]. This finding resulted in an increased interest in better
understanding the PK mechanisms associated with macrolide elimination, particularly
terminal half-life, where influences on prolonged sub-MIC periods would be expected. It is
important to note that the physiochemical properties of erythromycin, clarithromycin and
azithromycin are substantially different, which causes a wide range of observed half-lives,
terminal clearance and drug–drug interaction (DDI) risk potential.

For example, pharmacokinetic modeling efforts have indicated that low-pH com-
partment “trapping” of azithromycin is at least partially responsible for its long terminal
half-life and thus extended sub-MIC periods, which is not as prevalent following clar-
ithromycin or erythromycin use [12]. This longer terminal half-life supports the findings
of a double-blinded, randomized clinical trial, which showed the proportion of macrolide
failure due to resistant bacteria was higher in the azithromycin arm compared to the clar-
ithromycin or placebo arms [13]. Further, a review of antibiotic PK literature found that
macrolide exposure changes can occur in the presence of DDIs, potentially influencing
treatment failure [14]. Sufficiently understanding the influence of macrolide exposure, and
changes of that exposure, on macrolide treatment failure is consequently important for
minimizing risk of treatment resistance relative to susceptibility of the organism.

The use of big-data analytics and real-world outcomes data for hypothesis genera-
tion, hypothesis testing and knowledge-gap identification in clinical pharmacology has
been recently highlighted as a great opportunity for pharmaceutical investigations [15,16].
In fact, examples of cross-disciplinary collaborations between pharmacoepidemiologists
and (quantitative) clinical pharmacologists to better evaluate mechanistic causality on
real-world health outcomes have already begun to appear in the literature [17,18]. While
there are pharmacoepidemiologic studies examining antibiotic use and the prevalence of
antibiotic resistance, a method of combining clinical pharmacology principles with these
techniques has yet to be explored for macrolide antibiotics [19]. Therefore, the aim of
this work was to develop and implement a novel pharmacoepidemiologic approach for a
clinical pharmacology project to (1) characterize the rate of macrolide antibiotic treatment
failure within a large commercial patient population and (2) quantify the influence of drug
interactions on macrolide exposure and treatment failure rates.

2. Materials and Methods
2.1. Study Design and IRB

This project utilized a retrospective, observational nested case–control approach with
incidence density sampling to reach its conclusions. The database used for the analyses is
certified as deidentified, and the present study was approved as exempt by the Institutional
Review Board at the University of Florida (IRB201701362).

2.2. Data Source and Software

The data used in this project came from the IBM MarketScan Commercial Claims
Databases (2006–2015). This database includes information on inpatient and outpatient
medical encounters and pharmacy dispensing claims for a commercially insured patient
population in the United States. Assessments of medical conditions were based on the
International Classification of Diseases, 9th revision, Clinical Modification Codes (ICD-9-
CM) and macrolide exposures assessed via National Drug Codes (NDCs). The beneficiaries
have encrypted identifiers in the database, which allows for longitudinal follow-up. All



Pharmaceutics 2022, 14, 704 3 of 12

computer code for this project’s data management and statistical analyses was written
in SAS (v9.4). Additional analyses and visualizations were performed with R (v3.6) and
Microsoft Excel.

2.3. Study Cohorts
2.3.1. Common Acute Infections

To develop an appropriate dataset for this study, the following inclusion and exclu-
sion criteria were applied. The overall goal of these criteria was to formulate a dataset
containing only healthy individuals diagnosed with a common, acute bacterial infection,
wherein macrolide treatment failure would not be expected nor influenced by intrinsic or
extrinsic comorbidities.

Inclusion Criteria

Patients were initially included if all the following criteria were satisfied:

• Existence of a primary or secondary diagnosis code for acute bronchitis (ICD-9-CM
466.0), suppurative acute otitis media (AOM) (ICD-9-CM 382.01) or acute sinusitis
(ICD-9-CM 461.9).

• Filled a prescription for a macrolide (erythromycin, azithromycin, or clarithromycin)
within 5 days of infection diagnosis.

• Had longitudinal data available 12 months prior to and 60 days after infection diagnosis.

Exclusion Criteria

We sought to exclude patients who had prior infections, antibiotic treatment, or who
were immunocompromised to rule-out prior treatment failure or high-risk groups. Thus,
patients were dropped from the initially included population if any of the following criteria
were satisfied:

• The patient was hospitalized within 30 days prior to the inclusion date.
• The patient had any of the inclusion criteria infections (ICD-9-CM 466.0, ICD-9-CM

382.01, or ICD-9-CM 461.9) within 6 months prior to the inclusion date.
• The patient had a previous pharmacy claim for an antibiotic within 30 days prior to

the diagnosis date.
• The patient had an immunocompromising disorder within 2 years prior to the inclu-

sion date. Disorders included inherited immune/autoimmune disorders, HIV/AIDs,
any form of cancer or any type of organ transplant.

2.3.2. Bacterial-Specific Community-Acquired Pneumonia (CAP)

To develop the dataset for bacteria-specific infections, the same inclusion and exclusion
criteria for the acute infection analysis were utilized with the exception of the diagnosis
coding, which was adjusted within the inclusion criteria. Specifically, bacteria-specific CAP
ICD-9-CM codes were used instead of the ICD-9-CM codes for the common infections
of interest. A complete list of these ICD-9-CM codes can be found in Table S1 of the
Supplementary Materials.

2.3.3. Case–Control Identification

The study used a nested case–control design. This design encompasses a typical
case–control approach, but the cases and controls are “nested” within a specific cohort.
Here, that cohort was identified by the above inclusion and exclusion criteria and is a
cohort of people with an infection treated with a macrolide. From these, the identification
of cases (macrolide treatment failure) and controls (macrolide treatment success) was
established using previously defined and validated methodologies for both the macrolides
and infections of interest [20–22]. Specifically, macrolide treatment failure was determined
by the existence of any one or more of the following scenarios within a patient’s claims data:

• A refill of the index drug (original macrolide) within 30 days of the initial dispense date.
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• A fill of another antibiotic within 30 days of initial dispense date.
• A hospitalization or emergency department visit within 30 days of inclusion date due

to the same diagnostic code as the original infection.

2.3.4. Case–Control Matching

To ensure results of the statistical analyses were unbiased, a matching methodology
was conducted to create the final case–control pairs. Case–control pairs were exact matched
1:1, without replacement, on the following parameters: age, sex, year of infection, number
of medications, macrolide received, dose of the macrolide and Elixhauser comorbidity
score [23]. Note that for the bacteria-specific CAP analysis, control replacement was allowed,
and matches on age, number of medications and Elixhauser score were allowed to vary
by a maximum of 2 units rather than exact matched to increase sample size without
compromising matching integrity.

2.4. Pharmacokinetic Parameters of the Analysis

To quantify the role of macrolide pharmacokinetics on macrolide treatment failure,
covariates based on drug exposure changes were leveraged. Specifically, literature-reported
in vivo drug interaction studies in which macrolide exposure was altered were used to
identify DDI pairs. In general, all three macrolides of interest are hepatically cleared, with
erythromycin and clarithromycin metabolism predominantly attributed to CYP3A4 and
azithromycin predominantly associated with unchanged biliary excretion [24,25].

To identify drug interactions that have shown significant in vivo changes in macrolide
exposure, the University of Washington’s Drug Interaction Database (UWDIDB) was
utilized. The UWDIDB is a web-based tool that integrates information from peer-reviewed
literature, public repositories, textbooks, approved prescribing information and new drug
approval packages into a format that can be queried for analysis and research questions,
including the extent of exposure change within in vivo drug interaction studies [26]. Using
this resource, all in vivo DDIs which altered the systemic exposure of a macrolide, measured
via change in total area under the plasma concentration–time curve (AUC), were identified
for the macrolides of interest. These compiled macrolide–DDI perpetrator pairs were then
encoded into the data analysis script, and patients taking both the perpetrator and macrolide
victim concomitantly were identified. This identification allowed for the flagging of patients
who were most likely experiencing a DDI on their respective macrolide treatment, thus
allowing the assumption that their macrolide exposure was altered based on the clinical
DDI reports obtained from the UWDIDB.

The following DDI flags were generated for this study: No Interaction (≤25% increase
or decrease in AUC), Mild Induction DDI (50% > AUC decrease > 25%), Moderate Induc-
tion DDI (>50% AUC decrease), Mild Inhibitor DDI (50% > AUC increase > 25%) and
Moderate Inhibitor DDI (>50% AUC increase). It is noteworthy that while the induction
classifications are in line with the U.S. Food and Drug Administration and the European
Medicines Agency guidance definitions, the inhibition classifications are not [27,28]. Ac-
cording to both guidances, a moderate inhibitor DDI is one that has a >200% AUC increase,
thereby resulting in all inhibitor interactions within this project being classified as either no
interaction or mild only. However, these definitions are generally intended for evaluating
toxicity risk, while the intended use of the DDI metrics of this work is for evaluating
comparative risk of treatment failure. Therefore, the inhibitor DDI metrics were adjusted
to represent the equivalent of the induction exposure changes in the opposite direction,
i.e., 25% decrease vs. 25% increase. These DDI flags then were incorporated into the final
dataset to be used as covariates within the statistical analyses.

2.5. Statistical Analyses

Treatment failure rates for macrolides were calculated as a ratio of cases divided by
the total number of events, with the success rate equal to 1 minus the failure rate. To
estimate the relative odds of macrolide treatment failure, a conditional logistic regression
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model was fitted using the matched cases and controls. Optimization of the model fit was
conducted using the Newton–Raphson algorithm. The overall model fit was evaluated
using a likelihood ratio chi-square test (p < 0.05) at 4 degrees of freedom. Lastly, the odds
ratio point estimates were determined using conditional maximum likelihood estimation
and tested for significance using the Wald Chi-Squared test (p < 0.05) at 1 degree of freedom,
along with the corresponding 95% Wald confidence intervals.

3. Results

A flowchart of the cohort generation steps and results is summarized in Figure 1 for
both study cohorts. The final dataset for the acute infection analysis contained 135,683 case–
control matches, i.e., 271,366 members. A significant portion of these patients received
azithromycin (88.5%), with clarithromycin having the second highest proportion (11.2%)
and erythromycin being the lowest proportion of use (0.03%). For the bacteria-specific
pneumonia analysis, the final population contained 1115 case–control matches, with a
significant portion receiving azithromycin (83.0%) and the rest receiving clarithromycin
(17.0%). A complete summary of the final demographics of the study cohorts, in total and
per macrolide, is summarized in Tables 1 and 2.

Figure 1. Summary of cohort generation for the common infections cohort (A) and bacterial pneumo-
nia cohort (B) utilized in the study’s analyses.

Table 1. Summary of the common acute infection study cohort demographic data in total, as well as
broken down by macrolide used.

Total Population Demographic Summary

Matched Pairs 135,683
Age (years) 40.6 (14.7)
Sex (M/F) 0.71

Azithromycin Only
Matched Pairs 120,197

Age (years) 40.4 (14.9)
Sex (M/F) 0.70

Clarithromycin Only
Matched Pairs 15,171

Age (years) 42.2 (13.4)
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Table 1. Cont.

Total Population Demographic Summary

Sex (M/F) 0.81
Erythromycin Only

Matched Pairs 315
Age (years) 42.9 (12.3)
Sex (M/F) 0.71

Table 2. Summary of the bacteria-specific CAP study cohort demographic data in total, as well as
broken down by macrolide used.

Demographic Summary

Total Population Case Control

Matched Pairs 1115 1090
Age (years) 37.8 (17.1) 37.8 (17.0)
Sex (M/F) 0.93 0.93

Azithromycin Only
Matched Pairs 926 920

Age (years) 37.4 (17.2) 37.5 (17.1)
Sex (M/F) 1 1

Clarithromycin Only
Matched Pairs 189 170

Age (years) 39.4 (16.6) 39.4 (16.6)
Sex (M/F) 0.84 0.84

Erythromycin Only
Matched Pairs NA NA

Age (years) NA NA
Sex (M/F) NA NA

NA indicates no cases were identified in the data.

Age was summarized as mean with (standard deviation). Note that cases and controls
in this cohort were exact matched so demographics were the same for both groups.

Age was summarized as mean with (standard deviation) and NA indicates no avail-
ability within the study data,

Once the final study cohort was identified, the rates of treatment failure and success
were calculated for the whole population, as well as per each macrolide. In general, the
acute infection population had a treatment failure rate of 6%, with azithromycin being
5.6%, clarithromycin being 6.9% and erythromycin being 6.2%. In comparison, the bacteria-
specific CAP population had a failure rate of 8%, with azithromycin being 7.6% and
clarithromycin having a 10.6% failure rate. Full summaries of these rates are provided in
Tables 3 and 4.

Table 3. Summary of the macrolide treatment failure rates within the common acute infection analysis
for the total study population and broken down by macrolide used. Data are presented as absolute
number, as well as percentage.

Treatment Failure Treatment Success

Total Population 15,468 (5.7%) 255,898 (94.3%)
Azithromycin Only 13,462 (5.6%) 226,931 (94.4%)

Clarithromycin Only 2094 (6.9%) 28,248 (93.1%)
Erythromycin Only 39 (6.2%) 591 (93.8%)
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Table 4. Summary of the macrolide treatment failure rates within the bacteria-specific pneumonia
analysis for the total study population and broken down by macrolide used. Data are presented as
absolute number, as well as percentage.

Treatment Failure Treatment Success

Total Population 172 (7.7%) 2058 (92.3%)
Azithromycin Only 141 (7.6%) 1711 (92.4%)

Clarithromycin Only 40 (10.6%) 338 (89.4%)
Erythromycin Only NA NA

NA indicates no cases were identified in the data.

Finally, once the overall model fit was determined as statistically significant, the odds
ratio estimates for each PK covariate were calculated for the total population, as well as
limited to each macrolide. The acute infection results had statistically significant indications
that patients have approximately 12% increased odds of macrolide failure when exposure
is increased and approximately 35% increased odds of failure when exposure is decreased.
While the bacteria-specific analysis seems to have similar trends to the acute infection
analysis, no statistically significant results were observed for the calculated odds ratios.
A full summary of the regression analysis and calculated odds ratios are provided in
Tables 5 and 6.

Table 5. Summary of the calculated odds ratios and 95% confidence intervals for risk of treatment
failure in the common acute infection analysis with respect to AUC change versus no AUC change
due to DDI. Statistical significance of the odds ratio estimate was confirmed if the 95% confidence
interval did not cross a value of 1.

AUC Change Covariate Odds Ratio for Treatment Failure 95% Confidence Interval

Total Population
Mild AUC Increase 0.99 0.92, 1.06

Moderate AUC Increase 1.12 1.08, 1.17
Mild AUC Decrease 0.56 0.30, 1.02

Moderate AUC Decrease 1.37 1.02, 1.86
Azithromycin Only
Mild AUC Increase 0.98 0.91, 1.06

Moderate AUC Increase 1.12 1.08, 1.17
Mild AUC Decrease 0.64 0.34, 1.21

Moderate AUC Decrease 1.34 0.99, 1.85
Clarithromycin Only
Mild AUC Increase 1.01 0.83, 1.25

Moderate AUC Increase 1.11 1.00, 1.23
Mild AUC Decrease 0.81 0.22, 3.03

Moderate AUC Decrease 1.64 0.68, 3.96
Erythromycin Only
Mild AUC Increase 0.50 0.05, 5.51

Moderate AUC Increase 1.18 0.53, 2.64
Mild AUC Decrease NA NA

Moderate AUC Decrease NA NA
NA indicates no cases were identified in the data.

Table 6. Summary of the calculated odds ratios and 95% confidence intervals for risk of treatment
failure in the bacteria-specific CAP analysis with respect to AUC change versus no AUC change due
to DDI.

AUC Change Covariate Odds Ratio for Treatment Failure 95% Confidence Interval

Total Population
Mild AUC Increase 1.01 0.40, 2.53

Moderate AUC Increase 1.09 0.62, 1.92
Mild AUC Decrease NA NA
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Table 6. Cont.

AUC Change Covariate Odds Ratio for Treatment Failure 95% Confidence Interval

Moderate AUC Decrease 3.00 0.31, 28.8
Azithromycin Only
Mild AUC Increase 1.01 0.38, 2.69

Moderate AUC Increase 1.21 0.66, 2.22
Mild AUC Decrease NA NA

Moderate AUC Decrease *** ***
Clarithromycin Only
Mild AUC Increase 1.00 0.63, 15.9

Moderate AUC Increase 0.50 0.09, 2.73
Mild AUC Decrease NA NA

Moderate AUC Decrease *** ***
Erythromycin Only
Mild AUC Increase NA NA

Moderate AUC Increase NA NA
Mild AUC Decrease NA NA

Moderate AUC Decrease NA NA
*** Indicates odds ratios could not be reliably estimated due to limited sample size. NA indicates no cases were
identified in the data for the specified scenario.

4. Discussion

This work is the first scientific investigation for macrolide antibiotics that integrates a
pharmacoepidemiologic approach to a clinical pharmacology hypothesis using PK exposure
metrics as covariates. The regression results of this project indicated that risk of macrolide
treatment failure is not significantly changed for any macrolide when exposure is only
slightly altered, e.g., within weak inhibition or induction DDI scenarios. This notion is
reflected in the fact that none of the calculated odds ratios were statistically significant
for any of the mild AUC change groups. In comparison, the results do indicate that
when macrolide AUC changes by greater than 50%, the risk of treatment failure can be
significantly influenced. Specifically, based on the total population for the acute infection
analysis, we see that the calculated odds ratio comparing failure risk of a patient with
no macrolide AUC change with a matched patient with moderate AUC decrease is 1.37
[1.02,1.86]. In other words, the model reports a statistically significant approximation of a
37% increase in failure risk when a patient has a >50% decrease in macrolide AUC when
compared to a similar patient without the exposure change. Interestingly, using the same
method of interpretation as the AUC decrease, the results also show that a >50% macrolide
AUC increase leads to a statistically significant approximation of a 12% increase in failure
risk for the acute infection analysis. In comparison, the resulting odds ratio estimations of
the bacteria-specific pneumonia analysis were found to be statistically insignificant, leading
to a lack of confident conclusion on the treatment failure risks.

With respect to failure rates measured in this work, it is somewhat unintuitive that
the failure rates would be higher in the bacteria-specific pneumonia population compared
to the common acute infection population. However, it can be assumed that the reason
why these pneumonia patients were coded with a bacteria-specific pneumonia diagnosis
code is that the treating physician had their sample tested prior to treating due to a
suspicion of a treatment-resistant pathogen. Thus, patients who fall into this bacteria-
specific category could have been predisposed to resistance and thus treatment failure to
begin with, although this cannot be confirmed via medical claims alone.

The macrolide treatment failure criteria as an approximation for the emergence of
macrolide resistance is an important concept for this work. While the treatment failure
criteria have been well proven for accurately identifying macrolide therapy failure, the lack
of clinical isolate data within the medical claims will inevitably lead to the possibility that
the macrolide treatment failure was not due to macrolide resistance [20–22]. Failure could
also be due to nonbacterial (i.e., viral) causes of infection rather than emerging differences
in bacterial susceptibility only. However, given the extensiveness of the inclusion/exclusion
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criteria, exact matching of seven relevant variables, validated failure criteria and knowing
the use of macrolides are the biggest drivers of resistance development, we believe that
our results are at least in part representative of the emergence of resistance as a cause for
treatment failure.

While it is impossible to reliably determine the exact cause of treatment failure using
claims data, we believe it is reasonable to assume that physicians appropriately diagnosed
and treated their patients with macrolide antibiotics accordingly. To further account for this
nonbacterial infection confounding, an additional analysis looking at only bacteria-specific
pneumonia was performed. Bacteria-specific pneumonia was chosen for this second analy-
sis due to the lack of ICD-9-CM coding that specifies bacteria-specific acute infections, i.e.,
sinusitis, bronchitis and AOM. Furthermore, macrolide treatment of pneumonia has been
previously studied using claims data, which provides confidence in the methodological
approach of this analysis [21,22]. Lastly, another possible source of bias with respect to this
work is the use of a commercially insured population. The database used for this work only
included patients covered under a commercial health plan, which may lead to unavoidable
biases with respect to healthcare outcomes.

An important assumption of this work is one that exists in all studies involving
pharmacy claims data: accurate drug exposure. For this work, we assume that all drugs
contained in the patient’s pharmacy claims file were appropriately administered and
consumed by the patient as described in the claim. While deemed reasonable to assume
for research purposes, it is always possible that a patient fills their drug but never actually
takes it. While there are some methods to measure drug adherence within pharmacy claims,
most rely on multiple continuous fills for adherence estimation [29]. This reliance made
such methods not possible to implement in this work due to the inclusion/exclusion criteria
requiring no previous antibiotic use prior to the index date. In addition, due to frequent
use of sample medications and low-cost generic programs in the U.S., it is also possible
that some patients were exposed to additional DDI perpetrators but not observed using
pharmacy claims [30,31]. Such biases would make our results conservative.

The results of the macrolide exposure influences on treatment failure are particularly
interesting, especially for the notion of increased exposure leading to increased treatment
failure. While it is intuitive that a greater than 50% decrease in macrolide AUC could
increase the risk of treatment failure, i.e., not enough drug to kill bacteria, it is less intuitive
that a greater than 50% AUC increase could also increase the risk of failure. However,
when one considers the clinical pharmacology of the macrolides, especially azithromycin,
such a possibility becomes more plausible. Evidence has been presented that increases in
the length of time in which macrolide concentrations are below MIC90 levels significantly
increases the risk of macrolide resistance [11]. Azithromycin has a significantly longer
terminal half-life than that of erythromycin or clarithromycin, which contributes to longer
sub-MIC levels [24]. Furthermore, studies have shown that azithromycin can be subjected to
lysosomal trapping via molecular ionization, which can also contribute to extended periods
of sub-MIC levels [12]. This referenced work also showed that the ionization trapping of
azithromycin results in a slow drug release based on white blood cell turnover, significantly
contributing to half-life length. With this in mind, the findings of this study support the
hypothesis of these extended sub-MIC levels for azithromycin, as well as suggest that this
period can be altered by interactions, which cause macrolide plasma exposure to increase.
However, given the role of white blood cells during an immune response, one needs to be
mindful of potential differences between healthy subjects and patients.

Two other important aspects of macrolide safety and efficacy that should be considered
are the effect of obesity on treatment outcomes, as well as the proarrhythmic risk of
macrolides. Due to the lipophilicity of macrolides, it could be expected that obese patients
would have an increase in volume of distribution, which in turn can decrease plasma
concentrations while increasing terminal half-life compared to a healthy body mass index
(BMI) population. Such changes in PK would suggest that obese patients would experience
macrolide treatment failure at a higher rate than healthy BMI patients; however, very few
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resources concerning macrolide therapy in obese populations are currently available [32].
At least one study did support this notion by showing that the rate of H. pylori eradication
was significantly lower in obese patients compared to healthy BMI patients when receiving
a triple therapy, which included clarithromycin [33]. However, more work is needed in
this area of macrolide therapy. It is well known that oral use of macrolide antibiotics can
increase the risk of tachyarrhythmia and sudden cardiac death [34]. Further, it has been
shown that such risk occurs in a concentration-dependent matter, suggesting that exposure
increases can contribute to higher proarrhythmic risk [35]. This is of relevance for both DDI
situations, as well as long-term use of macrolides, particularly azithromycin, for treatment
of GI motility issues and non-TB mycobacterium infections, where the effects of extended
use of macrolides are not well-characterized for bacterial resistance or cardiotoxic risks [36].

While the results of this work themselves are not clinically actionable, they are critical
for future investigations into the PK/PD of macrolide antibiotics specifically for optimiz-
ing their clinical utility while decreasing the risk of therapy failure. In fact, efforts are
already underway by research groups to identify novel effective antibiotics with very
short half-lives but formulated as extended-release products to avoid the emergence of
resistance [37]. Using real-world outcomes data, the findings of this work provide insight
into how macrolide exposure changes can potentially alter macrolide treatment success.
This insight will be the foundation for future work to better understand the behavior of
macrolide PK among various physiological conditions and how these behaviors can be
utilized to optimize clinical value. Such future work includes physiologically based phar-
macokinetic modeling to evaluate macrolide exposure and tissue distribution for various
dosing scenarios and patient populations, as well as quantitative systems modeling to
evaluate various infection scenarios. The overall goal is to optimize macrolide antibiotic
utility while avoiding macrolide treatment failure and resistant bacteria development.

5. Conclusions

The integration of pharmacoepidemiology and clinical pharmacology provides a
framework for utilizing real-world data to provide insight into mechanisms of macrolide
failure and support future study development related to antibiotic treatment. In this work,
we hypothesized and showed that changes in the pharmacokinetics of macrolide exposure,
both increased or decreased, can potentially alter the risk of macrolide treatment failure.
These results indicate that it is clinically important for antibiotic exposure to be precise and
accurate, especially for long half-life antibiotics. Future work will focus on mechanistic
modeling and clinical trial development for macrolide antibiotics.
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