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Introduction
High Energy Musculoskeletal Traumas (HEMTs) 
are a prominent problem for healthcare systems, 
considering both the social cost and the high mor-
bidity and mortality.1 Several factors contribute 
to generate the considerable healthcare cost asso-
ciated with HEMT, that was estimated to be 
between 1% and 3% of the gross domestic prod-
uct in the United States of America.1,2 Indeed, 
only 58% of patients with a HEMT are able to 
return to their work activities in the first year after 
the injury. Moreover, disability, patient death and 
some other direct medical costs also act in increas-
ing the reported economic burden.2

In many cases, HEMTs severely affect also the vas-
cular, nervous, and other soft tissues. Therefore, a 
multidisciplinary evaluation of HEMTs is often 
necessary to plan the limb reconstruction, generally 
involving the orthopedic, the plastic and the vascu-
lar surgeons.2–4 The occurrence of a severe vascular 

injury may be a dreadful event, often representing 
an emergency. In fact, in these cases the revasculari-
zation must be performed in the first 6 h considering 
the relevant risk of necrosis after this time point. An 
appropriate evaluation of the vascular injury should 
be constantly performed by looking for high suspi-
cious signs (such as pallor, decreased temperature, 
reduced pulses, delayed capillary refill), also after 
gross realignment of the skeletal segment. A strict 
collaboration between the trauma leader and  
vascular surgeon is essential in case of HEMTs to 
organize the most convenient sequence of surgical 
procedures to minimize the risk of long ischemia.2,3 
Another actor in this multidisciplinary framework is 
the plastic surgeon, preferably with experience in 
microsurgery. In fact, the use of complex recon-
structive techniques, such as muscle flaps, free flaps, 
vascularized bone graft, may considerably improve 
the outcomes, thanks to the notable effects of filling 
bone and/or skin defects using vascularized tissues. 
Furthermore, some techniques are able to provide 
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for the association of muscle-cutaneous flaps con-
taining nervous structures to be anastomosed with 
peripheral injured nerves.5–7

Anyway, the high morbidity and poor outcomes 
associated with HEMT are mostly related to the 
high incidence of complications, including wound 
infection (28.3%) and fracture non-union 
(23.7%).8 Treatment decision-making of HEMT-
related complications may be extremely difficult. 
Limb preservation options often need multiple 
surgical procedures, rising some questions on the 
opportunity in perseverate to try to save the 
affected limb. In fact, amputation has proven to 
be a valid alterative that guarantees good function 
and reduced complications.9 Moreover, some 
studies have shown that quality of life is not 
directly dependent on limb salvage.9 Several 
parameters have been described to help in the 
decision to save or amputate a severely injured 
limb.10–12 The main criteria to be considered may 
be age, general condition, time of ischemia, extent 
of soft tissue damage and bilateral amputations. 
These criteria are part of some scores that may 

further aid in the treatment decision-making, 
reducing the rate of complications following a 
limb salvage attempt. Particularly, Battiston 
et al.10 proposed a modified mangled extremity 
severity score (MESS) in which a score <5 
clearly indicate a reimplantation, while a score 
>8 an amputation (see Table 1).10 Moreover, 
the authors described a high rate of secondary 
complications requiring a subsequent amputa-
tion, in a case series of 12 patients with a reim-
planted limb.10 Chen and Chen described a 
grade system, according to which it is possible 
to foresee the functional outcomes of a reim-
planted limb.11

However, amputee long-term management is not 
cost and risk free.13,14 Recently, in the United 
Kingdom, a total 40-year £288 million cost 
(equal to USD 444 million) has been estimated 
among the UK Afghanistan lower limb amputee 
cohort.13 Moreover, a loss of function related to a 
gait imbalance, was demonstrated even among 
patients with transtibial amputation (one of the 
most efficient level of amputation).14

Table 1. MESS score modified by Battiston et al.10

Age
Score

>50
2

30–50
1

<30
0

General conditions

Score

Shock

4

Systemic 
disease, 
diabetes, 
hypertension, 
heart 
problems
2

Good 
conditions

0

Ischemia time
Score

6 h, cold ⩽4 h, warm
4

3–6 h, cold
2

⩽3 h, cold
0

Local conditions

Score

Severe contamination, 
comminution, bone loss

2

Complex 
fracture 
without severe 
contamination
1

Neat lesions, 
no bone loss 
contamination

0

Soft-tissue 
problems

Score

Severe lesions 
of posterior 
tibial nerve

4

Large skin 
and muscular-
tendon 
loosening
3

Severe skin 
problems but 
good muscle 
conditions
2

Partial skin 
necrosis

1

Good 
conditions

0

If the score is >8, contraindication for replantation; 6–7, possible replantation, poor functional result; ⩽5, indication for 
replantation.
MESS, mangled extremity severity score.
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Therefore, to ameliorate patients’ outcomes, the 
limb salvage procedures of HEMT complications 
should be carried out carefully and patients 
appropriately selected.

Considering the multiple unmet needs related to 
the surgical procedures available to treat HEMT-
related complications, we decided to perform a 
comprehensive evaluation of the available litera-
ture to guide the orthopedic surgeon throughout 
the treatment decision-making.

Fracture Non-Union
The failure of the bone healing process occurs 
in up to 10% of patients with a fracture,15 but 
HEMTs consistently raises up the probability of 
observing this complication. The incidence of 
non-unions depends also on the bone involved. 
In fact, carpal scaphoid fractures are associated 
with a risk of non-union of 15.5%, whereas tib-
ial and femoral ones of 14.4% and 13.9% 
respectively.15

Multiple definitions of fracture non-union were 
reported in the current literature. Indeed, the 
Food and Drug Administration defined a non-
union as a fracture that was not healed at 
9 months after the injury.16 Some other authors, 
instead, described it as a fracture that was not 
healed in the expected time and/or with no  
healing progression on plain radiographs, or a 

fracture that needs additional procedures to 
achieve union.17

Both patient- and surgical-related factors could 
negatively affect the bone healing and they must 
all be considered before starting to treat a fracture 
non-union.18 The evaluation of the previous treat-
ment, the morphology of the original fracture, the 
appropriateness of the previous fracture fixation 
and the quality of reduction are all surgical-
related factors that have to be taken into account. 
Moreover, a global health status evaluation of the 
patient-related factors, including comorbidities, 
life habits, as well as bone metabolism and bone 
quality should be performed. Obviously, bone 
and soft tissue infections must be excluded, con-
sidering that they lead to a different diagnosis and 
dramatically change the management.

Classification of Non-Union
The classification of non-union is not univocal. 
The most popular was described by Weber and 
Cech,19 that distinguished three types of non-
unions, basically biologically active (hyper-
trophic) and inactive (oligotrophic and atrophic) 
(see Table 2). However, available evidence did 
not completely support this classification. In fact, 
some histological studies did not report relevant 
differences between hypertrophic and atrophic 
non-unions.20 Moreover, this kind of classifica-
tion did not consider patients’ comorbidities.

Table 2. Most widely used classifications of fracture non-unions. In both of them, reading from the left to the 
right, a greater need for biological supplementation is required.

Classification of 
non-unions

 

Weber and Cech19 Hypertrophic
Hypervascular 
fracture site 
(good biology, 
poor mechanical 
stability)

Oligotrophic
Adequate 
vascularization 
with minimal callus 
formation

Atrophic
Impaired 
vascularity, no 
callus formation 
(poor biology)

 

NUSS21 0–25 pts
Major mechanical 
problem

26–50 pts
Minor 
mechanical + minor 
biological problem

51–75 pts
Combination of a 
Major and a Minor 
problem

75–100 pts
Major 
mechanical + Major 
biological problem

NUSS, Non Union Scoring System.
In bold there are reported the categories of each classification.
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For this reasons, other authors proposed more 
complex classification systems.19,22 One of the 
most used is the Non Union Scoring System.21 
This classification included patient-related factors, 
soft tissue status, Weber and Cech classification, 
previous treatment, bone quality and fracture-
related factors (see Table 2 for further details).

Non-Surgical Treatments
If a biologically active non-union is suspected, 
some non-surgical treatments may be attempted.

Recently, a relevant role has been suggested for 
bone anabolic drugs for the treatment of delayed 
consolidations and non-unions. Specifically, teri-
paratide, a parathyroid hormone (PTH) derivate, 
has been suggested to be able to improve bone 
healing,23 although the scientific evidence is still 
poor and mainly based on case reports and small 
clinical series.24–29 Particularly, Gariffo et al.27 in 
a recent case series of 20 delayed/non-unions 
reported a union rate of 85%, most of which 
occurred after 3 months of teriparatide use.

Abaloparatide, a synthetic analog of a PTH-
related peptide with a weaker binding to the R° 
conformation of the PTH receptor compared to 
teriparatide, has been recently proposed as a more 
effective anabolic drug in osteoporotic patients.30 
Recent preclinical studies supported its role also 
on fracture healing.31

Physical agent modalities too may act as non-sur-
gical means to improve bone healing. In fact, a 

recent systematic review on Pulsed Electromagnetic 
Fields demonstrated a low to moderate quality of 
evidence supporting its role in increasing bone 
healing rate and accelerating time to healing.32

Low-intensity pulsed ultrasound (LIPUS) is 
another physical-agent modality with promising 
results in the treatment of non-unions.33 The 
authors of a recent systematic review reported a 
success rate of 82% and proposed LIPUS as an 
alternative to surgery in fracture non-union in 
elderly, or in patients with severe comorbidities.34 
Moreover, some evidence supported their use 
also in case of hypertrophic non-unions.34

Surgical Management of Non-Unions
The surgical management of non-unions may 
be extremely difficult, and often requires a 
comprehensive approach focused on all those 
factors that could affect bone healing. This 
kind of approach has been recently summa-
rized in the ‘diamond concept’ conceived by 
Andrzejowski and Giannoudis35 According to 
this concept, a successful fracture healing 
depends on both the biological and the mechan-
ical environment observable at the fracture site 
as well as the vascularization. In fact, according 
to the authors, a viable biological environment 
is essential to provide mediators and cells, as 
well as osteoconductive matrix necessary to the 
osteoprogenitors to act, while the need of a 
consistent mechanical environment, underline 
the relevance of a proper fracture stability to aid 
cells in appropriately complete the callus  

Figure 1. A clinical case of a 42 years old male with a middle shaft tibia septic non-union following an open fracture treated with 
intramedullary nailing (a). The patient was treated through septic bone resection and subsequent bone transport (b). In (c) non-union of 
the docking point, treated through a new bone resection and bone transport for definitive infection control (d). In (e) X-ray at 7 months 
suggestive of docking point union. In (f) recurrence of an aseptic atrophic non-union treated using the Huntington’s procedure (g).  
In (h) X-ray at 12 months after the procedure, note the full integration and partial hypertrophy of the fibula.
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formation.36 Andrzejowski and Giannoudis35 
affirmed that a rigorous application of all the 
aspects of the diamond concept could ensure a 
success rate of 89–100% in the treatment of 
long-bone non-union.

To achieve the needed focal bone revitalization 
for the bone union, some biologically active mate-
rials and techniques are available.37 These materi-
als and techniques may be divided into two main 
categories: vascularized and non-vascularized. 
The first ones are represented by autologous vas-
cularized graft and distraction osteogenesis, while 
the second typically include allogenic graft, autol-
ogous non-vascularized graft, and bone substi-
tutes (scaffolds).37

In the context of vascularized grafts, the use of the 
vascularized fibular graft can provide both an 
adequate mechanical stability and biology in case 
of non-unions with large segmental defects.38 
Moreover, its use is possible also for the manage-
ment of infected non-unions. However, the har-
vesting of a vascularized bone graft may be 
extremely difficult and requires microvascular 
environment. When biological support is strongly 
recommended but microsurgical supplies are not 
available, the historical Huntington’s ipsilateral 
vascularized fibular transposition is still a viable 
option in selected patients.39–42 Figure 1 shows a 
clinical case of a recalcitrant middle tibia non-
union treated using the Huntington’s procedure.

Moreover, recent studies supported the use of 
Bone Marrow (BM) Concentrate to treat long-
bone non-unions,43 especially when non-vascu-
larized biological materials are used. In fact, as 
suggested by pre-clinical studies, the application 
of BM is able to enhance bone vascularization.44 
Moreover, the simultaneous use of internal fixa-
tion, cortical allograft and BM-stem cells has 
been recently demonstrated to be a viable option 
to treat humeral shaft non-union also in the 
elderly patient.45

The management of non-unions with severe 
bone loss following HEMTs might be addressed 
also using an external fixation,17,20 considering 
its reported ability to provide stability, correct 
alignment and biological stimulation at the non-
union site. Moreover, the massive bone loss 
might be replaced using the bone transport tech-
nique. Theoretically, it leaves intact the soft  
tissues around the fracture site, being a 

percutaneous device. This leads to a further 
preservation of the biological and vascularization 
environment, that might aid also for the recon-
struction of any soft tissue injury. However, pin 
tract infections, docking-site non-union are 
among the complications reported for the exter-
nal fixator use in fracture non-unions.46–48 To 
reduce their incidence an accurate surgical tech-
nique and post-operative follow-up is needed, 
especially for pin tract-related complications.49 
On the other hand, acute shortening or reinter-
vention with the application of bone stimulating 
substances are among the proposed protocols to 
treat docking-site non-union.46,50

Recently, the adoption of a contemporary use of 
internal and external fixations in the same patient 
is gaining popularity, thanks also to the reported 
reduction in time of use of the external fixator.51–53 
Particularly, Kadhim et  al.,54 in their Systematic 
review, reported that the combined use of circular 
fixation and intramedullary nail provided the 
highest success rate for the treatment of tibial non-
union with segmental bone defect.

Fracture Malunion
Malunion is an extremely common complication 
of HEMTs, with a reported incidence of about 
22%.8,55

The treatment of malunion is often required 
because it may severely affect limb function or 
increase the risk of early osteoarthritis. Particularly, 
a 10° varus/valgus malunion has been observed to 
lead to a critical increase in medial and lateral 
knee cartilage stress, respectively.56

Several techniques had been described to man-
age fracture malunion, substantially based on 
corrective osteotomy and application of both 
internal and external fixation.57,58 Infection, 
delayed healing and non-union are among the 
reported complications of corrective osteotomies 
of the lower limbs.58,59 In order to reduce bone 
healing complications and improving patients’ 
comfort the clamshell and chipping corrective 
osteotomies had been proposed.60–63 Clamshell 
osteotomy requires the identification of the mal-
united segment and to perform two subsequent 
osteotomies, one proximally and one other dis-
tally the center of the deformity. After that, the 
malunited segment is again osteotomized along 
its axis and wedged open. The three resulting 
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fragments are then aligned with an intramedul-
lary rod.

The efficacy of chipping corrective osteotomy 
(CCO) was recently reported in a small series in 
which a bone healing was achieved after a mean of 
3.5 months.63 The technique requires the use of a 
temporary external fixator, followed by a defini-
tive osteosynthesis using a locking plate. CCO 
improves the bone healing probably thanks to a 
sort of biological chamber created by the chipping 

in fragments of the malunion site. Figure 2 shows 
a clinical case treated with chipping osteotomy.

Fracture-Related Infections
Fracture-related infections (FRI) are a challenging 
and demanding complication with a severe impact 
on the healthcare systems,64 considering the length 
of hospitalization, rehospitalization rate,65 and the 
infection recurrence that may lead to a subsequent 
limb amputation in 3–5% of cases.66

Table 3. International Consensus Meeting (ICM) 2018 criteria for the diagnosis of FRI.74

Confirmative criteria Suggestive criteria

Fistula, sinus or wound breakdown Clinical signs: pain increasing over time, local redness, 
local swelling, increased local temperature or fever

Purulent drainage or presence of pus Radiological and nuclear imaging signs

Phenotypically indistinguishable pathogens 
identified by culture from at least two 
separate deep tissue/implant specimens

Pathogenic organism identified by culture from a single 
deep tissue/implant specimen

Presence of more than five 
polymorphonuclear neutrophil per high 
power field, confirmed by histopathological 
examination

Elevated serum inflammatory markers: erythrocyte 
sedimentation rate (ESR), white blood cells count (WBC), 
C-reactive protein (CRP)

Persistent or increasing wound drainage

New-onset of joint effusion in fracture patients

FRI, Fracture-related infections.

Figure 2. A clinical case of a 38 years old male with a tibial varus malunion (a) after a road accident. Initially the malunion was 
treated using an exapodalic external fixator (b). In (c) the reoccurrence of varus deformity related to osteotomy partial non-union. In 
(d) intraoperative picture of the chipping osteotomy, leading to a good alignment and reliable healing; in (e) the post-operative X-ray; 
in (f) full length lower limb X-ray at 9 months after the surgery.
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The reported rate of FRI for closed fractures was 
1–2%, but it grew up to 30% in cases of open 
fractures.67,68

Theoretically, to reduce FRI occurrence, the treat-
ment of an open fracture should be conducted in 
less than 6 h from the trauma,69 and should be 
based on debridement, wound irrigation and anti-
biotic therapy.69 However, current evidence 
reduced the impact of the 6-h rule on the infection 
rate, underlying, instead, the more relevant role of 
a careful surgical debridement and appropriate 
antibiotic treatement.70–73

In 2018, the International Consensus Meeting 
held in Philadelphia, proposed some criteria to 
define FRI, differentiating them in ‘confirmatory’ 
and ‘suggestive’ (see Table 3).74

The treatment of FRI may be extremely difficult 
and frustrating for both the patient and the sur-
geon. One of the main aspects that may explain 
the poor outcomes of FRI is the formation of the 
bacterial biofilm on the foreign material repre-
sented by the fixation devices.75 The biofilm is a 
polymeric matrix mainly consisting of bacterial 
products that protects them from harmful  
environmental conditions, including the host 
immune responses and antimicrobial agents.76–79 
Moreover, the formation of a biofilm may lead 
also to improper diagnosis since bacteria in the 
biofilm are in a somewhat anergic state. A recent 
Systematic Review proposed that sonication of 
fluid culture might improve diagnostic abilities, 
especially in those patients already treated with 
antibiotic therapy.80

Very often, to effectively treat FRI, the biofilm 
must be surgically excised. In this perspective, the 
use of an antiseptic/antibiofilm wound lavage may 
be of aid, as recently underlined by Whitely et al.81 
in their delayed debridement animal model of 
open fractures.

However, the timely identification of a FRI 
remains relevant to appropriately guide the sur-
geon in the treatment decision-making.74,82 The 
relevance of timing is underlined by one of the 
most widely used classification of FRI, based on 
the time elapsed between the fracture fixation 
and the onset of the infection. In an early onset 
FRI (between 0 and 1 week after surgery) the 

fracture is supposed to be not healed yet and the 
surgeon should try to retain the fixation implant. 
For this reason, in most cases surgical debride-
ment with deep samples for cultures, and subse-
quent specific antibiotic therapy is often the 
treatment of choice [debridement, antimicrobial 
therapy and implant retention (DAIR)]. The anti-
biotic therapy may be prolonged until the bone 
healing occurred and then the implant should be 
removed.83 In case of delayed onsets FRI (between 
2 and 10 weeks after surgery), and in late/chronic 
onsets the removal of the hardware is always nec-
essary, followed by surgical debridement and anti-
biotic therapy. There is no clear recommendation 
for the timing of an effective DAIR, but the rate of 
success decreases constantly with time. In fact, 
clinical studies reported a success rate of 90% 
when applied within 3 weeks,84,85 70% within 
6 weeks,86,87 51–67% over 10 weeks after sur-
gery.65,85,88 However, time, fracture healing status 
and implant stability are not the unique factors to 
consider when treating a FRI. In this context the 
Cierny’s classification may be of aid in the treat-
ment decision-making, especially in case of late/
chronic infections (see Tables 4 and 5).89

Table 4. Cierny’s classification.

Anatomic type

I Medullary osteomyelitis

II Superficial osteomyelitis

III Localized osteomyelitis

IV Diffuse osteomyelitis

Physiologic classes

A-Host Good immune system and Delivery

B-Host Compromised locally (B L) or Systemically (B S)

C-Host Requires suppressive or no treatment; minimal 
disability; treatment worse than disease; not a 
surgical candidate

Clinical Stage  

Type + Class = Clinical Stage.
Example:
Stage IVB S osteomyelitis = a diffuse lesion in a systemically 
compromised host

Source: Adapted from Cierny et al.89
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After a surgical debridement and especially in case 
of chronic/late osteomyelitis or in case of infected 
non-union, one of the main critical issues to face 
up might be the reconstruction of the subsequent 
bone loss. Several techniques are available, includ-
ing the use of autologous or heterologous bone 
graft, bone substitute or bone transport with 
external fixator.17,20,37,91

The ideal bone substitute should present osteoin-
duction (the process by which osteogenesis is 
induced), osteoconduction (the process through 
which the bone grows on a surface) and osseointe-
gration (the stable anchorage of an implant 
achieved by direct bone-to-implant contact) prop-
erties. Only autografts (bone graft obtained from 
the affected patient) present all these three charac-
teristics, but their availability is very limited.92 The 
non-biological materials, such as ceramics, metals, 
alloys, polymers, composites, and hydrogels are 
generally referred as alloplasts and synthetic mate-
rials.92 Considering their wide availability, syn-
thetic bone substitute (i.e. calcium sulfate, calcium 

phosphate, hydroxyapatite) are generally used with 
the purpose to achieve bone loss reconstruction 
exploiting their reported osteoconduction and oste-
ointegration properties.93 However, both may be 
severely impaired by the persistence of infection. 
Therefore, several antibiotic-loaded bone substi-
tutes had been proposed with encouraging results.94

A case series of 100 patients with chronic osteo-
myelitis treated though a single-stage debride-
ment and the application of an absorbable, 
gentamicin-loaded, calcium suphate/hydroxyapa-
tite biocomposite, reported a healing rate of 96%, 
with rare adverse events.95 Figure 3 shows a case 
of a chronic tibial osteomyelitis treated using an 
antibiotic-loaded bone substitute.

Anyway, also in the case of using antibiotic-
loaded bone substitutes, prolonged antimicrobial 
therapy is recommended (at least 6 weeks after 
implant removal or 12 weeks in case of implant 
retention).96,97 One issue that limits the antibiotic 
use for FRI is also the poor bone penetration of 

Figure 3. A clinical case of a 61 years old female with a tibial chronic osteomyelitis following a road accident occurred 40 years 
before our observation. In (a) and (b) clinics and antero-posterior and latero-lateral X-rays at the time of our observation. The patient 
was treated through a sequestrectomy and application of an antibiotic-loaded bone substitute. In (c) the intraoperative fluoroscopy 
before (left) and after (right) the application of the bone substitute. In (d) antero-posterior and latero-lateral X-rays at 1 month after 
the surgery. Note the partial bone substitute reabsorption. In (e) and (f) X-rays and clinics at 4 months after the surgery.

Table 5. Proposed intervention according to the Cierny’s classification.

Clinical stage Proposed intervention

Stage I Systemic antimicrobial therapy at early stage.
Debridement may be needed at late stage.

Stage II Systemic antimicrobial therapy at early stage.
Debridement may be needed at late stage.

Stage III Antimicrobial therapy at early stage in addition to 
limited surgical procedures.

Stage IV Requires surgical and antimicrobial therapy in 
addition to post-surgery stabilization.

Source: Adapted from Wassif et al.90
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most antibiotics. Currently there is a relevant 
effort to achieve a high bone antibiotic concentra-
tion using also local delivery agents.98–100 However 
a satisfactory kinetics of these local antibiotic-
loaded carriers is not reported yet.

Conclusions
HEMTs are often associated with severe compli-
cations, especially non-union, malunion and FRI, 
that may lead to limb amputation. Although good 
outcomes were reported with limb amputation, 
this treatment still presents high long-term costs 
and disputable functional results. The limb preser-
vation surgery for HEMTs-related complications 
may be frustrating and difficult, and often requires 
multiple/staged procedures. The orthopedic sur-
geon must use several techniques to tailorize-to-
the-patient the treatment. In order to improve 
patients’ outcomes while reducing costs, an appro-
priate limb salvage technique selection is manda-
tory, even combining them. Moreover, the surgeon 
must keep in mind that bone biology is as essential 
as fracture stability and bone stock preservation/
restoration. Finally, in our opinion the pivotal fac-
tor to effectively treat the HEMTs-related compli-
cations is the engagement of a close cooperative 
relationship between the patient and the surgeon.
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