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Abstract: Filamentous fungi are found in virtually every marine and terrestrial habitat. Vital to this
success is their ability to secrete a diverse range of molecules, including hydrolytic enzymes, organic
acids, and small molecular weight natural products. Industrial biotechnologists have successfully
harnessed and re-engineered the secretory capacity of dozens of filamentous fungal species to make
a diverse portfolio of useful molecules. The study of fungal secretion outside fermenters, e.g., during
host infection or in mixed microbial communities, has also led to the development of novel and
emerging technological breakthroughs, ranging from ultra-sensitive biosensors of fungal disease to
the efficient bioremediation of polluted environments. In this review, we consider filamentous fungal
secretion across multiple disciplinary boundaries (e.g., white, green, and red biotechnology) and
product classes (protein, organic acid, and secondary metabolite). We summarize the mechanistic
understanding for how various molecules are secreted and present numerous applications for
extracellular products. Additionally, we discuss how the control of secretory pathways and the polar
growth of filamentous hyphae can be utilized in diverse settings, including industrial biotechnology,
agriculture, and the clinic.

Keywords: filamentous fungi; classical secretion; non-classical secretion; symbiosis; extracellular
vesicles; citric acid; glucoamylase; secondary metabolite; pathogen

1. Fungal Secretion: The Global Bioeconomy and Beyond

Filamentous fungi inhabit virtually all marine and terrestrial environments as free
living microbes, symbionts, commensals, and pathogens [1,2]. This global colonization
is dependent on their ability to secrete a diverse repertoire of protein, organic acid, and
secondary metabolite molecules, which enable nutrient acquisition, growth of polar cells
termed hyphae, and a number of specialized, niche-dependent functions, ranging from
host tissue invasion, symbiosis, sexual reproduction, or killing competing microbes.

Industrial biotechnologists have repurposed filamentous fungal secretion for over a
century, where cheap, readily available renewable biomass has been converted to megatons
of useful products including hydrolytic enzymes, platform chemicals, and pharmaceuti-
cals [3-5]. This efficient recycling of biomass has recently been identified as an important
component in the global transition from a petroleum-based economy to a sustainable
circular economy, which may ultimately mitigate climate change, achieve international
food security, and protect natural ecosystems (Figure 1 [6,7]).

Understanding and (re)engineering filamentous fungal secretion is not, however,
only relevant for sustainable applications in industrial biotechnology. As the diversity of
their secreted repertoire in the natural niche is explored (Figure 2 and Table 1), a wide
range of novel applications have been postulated, from bioremediation of plastic waste [8],
using sex pheromones in biosensors [9], to supplying food and medical products during
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ultra-long space flight [10]. Understanding secretion has also become a major avenue
of research in both medical and agricultural biotechnology. Fungi infect a vast range of
animals, plants and other organisms, causing an estimated 1.5-2 million human deaths per
year, major extinction events, and loss of annual crops sufficient to feed several hundred
million people [11-13]. Secretion plays multiple and essential roles during human and
plant disease, including acquisition of nutrients from the host and delivery of virulence
factors. Thus, chemically impeding secretion with novel antifungals, or enabling the
effective immune detection of extracellular molecules, promises to reduce both the clinical
and environmental impacts of fungal disease.
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Figure 1. Industries utilizing the metabolic capacities of filamentous fungi. Reproduced from [6], CC BY 4.0.
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Figure 2. Interconnections between organic acid, protein, and secondary metabolite biosynthesis in
filamentous fungi. Schematic diagram is a simplified model of filamentous fungal carbon catabolism
when utilizing sugars. The main classes of molecule are depicted in grey boxes, with some exemplar
secreted molecules discussed in this review highlighted in parentheses. Acetyl-CoA is a crucial link
between both primary and secondary metabolism. Note ATP and NAD(P)H are not indicated in the
schematic for simplicity. Modified from [14].

Table 1. Summary information of filamentous fungal secretion and exemplar applications of their extracellular molecules.
Species listed are meant as examples only and are not exhaustive. The most common postulated and/or confirmed functions
of these molecules are given, but in several instances their precise role is still unclear (e.g., citric acid).

Secretion Postulated or
Exemplar Route and/or Confirmed Current or
Product Class Product Producing Plasma Function(s) in Prospective References
Fungal Species Membrane the Natural Application(s)
Transporter Niche
Food and
beverage
Gluc(o;il:;ylase A. niger industries [4,15]
Enzyme/ Classical Nutrient processing starch
proteins secretion route acquisition to glucose
Cellulases T. reesei, T. Textile, food, and [16]

thermophila

other industries
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Table 1. Cont.

Secretion Postulated or
Exemplar Route and/or Confirmed Current or
Product Class Product Producing Plasma Function(s) in Prospective References
Fungal Species Membrane the Natural Application(s)
Transporter Niche
Applications in
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generated in ossible dru
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Triacetyl- and acquisition s deroghéres
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membrane full virulence metals from
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Secondary ecosystems
metabolite Intermediates
generated in
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vacuoles,
possibly Inhibitor of Antimicrobial
Penicillin P. chrysogenum secreted via competing with widespread [29]
microbes clinical use
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unknown
plasma

membrane
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Secretion Postulated or
Exemplar Route and/or Confirmed Current or
Product Class Product Producing Plasma Function(s) in Prospective References
Fungal Species Membrane the Natural Application(s)
Transporter Niche
Used to elevate
. L . Mating yields of
Trisporic acid B. trispora Unknown pheromone B-carotene during [30]
fermentation
Secondary Fusari
metabolite Usariin spp., Antimicrobial and
A niger Prevent anti-inflammator
Enniatin (heterologous Unknown . gy y [31]
c predation clinical
expression applications
host) 19
Micronutrient Food and
acquisition beverage as
Plasma (iron chelator), flavour enhancer,
Citric acid membrane 1nh1b1t0.r of cleanm.g pI‘Odl:lCt, [32]
transporter competing many industrial
CexA microbes, uses as a weak
A. niger overflow acid and platform
metabolite chemical
Inhibitor of
L Plasma . .
Organic acid membrane competing Industrial uses as
Malic acid microbes, a weak acid and [33]
transporter .
DetA overflow platform chemical
metabolite
Plasma o
A. terreus, U. Inhibitor of
. ) membrane . .
maydis, A niger competing Industrial uses as
. . transporter . .
Itaconic acid (heterologous MifsA (A microbes, a weak acid and [34]
expression : overflow platform chemical
terreus) or Itpl .
host) . metabolite
(U. maydis)

In order to reflect the interdisciplinary nature of filamentous fungal secretion (Table 1),
we ask ‘why do fungi secrete?” We discuss several distinct, yet interconnected answers,
including (i) polar growth, (ii) degradation of macromolecules for nutrient acquisition,
(iii) micronutrient uptake, (iv) removal of overflow metabolites, (v) infection, (vi) in-
terspecies communication, (vii) intraspecies communication, and (viii) surviving in the
community. We highlight various metabolic and secretory pathways for proteins (Figure 3),
secondary metabolites (Figure 4), and acids (Figure 5) and provide some key examples
of their applications. Key secretion mechanisms are mainly summarized from model or-
ganisms (predominantly Ascomycota). Although there are certainly important differences
in secretion machinery across the fungal kingdom (e.g., between Dikarya (Ascomycota
and Basidiomycota) and non-Dikarya, between flagellated and non-flagellated fungi, or
between phyla [35]) these are outside the scope of this review. For clarity, secretion is
summarized in separate sections. However, in the dynamic environments in which filamen-
tous fungi proliferate and colonize, a single cell may be secreting an arsenal of molecules
for all the reasons outlined above. Similarly, a separate and fascinating aspect of fila-
mentous fungal secretion is that a single extracellular molecule may play multiple roles
connecting, for example, nutrient acquisition and virulence [27], or polar growth and
self-communication [22]. In some instances, conventional assumptions to explain why a
fungus secretes a certain product have recently been challenged, leading to new avenues of
fundamental research and applications [22,36,37]. We begin by discussing the crucial role
of secretion in a defining feature of the filamentous lifestyle: polar growth.
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Figure 3. Schematic representation the filamentous fungal protein secretory system. In the classical route, cargo loaded
vesicles are transported from the Golgi along microtubules and actin cables to the tip, where they are fused to the plasma
membrane by the exocyst complex. Growth of the tip moves cell wall synthetic enzymes toward intercalary hyphal regions
(orange arrows), where they are putatively recycled at the actin ring and the endosome system to maintain polarity. Protein
secretion does occur at intercalary regions, possibly including the septa. Not shown is secretion by non-classical route(s)
which may occur by as yet uncharacterized plasma membrane transporters. The production of extracellular vesicles is also
not yet fully understood. Note that key differences to the secretory machinery (e.g., protein components of SPK, exocyst)
exist between phyla, and are still being elucidated. Note that not all components are show and diagram is not to scale.
Adapted from [3].
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Figure 4. Schematic representation of secondary metabolite secretion by filamentous fungi. Generation of metabolite
intermediates occurs in various subcellular locations, including peroxisomes and vacuoles. Secretion of certain secondary
metabolites (SM) may be coupled with the classical secretory route. Alternatively, plasma membrane transporters may be
required for export from the cell. Where these transporters are localized on the hyphae (e.g., tip, intercalary region, septa) is
unknown for the majority of transporters. SM associated biosynthetic enzymes have been detected in extracellular vesicles
in some instances. SM may themselves be packaged in extracellular vesicles. Note that not all components are show and
diagram is not to scale. Adapted from [3].
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the Krebs cycle in the mitochondria. Under certain conditions, membrane transporters export organic acids firstly into the

cytosol and then across the plasma membrane. Several such transporters have now been functionally characterized, but in

general their location on the hypha (e.g., tip or intercalary regions) is unknown. Note that not all components are show and

diagram is not to scale. Adapted from [3].

2. Polar Growth

While spore dispersal can occur across very large distances (including between conti-
nents [38]), fungi are in the vast majority of cases non-motile, and consequently filamentous
species colonize substrates by extension of highly polar cells termed hyphae. The shape
of the hypha is dependent on the cell wall, which is a complex, yet spatially organized,
mesh of polysaccharides and proteins (recently reviewed in [39]). Abundant sugars in
the cell walls of Ascomycota are 1,3-3-glucan, 1,4-f3-glucan, 1,6-3-glucan, and chitin, the
latter of which is composed of N-acetylglucosamine monomeric units [40]. Additional
sugars include galactomannan, galactosamine, glycosaminoglycans, alpha-1,3 glucans, and
others. Although cell wall composition is drastically different in other phyla (e.g., Muco-
rales have lower levels of 1,3-glucan and higher chitin content compared to ascomycete
Neurospora crassa [41,42]), the function of the cell wall remains comparable, with cell shape
and substrate colonization largely dependent on this structure. Consequently, the various
life-styles and applications of filamentous growth is dependent on the cell wall, including
branching mycelial networks in terrestrial and marine habitats [43], physical penetration
of the host tissue and immune recognition during disease (Section 5), or development
of complex macromorphological structures during submerged fermentation (Section 2.5).
Secretion plays a crucial role in establishing and maintaining filamentous morphology by
delivery of membrane and cell wall synthesizing enzymes to the apex. Recent insights into
the coupling of secretion and polar growth, mainly summarized from ascomycete model
organisms, are summarized below.

2.1. From Dormancy to Growth: Establishing Polarity

A fundamental stage in the filamentous lifecycle is germination, where metabolically
dormant spores activate metabolism and begin growth. Favorable conditions for germi-
nation of most fungi includes sensing of external carbon and nitrogen nutrients, which
may be transduced by cyclic AMP/protein kinase A (cAMP/PKA), mitogen activated
protein kinase (MAPK), and/or RAS signaling pathways. The precise molecular and sub-
cellular events which occur is not comprehensively understood for most filamentous fungi,
with much current knowledge gleaned from the model systems Aspergillus nidulans and
N. crassa [44]. In general, germination involves the entry of water into the spore and a
period of isotropic swelling. This swelling also is presumed to cause changes in the cell wall
which may be transduced by the above signaling pathways. Next, there is a rapid onset of
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respiration and protein/RNA synthesis and utilization of stored energy reserves, which
may include trehalose, glycogen, or lipids. Subsequently, DNA syntheses commences [44].

The next phase involves establishment of polarity, for which Rho-GTPases are cru-
cial, both in the budding yeast Saccharomyces cerevisiae (Cdc24) and filamentous moulds
(for example RacA and the Cdc24 orthologue CftA in Aspergillus niger [45]). These GT-
Pases localize to a specific site of the plasma membrane, and activate a range of other
proteins which recruit and/or organize actin filaments and septins, thus directing polar
growth [46,47]. Cell wall growth at the site of polarity produces a nascent germ tube, which
continually extends at the apex to form a mature hypha. The precise mechanisms by which
cell wall synthesizing enzymes and materials arrive at the site of polarity during very early
germination (i.e., immediately pre-germ tube) has not been comprehensively determined.
However, the observation of a key endomembrane component of the classical secretory
system, the Spitzenkorper (SPK), in some germinating spores [48] suggests it may be via
this route. It is, however, certain that the classical secretion pathway is necessary for the
polar growth and cell wall synthesis of actively growing, mature hyphae.

2.2. The Classical Secretion Route and Hyphal Polarity

In the classical secretion route, proteins produced in endoplasmic reticulum (ER)
are loaded into secretory vesicles at the Golgi. These include extracellular enzymes for
nutrient acquisition (see Section 3), and, additionally, enzymes for cell wall synthesis
or maintenance, including chitin, glucan, and other exopolysaccharide synthases [49,50].
Short and long range transport of loaded vesicles respectively occurs via microtubules
and actin filaments via kinesin and myosin motors to the newly established polarity
site (i.e., germ tubes) or the mature hyphal apex [49,51-54]. These vesicles collect at the
SPK, which in actively growing hyphae is maintained at a precise sub-apical location.
The integrity of the SPK requires various polarisome proteins (for example SpaA, which
controls actin cytoskeletal organization at the SPK in A. niger [55]). These polarisome
proteins are also delivered to the tip via actin; recent work in N. crassa demonstrated
that two multiprotein scaffold complexes (one of which contained the polarisome protein
Spa-2), are transported to the polar tip along actin motors via the adaptor SPZ-1 [56].
Spatiotemporal docking and tethering of SPK located vesicles to the plasma membrane
is controlled by a conserved multiprotein complex called the exocyst (which consists of
Sec3, Sec5, Sec6, Sec8, Secl0, Secl5, Exo70, and Exo84). Finally, fusion of plasma and
vesicle membrane occurs via SNAREs (soluble NSF attachment protein receptors), which
releases cargo, including cell wall biosynthetic enzymes, to the plasma membrane of a
nascent germ tube or growing hyphae. Genetic or biochemical disturbance of Rho-GTPases,
microtubules, actin, SPK, polarisome, exocyst, or SNARE function causes defective polar
growth in industrial, disease causing, or model fungal organisms, thus firmly establishing
secretion as a crucial component of the hyphal growth mode [50,57-61].

2.3. Endocytosis and Branching

Throughout hyphal extension, the continued delivery of growth materials and en-
zymes to the tip occurs via the classical route. In some fungi, notably Aspergillus spp. and
other ascomycetes, this process has distinct temporal phases [53] with pulses of influx of
Ca?* coordinating sequential rounds of actin polymerisation, exocytosis, and tip extension
(reviewed in [62-64]). In the vesicle supply centre growth model [65], addition to the
plasma membrane by vesicle exocytosis is balanced by endocytosis to maintain polarity.
Sub-cellular localisation experiments and mathematical modelling in A. niger, A. nidulans,
and the dimorphic yeast Candida albicans suggests that this may occur at a putative subapi-
cal actin ring maintained only a few (1-3) microns behind the growing hyphal tip [66-68].
The vital role that endocytosis plays in polar growth is supported by titratable expression
of putative endocytic components in A. niger, which caused branching defects, tip swelling,
and even hyphal rupture when expressed at low levels [69].
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As growth continues, both apical (tip) and lateral branching can occur, ultimately
resulting in the formation of a mycelial network. While this process is extremely di-
verse between different species and phyla, it is thought to be broadly analogous to spore
germination (i.e., by polarity establishment and maintenance, recently reviewed in [70]).
Interestingly, it is hypothesized that apical branching may be necessitated by excessive
delivery of secretory vesicles to the tip [70]. At least in some fungi, lateral branching at in-
tercalary hyphal regions requires the formation of a new SPK [70], thus further supporting
the role of classical secretion in branch formation.

2.4. Repurposing Polar Growth and Classical Secretion in Biotechnology: A Case Study Using
A. niger RacA and Glucoamylase

As a defining feature of filamentous fungi, the coupling of polar growth and secretion
at the hyphal tip obviously has intrinsic value to many applications involving individ-
ual cells or mycelial networks. However, biotechnologists have begun to specifically
(re)engineer polar growth and/or secretion to maximize titres of extracellular products.
One recent example used the industrial organic acid and protein producer A. niger to
enhance secretion a desired enzyme by up to 400% [15]. This study focused on the glu-
coamylase GlaA, a major A. niger secreted protein which is used to saccharify starch to
glucose in a variety of food industries with a global value of over $1 billion/year [15,71].
Prior to this study, deletion of the Rho-GTPase encoding gene racA in A. niger had been
demonstrated to result in an actin localization defect, loss of polarity at the tip, and a hy-
perbranching phenotype during submerged growth [47]. Given that most protein secretion
occurs at the apex, it was hypothesized that the racA mutant might be a useful chassis
strain for protein secretion due to elevated tip numbers in this mutant (~20% increase)
and comparable biomass relative to the progenitor control [15]. By placing the glaA gene
under control of a tetracycline inducible promoter (tet-on), expression of this gene was
elevated above native transcriptional levels based on addition of doxycycline to growth
media [72]. In order to track post-Golgi vesicles in this mutant, the v-SNARE SncA was
labelled with GFP. Finally, racA was deleted to generate a hyperbranching chassis [15].
Intriguingly, synthetically elevated expression of glaA was compensated for by an increase
in post-Golgi vesicles as determined by quantitative microscopy of SncA. Moreover, by
elevating glaA expression levels in the racA mutant, four times as much protein was de-
tected in growth medium compared to controls [15]. Thus, the fungal secretory system
is able to accommodate user-defined increases in secretory proteins by generating more
vesicles, and, additionally, product titres can be increased in a racA hyperbranching mutant.
This study has led to similar emerging industrial applications using racA mutants with
defective polar growth and elevated branching, e.g., to increase cellulase production by
Trichoderma reesei [57].

2.5. Controlling Filamentous Growth for Optimal Macromorphologies

In liquid bioreactors used for fermentation of proteins, organic acids, and secondary
metabolites, filamentous fungal growth results in the formation of various macromorpholo-
gies, including loosely dispersed hyphal fragments, aggregated clumps, and spherical
pellets several millimetres in diameter [3,73]. From a process engineering perspective, each
macromorphology has crucial implications for performance of the bioreactor and product
titres. Dispersed growth results in high levels of nutrient and oxygen transfer into the cell,
but, conversely, causes high medium viscosity and thus nutrient and oxygen gradients
in the fermenter. Pelleted growth, in contrast, results in low viscosity, and is associated
with an absence of nutrient gradients, reduced energy input to stir the bioreactor, and an
elevated resistance to sheer stress [74]. However, pellets may have low nutrient transfer
into the centre of the cellular mass, thus potentially limiting productivity [75].

As described for fungal racA mutants above, modifying fungal morphology for
a maximum tip:biomass ratio may be a successful strategy for improving protein se-
cretion [15,76,77]. Various other correlations between productivity and macromorphol-
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ogy have also been described for organic acids and secondary metabolites ([78-81] re-
viewed in [3]).

Submerged macromorphology can be controlled to a limited extent by modifying
a range of abiotic growth parameters, such as concentration of spore inoculum, temper-
ature, stir speed, pH, carbon/nitrogen sources, magnesium ion availability, addition of
microparticles to growth media, and others (reviewed in [3]). In general, these parameters
are thought to impact the degree of spore/hyphal aggregation or fragmentation, which
results in formation of dispersed or pelleted morphologies respectively [73]. There is,
additionally, growing evidence to suggest that in future, user-defined macromorphological
growth parameters can be achieved by genetic control of filamentous growth morphologies.
In A. niger, for example, tet-on controlled expression of a putative endocytic component
aplD was used in gene titration experiments to generate hyphae of various lengths and
branch phenotypes, which could be quantitatively correlated with various macromor-
phological features, such as pellet formation, diameter, and aspect ratio [69]. A recent
methodological breakthrough has been the quantification of hyphal growth in the pellet in-
terior using X-ray microtomography techniques (micro-CT, [82]). This technology revealed
highly complex branching phenotypes within the pellet core for multiple industrially used
fungi [82], enabling the quantitative estimation of nutrient diffusivity into the interior [75],
and opening up new avenues for controlling productivity by engineering polar growth
inside fungal pellets.

2.6. New Additions to the Classical Secretion Pathway: Extracellular Secretory Vesicles

An exciting discovery in the field of fungal secretion that may also have major im-
plications for white biotechnology was the production of extracellular vesicles (EVs) by
Cryptococcus neoformans in 2008 [83,84]. Since then, EVs have been identified in model
budding yeast (S. cerevisiae, [85,86]), the causative agents of human or plant diseases, and
others (Paracoccidioides brasiliensis, C. albicans, Histoplasma capsulatum, Fusarium oxysporum,
Zymoseptoria tritici, [87-90]). EVs are heterogenous in size, e.g., ranging from 50 and 250 nm
in diameter from Z. tritici, cross the cell wall into the extracellular space, and can contain a
variety of cargo, including enzymes [85,88], RNA [91], lipids [92], and polysaccharides [93].

Work in S. cerevisiae indicates that components of the classical secretory route play
a role in EV formation or loading, as deletions in various regulatory proteins, such as
the Rab-GTPase Sec4, resulted in modified EV protein cargo [86]. Similarly, yeast Golgi
mutant isolate display defective EV release kinetics from the cell [86]. More recently, the
yeast endosomal sorting complex required for transport (ESCRT) has also been indicated
in EV formation [85]. As a component of the fungal endomembrane system, the ESCRT
is known to processes endocytosed surface proteins for lysosome or vacuole degradation.
By screening EVs from yeast ESCRT mutants, this complex was demonstrated to impact
diameter, protein content and abundance of EVs [85]. Thus, it is likely that the vesicle
trafficking and exocytic/endocytic machinery necessary for classical secretion may also
generate fungal EVs.

Given the very recent discovery of EVs in fungi, the function of these secreted par-
ticles and their applications are still emerging. It seems likely that they are associated
with fungal growth/homeostasis via cell wall remodeling, as many cargo proteins are
involved in cell wall synthesis, including glucan synthase Fks1 and chitin synthase Chs3 in
S. cerevisiae [85,94]. For human infecting fungi (see Section 6), it is also possible that they
are involved in virulence, as both C. albicans and C. neoformans EVs contain immunomod-
ulatory cargo and activate mammalian immune cells (recently reviewed in [94]). During
plant disease, the role of EVs is currently less clear, but may also involve virulence. This
hypothesis is supported firstly by the secretion of polyketide biosynthetic enzymes in
F. oxysporum EVs [88], and secondly by the well-established role of extracellular fungal
secondary metabolites as phytotoxic virulence factors (see Section 6). It is worth noting that
the cargo is both extensive and unique: from 240 proteins identified in Z. tritici EVs, only 30
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were also found in the conventional secretome as determined by LC-MS/MS analyses [87].
These data support the notion that EVs are indeed an important secretion route.

The diverse protein, lipid, and nucleic acid EV cargo which has already been identi-
fied open up potentially new avenues for generating hyperproduction isolates in white
biotechnology. The discovery of EVs produced by industrial strains is possible, and future
comprehensive understanding and engineering of their generation and secretion may
enable a convenient route to produce high titres of a desired extracellular molecule.

2.7. Summary

Polar extension of hyphal cells underpins substrate colonization by filamentous fungi,
and secretion via the classical route is absolutely necessary for this mode of growth. In
biotechnology, both secretion and polarity have begun to be controlled using abiotic
parameters in fermenters, and by generating mutant strains using conventional and newly
developed genome editing technology [95]. Ultimately, this will enable the next generation
of highly efficient cell factories with optimal morphologies and maximum product titres
to be constructed. Polar growth is also vital for other lifestyles and niches of filamentous
fungi, ranging from infection of the host to free living microbial communities. These are
discussed in subsequent sections.

3. Breakdown of Macromolecules for Nutrient Acquisition
3.1. A Stomach Outside the Body: Digesting the Extracellular Space

The remarkable protein secretory capacity of filamentous fungi (e.g., over 30 g/L
glucoamylase in A. niger and 100 g/L of cellulases in T. reesei [16], recently reviewed in [14])
is often directly related to their necessity to degrade the external environment for nutrient
uptake. With a few hypothesized exceptions [96,97], fungi are heterotrophic, meaning
they are unable to generate their own metabolites and energy from inorganic sources by
photosynthesis. Consequently, they are prolific secretors of hydrolytic enzymes, which
break down a diverse range of complex extracellular polymers such as lipids, proteins,
lignin, and cellulose into simple molecules for osmotrophic absorption of carbon and
nitrogen. While some such enzymes are secreted by poorly characterized mechanisms
known as the non-classical or unconventional route (e.g., the aspartic protease PepN in
A. niger [98]), most extracellular hydrolytic enzymes follow the classical secretion pathway
(Section 2), thus coupling polar growth and nutrient acquisition. Degradation of and
acquisition from the external environment make fungi the largest degraders of biomass
in terrestrial ecosystems, prolific recyclers of waste materials, and efficient producers of
useful enzymes [5,99].

3.2. Secreted Lipases in Industrial Biotechnology: An Exemplar Success Story

Secreted enzymes used in industrial biotechnology include but are not limited to
lipases, cellulases, glucoamylases, pectinases, phytases, proteases, xylanase, glucose oxi-
dases, and hemicellulases which are isolated from production strains belonging to Rhizopus,
Aspergillus, Trichoderma, Penicillium, Fusarium, Thermothelomyces, and many other genera.
Secreted lipases, as just one example, are enzymes that hydrolyze extracellular triacyl-
glycerols to fatty acids and glycerol [100]. Fermentation media containing glycerol or fats
are known to induce lipase secretion, and some industrially utilized fungi able to grow
using lipids as the sole carbon source. A large portion of fungal lipases are extracellular:
a screen of the online genome compendium FungiDB [101] returned a total of 2383 fungal
genes belonging to the gene ontology term Lipase (GO:0016298). Of these, 1015 predicted
lipases encoded a putative N-terminal signal peptide, suggesting that over 40% are se-
creted. Fungal lipases are used in many industries due to their efficient activity over a
range of temperatures and pH, and are sold commercially as Lipozyme® (Thermomyces
lanuginosus, Novozymes), Lipase FE-01 (Aspergillus oryzae, ASA Spezialenzyme), among
others [17]. These industries include biodiesel (degrading oil feedstocks for production),
dairy (hydrolysis of milk/butter fats), textile (fabric treatment), detergent (additive to
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improve fat removal), paper (removal of pitch), pharmaceutical (hydrolytic/esterification
reactions in drug synthesis), and leather (degreasing) [18,102]. Lipases have also been
identified as potential solutions to clean oil spills following industrial disasters [103]. The
diverse applications of fungal lipases are one example from many which demonstrate
that repurposing fungal secretion of hydrolytic enzymes has been extremely successful
in biotechnology.

3.3. New Frontiers: Degrading Lignocellulose and Plastics

The efficient use of lignocellulose waste material from agriculture (e.g., straw/corn
stover) and forestry (e.g., sawdust) as an industrial feedstock would be a major step to-
wards a sustainable bioeconomy. Components of the plant cell wall includes cellulose
(d-glucopyranose linked by (3-1,4-glycosidic bonds), hemicellulose (monomeric sugars also
linked by $3-1,4 and (3-1,3-glycosidic bonds) and lignin (cross-linked phenolic polymers
with a complex three-dimensional structure [104]). Cellulose is embedded in a lignin
matrix, thus shielding this molecule from enzymatic degradation and making the break-
down of lignocellulose a major bottleneck to industrial applications. In terrestrial and
marine ecosystems, brown and white rot basidiomycete and other fungi secrete a range
of hydrolytic enzymes (which are part of the carbohydrate active enzymes, or CAZy) and
possess an oxidative degradation system for lignocellulose breakdown and nutrient acqui-
sition (recently reviewed in [105]). However, these applications are too slow for large scale
industrial use, and consequently, engineering lignocellulose degradation from a plethora
of fungi is a major objective for current research [6,105].

One promising advance has been effective community level mining of fungal genomes
for putative CAZy genes, including those encoding putative glycoside hydrolases, glycosyl
transferases, polysaccharide lyases, carbohydrate esterases, binders of carbohydrates, and
auxiliary activity enzymes (e.g., lytic polysaccharide monooxygenases and other lignin
degradation enzymes [106,107]). Encouragingly, specialized in silico tools for identifying
CAZy genes in fungal genomes have recently developed [108], which will enable high pri-
ority candidate genes to be tested in heterologous expression experiments using genetically
tractable industrial production isolates.

The most prolific producers of cellulase enzymes, for example, are Thermothelomyces
thermophila and T. reesei. For several decades, the publicly available T. reesei isolate RUT-C30
has been used to produce 30 g/L cellulases [109], with mutagenized industrial strains
able to generate over 100 g/L (reviewed in [16]). More recently, thermostable cellulase
producers such as T. thermophila are an attractive addition to the biotechnology toolkit,
as these organisms can tolerate high temperatures encountered throughout biorefinery
processes [110].

In addition to these genetically tractable and industrially harnessed fungal cell fac-
tories, novel and promising lignocellulose degraders have been recently discovered. For
example, genome and secretome analyses of a white rot fungus Peniophora sp. CBMAI
1063, which had been isolated from a marine sponge in Brazil [111], identified 310 putative
ligninolytic enzymes encoding genes from over 17,000 predicted ORFs. These included
17 laccases, 16 peroxidases, and seven glyoxal/alcohol oxidases, all of which contained
putative signal peptides, indicating secretion via the classical route (see Section 2). Secre-
tome analysis from bioreactor cultivations identified 126 proteins, with over 50 putative
CAZymes, strongly suggesting that this strain is a promising resource for new lignin de-
grading enzymes. This hypothesis was confirmed by purification of the laccase Pnh_Lacl,
which was able to promote lignin solubilization and depolymerization from sugarcane
bagasse as determined by a UV-light absorption assay [111]. Thus, this work demonstrated
that bioprospecting from marine organisms is a successful strategy for discovery of novel
lignin degrading enzymes for future uses in white biotechnology. Marine fungi also serve
as similar reservoirs for novel secondary metabolite discovery, such as bioactive alkaloids
(reviewed in [112]).
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A recent and exciting development has been the degradation of polyurethane plastic
waste by some fungi [113,114]. For example, isolated endophytes from plants in the Ama-
zon, such as Pestalotiopsis microspora, were able to utilize polymer polyester polyurethane
as the sole carbon source [113]. Biochemical inhibition experiments using of crude super-
natant extracts demonstrated that a secreted serine hydrolase-like enzyme was responsible
for polyurethane degradation [113]. More recently, other fungi, including Aspergillus fu-
migatus, Penicillium chrysogenum, and various Cladosporium species, are also able to utilize
polyurethane as a carbon source [115]. Therefore, secreted fungal enzymes may soon enable
the industrial remediation of post-consumer and post-production plastic waste (recently
reviewed in [8]).

4. Secretion and Micronutrients

Fungal growth and metabolism require numerous micronutrients, including iron,
copper, potassium, calcium, and magnesium, among others. During in vitro cultivation,
these molecules can be readily supplied in so-called vitamin and trace element solutions.
In the natural niche, however, they may become limited, e.g., due to utilization by com-
peting microbes, or sequestered by the host during infectious growth (see Sections 6-8).
Several classes of membrane transporters enable the efficient uptake of micronutrients
(e.g., high affinity copper transporters [116], or reductive iron transport mechanisms [117]).
Nevertheless, under certain nutrient limiting conditions, fungal secretion is necessary for
micronutrient uptake.

4.1. Siderophores and Iron Availability

Iron ions are essential due to their role as cofactors in many enzymatic reactions
and catalysts in electron transport systems. Ferric and ferrous iron are often abundant in
organic debris as oxides or hydroxides, but presumably become limited in growing mi-
crobial communities. Certainly, iron is limited to the invading fungus during mammalian
infection, thus making acquisition of this micronutrient a vital component of host coloniza-
tion (see Section 6). One strategy employed to acquire iron when limited is the synthesis
iron chelating molecules called siderophores. In the soil decomposer and human pul-
monary pathogen A. fumigatus, for example, extracellular siderophores fusarinine C and its
derivative triacetylfusarinine C are produced from amino acid precursors by nonribosomal
peptide synthetases (NRPS) and multiple subsequent enzymatic steps [28,118]. In contrast
to secreted hydrolytic enzymes, fungal secondary metabolites are not generated in the ER,
but at other subcellular locations. Precursors for extracellular A. fumigatus siderophores
includes conversion of L-glutamate to L-ornithine in mitochondria, and, additionally, con-
version of mevalonate to the intermediate 5-anhydromevalonyl-N°-hydroxy-l-ornithine in
peroxisomes (reviewed in [28]). The final siderophore product is then secreted by an as yet
unknown plasma membrane transporter, where they sequester external Fe3+ ions before
transport back into the cell by a membrane transporter MirB [118].

Thus, non-classical secretion of some secondary metabolites are also an important
component of fungal nutrient acquisition in certain limiting conditions (see Sections 6—8
for further discussions on the function of extracellular secondary metabolites). It is worth
noting that various applications have been postulated for fungal siderophores, including
in medicine (i.e., by treating conditions which lead to excess iron), agricultural biocontrol
(to limit microbial growth in crop soils), and the decontamination of certain toxic metals
during energy production [119,120].

4.2. Organic Acids May Liberate and Chelate Nutrients from the External Environment

The majority of industrially relevant organic acids secreted by filamentous fungi are
derived from the tricarboxylic acid cycle (TCA), and include citric, oxalic, itaconic, fumaric,
malic and succinic acid, among others. In the natural niche, it is possible that reduced pH
of the external environment provides a competitive advantage over neutrophilic microbes
(see Section 8). For plant degrading fungi, such as A. niger, organic acids have been hypoth-
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esized to also aid degradation of plant cell walls [121,122]. An alternative explanation is
that acidification of the external environment may be an effective mechanism to liberate
both macronutrients (such as phosphate in soil [123-125]) and micronutrients (such as iron,
copper and zinc [122,125]). A recent study which supports a micronutrient acquisition
hypothesis of fungal organic acid secretion suggests that citric acid may be produced as a
siderophore by A. niger [36]. In this work, the citric acid synthase encoding gene, citA, was
demonstrated to have elevated expression under iron limiting conditions when compared
to iron replete controls. Moreover, citric acid secretion was inversely correlated with iron
concentration in growth media, an observation which was also independent of nitrogen
source. Finally, the addition of Fe(IIl) citrate was able to rescue growth limitations under
iron limiting conditions, suggesting that citric acid may indeed function as an extracellular
siderophore under certain nutrient limited conditions [36]. Similar roles of citric acid
have also been postulated for some bacteria [126]. Taken together, these data suggest that
organic acid secretion by some fungi may be a mechanism to extract micronutrients from
the environment, and thus new avenues for maximizing production can be postulated from
limiting these ions in growth media. More generally, the many applications of these acids
may be a further example of biotechnologists repurposing fungal nutrient acquisition (see
Section 5 for an alternate explanation of secreted organic acids as overflow metabolites).

4.3. Summary

In addition to polar growth, an essential function of fungal secretion is acquisition
of nutrients. From the perspective of useful enzymes, many are repurposed to degrade
and recycle complex organic molecules from industrial feed stocks. Additionally, certain
secondary metabolites (e.g., NRPS derived siderophores) and some organic acids may also
facilitate nutrient uptake into the cell.

5. Removal of Overflow Metabolites
5.1. Organic Acids as Overflow Metabolites

In some instances, fast growth in nutrient rich conditions may generate so called over-
flow metabolites, whereby growth substrates, such as glucose, are incompletely oxidized.
In fungi, this may include the variety of TCA derived organic acids, such as citrate and
itaconate [34]. Under the overflow hypothesis, a rapidly growing cell more efficiently
uses limited protein and energy resources by limiting the costly biosynthesis and activity
of respiratory enzymes. The metabolic trade-off is partial oxidation of a given carbon
source, which thus generates mitochondrial build-up of certain TCA intermediates. These
molecules are subsequently exported to the cytosol, and then excreted. Another related ex-
planation for organic acid secretion under nutrient-rich conditions is that the rapid uptake
of glucose (both by high affinity transporters and diffusion) combined with high glycolytic
flux leads to an unfavorable intracellular build-up of TCA intermediates which are subse-
quently secreted [127]. Therefore, the secretion of organic acids in the nutrient-rich media
employed by biotechnologists may be a fungal response to TCA overflow metabolites,
rather than (or in addition to) a response to iron or other nutrient limitation [36].

5.2. Increasing Glycolytic Flux for Organic Acid Hypersecretors

Numerous approaches have been applied in the last few years to increase glycolytic
flux for enhanced organic acid production strains (recently reviewed in [32]). One promis-
ing update which could be broadly applicable to many industrially used organic acid
secreting fungi came from a study on the gene pyrG in A. niger [128]. Disruption of this
gene, which encodes an orotidine-5'-decarboxylase, generates a uridine auxotrophy and
thus enables the use of pyrG as a transformation marker in mutant isolates [4]. An inter-
esting and unexpected observation during routine generation of pyrG mutants was that
these strains generated elevated citric acid titres during submerged growth compared to
progenitor controls [128]. LC-MS-MS analysis demonstrated that citrate, and its precursors
acetyl-CoA and oxaloacetate, significantly increased in the pyrG mutants. These data are
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suggestive that pyrG deletion might be a facile and simple approach to enhance glycolytic
flux for organic acid secretion, and given that this gene is highly conserved in fungi, this
may become employed in various industrial cell factories.

5.3. Secretion of Organic Acids and Their Applications

Recent work has comprehensively confirmed the mechanisms which underpin how
organic acids are secreted. This occurs independently of the classical secretory route
(Section 2) and begins with the transport of an organic acid metabolite across the mitochon-
drial membrane into the cytosol. Transporters which perform this function include, e.g., the
A. niger citrate/malate shuttle CtpA [129]. For itaconate production in Aspergillus terreus
and Ustilago maydis, the intermediate cis-aconitate is transported out of the mitochondria by
MttA and Mttl respectively [130,131]. Once in the cytosol, these molecules can be further
metabolized, e.g., cis-aconitate is converted to itaconate by the decarboxylase CadA [130].
Finally, organic acids are exported from the cell by membrane transporters, including
CexA (citric acid, A. niger), DctA (malic acid, A. niger), MfsA (itaconate, A. terreus), and
Itp1 (itaconate, U. maydis) [33,129-133]. In various instances, overexpression of the plasma
membrane transporter enables drastically increased product titres in shake flask models of
fermentation, suggesting that these genes are promising leads for future development of
industrial hypersecretion strains [33,132].

Secreted organic acids are used in a diverse range of applications, including as flavour
enhancers in the food and beverage industries, or as antioxidants, preservatives, acidulants,
pH-regulators, feedstocks or cleaning products pharmaceutical, cosmetics, or bulk chemical
industries [3,4,134]. The citric acid market, for example, was recently estimated to be worth
$3.6 billion per year [4]. In summary, one of the most useful class of molecules- TCA
derived organic acids- may be secreted due to the fungal necessity to rebalance intracellular
metabolite levels. The next section discusses another major explanation for fungal secretion:
the infectious lifestyle.

6. Infection

Disease causing fungi secrete an arsenal of proteins, acids, and secondary metabolites
which can initiate infection, perturb or disrupt host immune responses, cause tissue death,
and acquire nutrients from the host (see Sections 3 and 4), among numerous other func-
tions. Proteins which facilitate infection are secreted via the classical pathway [24,25], in
EVs [87], via unconventional routes [26], and, in some plant infecting fungi, via a newly
discovered host derived structure termed the biotrophic interface complex (see [24]). Se-
cretion routes for the diverse repertoire of secondary metabolites during infection are less
comprehensively understood, but presumably include secretion by plasma membrane
transporters (e.g., siderophores [28]), EVs [88], and possibly the vesicle based route (re-
cently reviewed in [29]). Certain organic acids which are necessary for full fungal virulence
(e.g., oxalic acid during plant infection [122]) are also exported from the cell by membrane
transporters (see Section 5). More recently, the role of secreted polyunsaturated fatty acids
(PUFAs) during infection has gained attention in mediating both plant and mammalian in-
fection (reviewed in [135]). While the precise roles of extracellular fungal molecules during
host-pathogen interactions and disease are extremely diverse and multifaceted (reviewed
in [25,26,29,135,136]), some broad aspects are summarized here, and their applications
discussed in the subsequent section.

6.1. Secreted Molecules and Immune Evasion during Plant or Human Infection

One role of secreted proteins during infection is to mask the detection of pathogen asso-
ciated molecular patterns (PAMPs) by host pattern recognition receptors (PRRs). One such
PAMP, for example, is chitin. Plants secrete numerous chitinases, which liberate oligomers
that subsequently activate host immunity by multiple lysin motif (LysM)-containing cell
surface receptors (such as chitin elicitor-binding protein CEBiP in rice [137]). In order
to inhibit detection by the host via this mechanism, plant infecting fungi also secrete
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LysM proteins, for example Slp1 in the causative agent of rice blast disease Magnaporthe
oryzae [138]. Pathogen LysM effectors efficiently bind chitin and can accumulate between
the fungal cell wall and host plasma membrane [138], thereby inhibiting the activation of
cognate PRR (see [139] for a recent review). Similar functions of secreted LysM proteins
have recently been confirmed during fungal infection of insects [140]. These proteins are
part of the extremely diverse fungal ‘effector” arsenal, whereby many small molecular
weight proteins are secreted to manipulate and attack the host (recently reviewed in [25]).

Comparable immune evasion strategies are performed by secreted proteins during
human infections. For example, the fungal cell wall PAMP {3-1,3-glucan is recognized
by the c-type ligand dectin-1 [141]. It was recently demonstrated that the dimorphic
yeast C. albicans secretes the exoglucanase Xogl to ‘shave’ pathogen (3-1,3-glucans from
the surface of the cell, thus hiding the fungus from dectin-1, ultimately facilitating infec-
tion [142]. Alternatively, secreted proteases from spores and hyphae are known to degrade
and inactivate the mammalian complement system during infection of the pulmonary
pathogen A. fumigatus [143,144] and also during C. albicans infection [145,146]. Similar
evasion strategies may also be required for other immune-activating cell wall sugars, such
as galactomannans [147] or galactosaminogalactan [148].

6.2. Direct Host Attack by Secreted Secondary Metabolites and Proteins
6.2.1. Plants

In addition to hiding fungal pathogens from host immune surveillance, secreted
molecules can directly attack the host at various stages of infection. Secreted secondary
metabolite phytotoxins, for example, disrupt plasma membrane integrity [149], inhibit ATP
hydrolysis [150], perturb actin dynamics [151], trigger programmed cell death [152], and
manipulate plant growth [153] (reviewed in [154-156]). Secreted effector proteins also per-
form multiple attacking functions during disease, with many hundred often secreted by a
single invading fungus (recently reviewed in [25]). One example of an elaborate strategy in-
volves effector proteins translocating into the host nucleus and modulating gene expression
to favor infection. For example, recently two secreted proteins were characterized, from
the rice infecting pathogen M. oryzae termed Host Transcription Reprogramming 1 and 2
(Htr1/2) [157]. These proteins ultimately bind to target gene promoters in the host, and act
as repressors for multiple immunity associated genes. Interestingly, M. oryzae harnesses
two distinct secretory routes for effectors, with proteins that remain extracellularly secreted
via the conventional route, whereas effectors which enter the host cell are preferentially
secreted via the biotrophic interphase complex [24].

6.2.2. Humans and Other Mammals

Secreted secondary metabolites may also attack host cells and tissues during human
disease. In murine infection models for the pulmonary pathogen A. fumigatus, for example,
numerous secondary metabolite biosynthetic gene clusters (BGCs) are upregulated 14 h
post infection relative to developmentally matched in vitro controls [158]. Additionally,
A. fumigatus isolates which are deficient in production of the cytotoxic molecule gliotoxin
are attenuated during murine infection [159-161]. With regards to secreted proteins and
attack of human cells, batteries of proteases presumably degrade proteinaceous host
tissues [162], although certain proteases and oligopeptide membrane transporters are
functionally redundant in some infection models of fungal disease [163]. One recently
discovered toxic protein is the 31 amino acid candidalysin which is secreted by C. albicans
hyphae [164]. Candidalysin is able to form pores on the epithelial cell plasma membrane,
leading to host cell lysis and successful transfer from commensal to infectious growth [164].

6.3. Applications of Fungal Secretion and Extracellular Molecules
6.3.1. Purified PAMPs in Agriculture

One successful application of secreted or extracellular pathogen molecules has been
to elicit crop immunity using purified fungal PAMPs. Purified S. cerevisiae cell wall, for
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example, results in transcriptional activation of immunity in grapevine [165], and over
the last decade has been marketed as Cerevisane® for protection of lettuce and other
crops against mildews and other fungal pathogens. Similarly, over the last decade, the
European Union licensed laminarin (marketed under the name Vacciplant®), which is used
to protect strawberries, apples, and other crops against powdery mildew. Laminarin is a
mixture glucans [166] which is extracted from the common sea oarweed Laminaria digitata.
Other effective crop immunity elicitors may be discovered from further purification of cell
wall/secreted fungal PAMPs.

6.3.2. Discovery and Cloning of Resistance Genes in Crop Genomes

In the gene-for-gene hypothesis of plant immunity, a plant resistance (R) gene product
is necessary for recognition of a pathogen avirulence (Avr) gene product. In many instances,
the Avr gene encodes a secreted effector protein, which enables virulence on susceptible
cultivars, but activates protective immunity and/or a hypersensitive response (HR) when
an R gene is encoded in the host genome [25]. The HR is an effective strategy to inhibit
disease which involves the rapid death of host cells at the site of infection, which may
restrict fungal growth and dissemination to uninfected parts of the plant.

Many R genes encode leucine rich repeat (LRR) regions, which in the ‘receptor-
ligand” model enable direct R protein interactions with specific pathogen effectors [167].
Alternatively, in the so called ‘guard model’, R proteins activate host immunity by detecting
alterations in host target caused by the Avr protein [168]. Numerous plant-infecting fungal
genomes are precited to encode hundreds of secreted protein effectors, and many of these
may function as Avr genes in one or more resistant cultivars or species. Mapping and
characterization of the cognate R genes in plant genomes (e.g., [169]) offers outstanding
opportunities for biotechnologists to engineer resistant cultivars by cloning R genes into
a desired cultivar/crop. As one example, expression of the pigeonpea R gene CcRppl
was able to confer full resistance to the devastating basidiomycete pathogen Phakopsora
pachyrhizi in soybean [170]. These data demonstrate how non-commercially important
plants could be an important resource for discovery and cloning of effective R genes
in economically important crops. It should be noted that it is also possible to clone
multiple R genes in so called stacking experiments, which is likely to provide increased
durability of resistance when compared to single-gene transgenic crops [171,172]. In future,
comprehensive understanding of secreted fungal Avr proteins, and their detection by host
R proteins, may reduce crop losses to fungal disease, increase global food security, and
minimize global fungicide applications.

6.3.3. Inhibiting Secretion for New Mode of Action Antifungals

For human diseases caused by fungi, only three classes of drugs are clinically ap-
proved, including the echinocandins, azoles, and polyenes. These drugs perturb (3-1,3-
glucan synthesis (by inhibiting the glucan synthase Fksl), ergosterol biosynthesis (by
inhibiting the lanosterol demethylase Ergl1/Cyp51), and plasma membrane integrity (by
directly binding ergosterol), respectively [12]. All clinical antifungals have significant
side effects, and have reported reduced efficacy due to antifungal resistance [13]. Con-
sequently, novel antifungal compounds are urgently required, especially those with new
mode of actions.

Given that the classical secretion route is essential for polar growth (Section 2), nutrient
acquisition (Section 3), and production of certain virulence factors (Sections 6.1 and 6.2),
targeting molecules to disrupt vesicle trafficking is a promising strategy to discover broad
acting antifungals for use in the clinic. For example, screening of a >49,000 compound
library revealed two hydrazine molecules which inhibited biosynthesis of the sphingolipid
glucosylceramide in C. neoformans but not human cell lines [173]. These molecules were
found to be active against a range of human infecting fungi, including H. capsulatum, C. al-
bicans, and A. fumigatus. Microscopic analysis revealed that the antifungal activity of these
molecules against C. albicans and C. neoformans mechanistically occurs via the disruption of
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Golgi and vesicle architecture [173,174]. Further analysis to identify putative drug targets
used a combination of deep-sequencing and haploinsufficiency profiling/homozygous
deletion assays in S. cerevisiae [175]. This revealed probable inhibition of various proteins
associated with vesicle sorting or transport between Golgi apparatus and endoplasmic
reticulum, including a subunit of the clathrin associated protein complex Apl5 [173,174].

Another study identified a new mode of action antifungal targeting secretion by grow-
ing bacteria isolated from marine invertebrates [176]. From over 1400 bacterial strains,
a highly diverse chemical producing isolate was identified, which was prioritized for
fermentation analysis. Using chromatographically purified compounds arrayed in over
170 96-well plates, a polyketide with high efficacy against multiple human infecting fungi
was discovered, which was named turbinmicin [176]. Next, through chemical genetic
screens using both S. cerevisiae and C. albicans mutants, turbinmicin was demonstrated to
inhibit Sec14, a phosphatidylinositol/phosphatidylcholine transfer protein required for
trans-Golgi functions [177]. The inhibition of secretion following turbinmicin exposure was
further demonstrated using a GFP labelled v-SNARE vesicle membrane receptor protein
Sncl. In budding yeast, this protein is trafficked through the classical secretory system and
normally localizes to the plasma membrane at early bud sites in exponentially growing
cells, but was observed to remain at the Golgi following turbinmicin treatment [176]. En-
couragingly, this polyketide has low toxicity to human red blood cells, and reduced fungal
burden in kidney and lung during murine models of Candida auris and A. fumigatus, respec-
tively [176]. Taken together, recent targeting of Apl5 and Secl4 using newly discovered
compounds demonstrate that molecules which inhibit protein product(s) in the classical
secretory system are promising strategies to inhibit fungal infection of humans.

Additionally, many secreted proteins which are located at the cell surface are attached
to the plasma membrane by glycosylphosphatidylinositol (GPI) anchors. This induces
numerous cell wall synthesizing and remodeling proteins. Chemical inhibition of the GPI
biosynthetic pathway is therefore an promising approach, firstly as it leads to lysis via loss
of cell wall integrity [178], and secondly as defective cell wall synthesis exposes glucans to
recognition by the host [179]. Also encouraging is the limited conservation between fungal
and human enzymes in the GPI biosynthetic pathway. One recent example of antifungal
discovery via GPI inhibition harnessed a luciferase gene reporter fused to a C. albicans
GPI-anchor signal in S. cerevisiae to screen for chemical inhibitors of the GPI pathway [180].
This revealed that a natural bacterial product, termed jawsamycin, efficiently inhibited
GPI synthesis by targeting a subunit of the fungal UDP-glycosyltransferase Gpi3, which
mediates the first step in GPI biosynthesis [180]. Encouragingly, this molecule did not
inhibit the human orthologue, PIG-A but reduced fungal burden and elevated survival
in murine models of Rhizopus infections [180], suggesting jawsamycin is an exciting lead
compound for further applications of GPI inhibition.

6.3.4. Secreted Molecules and Vaccines for Fungal Infection

Although there is currently no licensed vaccine for prevention of fungal disease in
humans, some secreted molecules have been incorporated into candidate vaccines and
tested for protection in murine models and early clinical trials. For example, the Candida
spp. agglutinin-like sequence proteins are a family of secreted cell surface molecules which
mediate adhesion, including to abiotic surfaces, human endothelial/epithelial cells, and
other microbes (reviewed in [181]). Als proteins contain secretion signals and GPI anchors,
and facilitate invasion of host cells during disease [182]. Excitingly, the N-terminus of Als3
with aluminum hydroxide adjuvant has been demonstrated to safely induce protective
antibody and cell-mediated immune responses in humans in a phase one clinical trial [19].
An updated vaccine (NDV-3A) developed by NovaDigm™ Therapeutics is currently under
phase 2 clinical development against recurrent vulvovaginal candidiasis. Recent work has
also demonstrated that NDV-3A is protective against the emergent pathogen C. auris in
murine models of infection [20].
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Elsewhere, prevention of candidiasis in mouse models of kidney infection has been
achieved by immunization with secreted aspartic protease 2 (Sap-2) [21]. Candida saps
cause disruption to host tissue [183] and degradation of the host complement system [146].
More recent incorporation of truncated Sap-2 into a virosomal vaccine, called PEV7, against
candidal vaginitis was also protective in rat models [184], and was effective at generating B-
cell-mediated immune responses in phase 1 clinical trials [185]. Various other extracellular
molecules have been applied for vaccines against Candida spp., Pneumocystis spp., A. fumi-
gatus, and C. neoformans, including a range of cell wall polysaccharides (recently reviewed
in [186]). Taken together, the utilization of several secreted fungal molecules during human
infection may enable the development of an effective vaccine in the near future.

6.4. Summary

Secreted fungal molecules can be crucial mediators of fungal diseases, and thus pro-
vide many avenues for therapeutics in the clinic or fungicides in agriculture. Increased
exploration of the infectious arsenal secreted by invading fungi will offer future avenues
for developing vaccines, new mode of action chemistries, and disease resistant crop va-
rieties. Finally, secreted pathogen molecules can be used for timely diagnosis of disease,
thus enabling the most effective therapeutic interventions when pathogen damage and
proliferation are low.

7. Interspecies Communication

Despite their critical impact in agriculture and the clinic, disease causing filamentous
fungi are the exception, with many more species existing either as saprobes or mutualists.
As is the case during infection, establishing and maintaining symbiotic and mutualistic
interactions are largely facilitated by filamentous growth and secretion, although in many
instances, the precise fungal molecules, and their translocation and functional role upon
or inside other organisms, remain unclear. The most notable examples are arguably
lichens, a composite organism of algae or cyanobacteria (photobiont) which live among a
filamentous fungus (mycobiont), and, additionally, arbuscular mycorrhiza, a root symbiosis
between Glomeromycetes fungi and approximately two thirds of terrestrial plants. The
role of secreted fungal molecules in these symbiotic and mutualist life modes, and their
potential applications, are summarized below.

7.1. Fungal Extracellular Molecules in Mutualist Interactions: Lichens

Lichens are extremely common mutualist organisms which are estimated to cover 8%
of terrestrial land surfaces [187], with approximately 20% of all fungi being lichen form-
ers [188]. Filamentous growth (and therefore secretion, see Section 2) is absolutely critical to
the formation of the lichen body, termed the thallus. In this structure, for example, tightly
packed hyphae form a cortex at the exposed surface, under which loosely packed hyphae
can be inhabited by the photobiont [187]. In many instances, filamentous ascomycete fungi
require basidiomycete yeasts for formation of the cortex [189]. Lichen phytobionts gain
carbohydrates from photosynthesis, and mycobionts acquire water, nutrients, and a solid
substratum for growth that protects from desiccation [190].

Transcriptional analysis suggests that secretion of fungal effectors and secondary
metabolites are crucial for the initiation of the mutualist lifestyle. For example, gene ex-
pression profiling of mycobiont Cladonia grayi and algal photobiont Asterochloris glomerata
co-cultivation revealed transcriptional deployment of fungal small molecular weight, puta-
tively secreted proteins (identified by classical N-terminal secretion signals), extracellular
hydrolases, and membrane transporters [191]. When combined with expansion of pre-
dicted polyketide synthase encoding genes in the C. grayi genome [191], these data suggest
that, as is the case with pathogenic fungi, the secretion of effector proteins and secondary
metabolites via the classical route and /or membrane transporters, respectively, may me-
diate lichenization. Recent metagenomic analysis of lichens also demonstrates expanded
secondary metabolite production capacity (especially in the ascomycete member), and, ad-
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ditionally, a gene repertoire that is predicted to produce acidic extracellular polysaccharides
(e.g., glucuronoxylomannan) which may be required for the formation of an extracellular
matrix that physically links cells for mutualistic interactions in the thallus [192].

Due to the wide variety of secondary metabolites identified from lichens, these or-
ganisms can be viewed as promising natural product libraries for new bioactive molecule
discoveries. Indeed, over 300 secondary metabolites have been characterized from lichens,
including depsides, depsidones, dibenzofurans, xanthones, among others, with antibac-
terial, antiviral, antifungal, insecticidal, antiangiogenic, anticancer, and other properties
(reviewed in [190,193,194]). An obvious challenge to the use of lichens as microbial cell
factories to produce these metabolites is slow growth, technical difficulty of in vitro culture,
and a lack of molecular tools [193]. However, an attractive solution which may obviate all
these limitations is heterologous expression of secondary metabolite biosynthetic genes in
chassis fungi (e.g., A. niger see Section 9.1). As the number of sequenced lichen-forming
fungal genomes increases, and tools necessary for their heterologous expression become
more widespread (e.g., polycistronic fungal gene expression cassettes for multiple sec-
ondary metabolite biosynthetic genes [195]), it is exciting to speculate that the chemical
basis of fungal mutualists may be exploited for a variety of bioprospecting applications in
the future.

7.2. Arbuscular Mycorrhizae and Fungal Secretion

Fungi from the phylum Glomeromycota form obligate symbiosis with plant roots that
have fundamental roles in terrestrial ecosystem function and agriculture. Mycorrhization
results in more efficient inorganic and micronutrient uptake from the soil for the plant,
while fungi obtain sugars and lipids from the host [196]. For establishment of arbuscular
mycorrhizae, hyphal filaments grow along chemical gradients in the soil and physically
penetrate the root epidermis using appressorium, a pressure-based infection structure best
characterized in the rice pathogen M. oryzae [197]. After entry to the host parenchyma,
hyphae grow to form specialized nutrient exchange structures termed arbuscules [198].
Other mycorrhizal associations exist, including ectomycorrhiza, where fungal hyphal do
not penetrate the root but rather grow upon its surface.

As is the case with plant-infecting fungi, arbuscular mycorrhizal genomes are en-
riched with hundreds of small molecular weight, cysteine rich, putative effector proteins
which encode N-terminal secretion signals [199]. Comparative genomics across the Glom-
eromycota confirm that while many effectors lack robust functional predictions, they are
highly conserved in this phylum [199], suggesting they play a crucial and fundamental
role in symbiosis. Functional analysis of symbiont effectors has demonstrated that they
include secreted LysM effectors, which bind fungal chitin and thus reduce plant immune
responses [200]. Others co-localise to with the plant nucleus, suggesting that they modify
host gene expression during arbuscule development [201]. Thus, it is likely that a key
commonality between plant pathogenic and symbiotic fungi is the secretion of protein
effectors for modulating plant immunity to enable filamentous growth [202].

The most obvious applications for arbuscular mycorrhizae is in agriculture, with
fungi acting as biostimulants (e.g., increasing crop stress tolerance), biofertilizers (e.g.,
increasing nutrient availability) and biopesticides/biocontrol agents (e.g., reduce crop loss
from infectious disease, reviewed in [203]). It seems clear that full understanding of the
plant mycobiome, and how this is mechanistically mediated by secreted effector proteins,
will enable the development of renewable, environmentally inert agricultural technologies.

7.3. Summary

The function of many fungal secreted molecules during symbiotic and mutualistic
interactions is currently unclear, yet this knowledge has crucial implications for our under-
standing of natural ecosystems and agriculture, which ultimately may translate to many
applied benefits. In this section, we have highlighted lichens and arbuscular mycorrhizae
as natural product libraries and break through crop technologies, respectively. However,
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the many other symbiotic or mutualistic interactions between fungi and other organisms,
e.g., in marine ecosystems [204] or in human disease [205], are beyond the scope of this
review. Nevertheless, it is clear that secretion is fundamental for the establishment and
maintenance of symbiotic and mutualistic fungal interactions.

8. Intraspecies Communication

Many secreted fungal molecules are thought to play intraspecies signaling roles to
orchestrate growth and development in the natural niche. These may be between ge-
netically distinct members of the same species or clonal components of the same isolate.
Additionally, secretion may be used to outcompete of defend against other species (see
Section 9). Collectively, these extracellular molecules have been described as the chemical
language of fungi [206], and include the production of secondary metabolites/volatile
organic compounds such as germination autoinhibitors, chemoattractants which mediate
hyphal fusion during mycelial formation (anastomosis), sex pheromones, and other sig-
naling molecules which play many unknown and specialist roles. Such decoding of the
fungal language ultimately enables it to repurposed in applications from drug discovery
to disease diagnostics. In this section we summarize current understanding and potential
applications of two types of secreted fungal molecules sex pheromones and antifungal
proteins which mediate intraspecies communication, growth, and development.

8.1. Sexual Reproduction and Secretion of Pheromones

Fungal mating can occur by heterothallic sex, where a zygote is formed from nuclei
contributed by two different individuals (outcrossing). Alternatively, in homothallic sex,
both nuclei are derived from the same strain (selfing). Many filamentous fungi are predicted
to sexually reproduce based on the presence of a sex-specific region in the genome termed
the mating-type locus (MAT), which encodes transcription factors necessary for regulating
expression of mating and cell-type genes [101,207]. Distinct, yet compatible mating types
are needed for heterothallic sexual reproduction, whereas homothallic sex occurs via
universally compatible types [208]. The frequency of sexual reproduction may be very
rare compared to asexual growth [209], which is thought to result from a balance of the
costs and benefits (reviewed in [208]). One of the main benefits of sex is recombination
during meiosis, which can aid adaptation by combining beneficial mutations into a single
genome, or, alternatively, separating beneficial from deleterious ones. A significant cost
is the necessity to find a compatible mate and the energy/growth costs of producing
reproductive structures.

Secretion plays a vital role in fungal sex, as extracellular pheromones mediate chemo-
trophic growth between pairs of heterothallic or homothallic cells. In mucoraceous fungi,
for example, the sex pheromone is the secondary metabolite trisporic acid [30]. Although
the mode of export is not precisely characterized, it presumably occurs via membrane
transporters [30]. In many ascomycete fungi, protein pheromones are exported via the
classical route (Section 2) as evidenced by the presence of peptide secretion signals in
several protein sequences, for example PpgA in Aspergillus spp. or MFALPHA in Candida
spp- [101]. Much work from model fungal systems, including S. cerevisiae, N. crassa, and
A. nidulans has revealed the mechanisms behind signal transduction of protein pheromones,
which activate G protein-coupled receptors (GPCR) at the surface of the cell [210]. The
pheromone response is transduced via signaling cascades, notably the mitogen-activated
protein kinase (MAPK) pathway. In S. cerevisiae, for example, the response to pheromone
includes activation GPCR Ste2, MAPK signaling and induced expression of mating and
filamentous growth genes via the transcription factor Stel2 [211], polar growth along the
pheromone gradient, and G1 cell cycle arrest which enables nuclear fusion (reviewed
in [210]). In Aspergillus spp., including A. nidulans, A. fumigatus, and A. flavus, the MAPK
pheromone response pathway includes three kinases (SteC, MkkB, and MpkB), an adaptor
(SteD), and the scaffold (HamE) [212,213].



J. Fungi 2021, 7, 535

22 of 36

8.2. Applications of Fungal Pheromones

In many filamentous fungi, sexual reproduction is linked with secondary metabolism.
For example, in Aspergillus spp., the conserved nuclear velvet protein complex consists of
VelB, VeA, and LaeA which controls development (e.g., by repression of asexual growth
through inhibition of the transcription factor VeA) and activation of secondary metabolite
biosynthetic gene clusters (e.g., chromatin remodeling by the methyltransferase LaeA) [214].
Activation of the pheromone MAPK pathway in Aspergillus spp. causes the MAPK Fus3 to
translocate into the nucleus and activate both sexual and secondary metabolite processes
via transcription factors such as VeA (recently reviewed in [215]). Consequently, stimulating
sexual development and secondary metabolism via synthetic stimulation of the pheromone
response pathway components may be an outstanding avenue for elevating titres of
natural products or during drug discovery. For example, the heterothallic mould Blakeslea
trispora is used to ferment the vitamin A precursor and food dye (3-carotene [216]. Titres
of this molecule can be increased during industrial fermentation either by inoculating
complementary mating types in bioreactors, or through the addition of the pheromone
trisporic acid [30].

Recent work has also demonstrated that secretion of pheromones can be repurposed
in a biosensor-based diagnostic for fungal disease [9]. In this work, the yeast GPCR encod-
ing gene ste2 was replaced with orthologues from human and plant infecting fungi (e.g.,
C. albicans, P. brasiliensis, H. capsulatum, Botrytis cinerea, Fusarium graminearum, M. oryzae).
Additionally, a simple read out of GPCR activation was developed, whereby genes nec-
essary for biosynthesis of the red plant pigment lycopene were constitutively expressed
and a single gene placed under control of the pheromone inducible gene fus1. Thus, the
production of a red colony, which was visible by eye in a dipstick assay, was indicative of
GPCR activation and pathogenic growth for a range of filamentous and dimorphic fungi [9].
These authors therefore demonstrate that GPCR activation by pheromones can be used to
detect growth of infectious fungi in both agriculture and the clinic.

8.3. Applications of Antifungal Proteins

Numerous ascomycete fungi secrete small molecular weight, negatively charged,
cysteine rich proteins, which have conventionally been identified by their antifungal
activity in various growth assays. Named accordingly, antifungal proteins (AFPs) are
secreted during low growth phases by Aspergillus giganteus (AFP), A. niger (AnAFP),
P. chrysogenum (PAF), Penicillium digitatum (AFPB), and Neosartorya fischeri (NAFP), with
over 50 orthologues present in various ascomycete genomes [22,23].

N-terminal signal peptides strongly suggest that AFPs are secreted via the classical
route (see Section 2), many as inactive pro-peptides which require cleavage by extracellular
proteases for antifungal activity [23]. The mode of antifungal action has been unveiled for
several AFPs and includes inhibition of chitin biosynthesis, calcium signaling (reviewed
in [22]) and activation of the cAMP/Pka signaling cascade via the heterotrimeric G-protein
signal transduction pathway [217]. Conventionally, these proteins were assumed to act as
antifungal molecules to kill competing fungi in the natural niche. However, several lines of
evidence suggest that these secreted proteins could actually function as cannibal toxins
important for asexual colony development in their producing hosts strains by killing genet-
ically identical cells [22,218]. Firstly, AFP expression is precisely controlled both temporally
and spatially, occurring predominantly in vegetative mycelium of filamentous fungi (re-
viewed in [22]). Deletion or overexpression of AFPs results in a drastic reduction of conidia
in P. chrysogenum and defective vegetative growth in P. digitatum, respectively [219,220],
which is consistent with a role in asexual development of the host. Additionally, in A. niger,
transcriptional meta-analyses revealed that AnAFP is co-expressed with multiple genes
associated with asexual development and response to carbon limitation [221,222], the latter
being a key nutritional cue which induces conidiation in ascomycetes. Additionally, AnAFP
is regulated by various transcription factors which are critical for vegetative growth, in-
cluding the developmental regulator StuA and VelC [221]. More recent work in P. digitatum
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demonstrated that AFPB interacts with the producing host strains cell wall, is internalized
by energy dependent mechanisms, and subsequently activates gene expression necessary
for programmed cell death [218].

Given their effective inhibition of fungal growth and viability, AFPs have are promis-
ing candidates for developing novel therapeutics. Due to their specific mode of action,
they have high efficacy against susceptible fungal species and low toxicity to both plant
and mammalian cells and tissues [22,223]. As one example of their potential applications,
transgenic rice expressing AFP demonstrated enhanced resistance to the M. oryzae infec-
tion [224]. Additionally, as several AFPs seem to function by multiple mechanisms (e.g.,
concomitantly perturbing cell wall activity and activating cell death), it is reasonable to
speculate that antifungal resistance will be more difficult to develop when compared to
single mode-of-action chemistries.

8.4. Summary

Intraspecies communication in filamentous fungi fundamentally controls filamentous
growth, for example by pheromone-based chemotaxis or AFP programmed cell death.
While we have highlighted some applications of these secreted molecules, many other
self-communicators also have putative technological benefits, for example, inhibition of
pathogenic spore germination by autoinhibitors or their synthetic analogues. We predict
that improved understanding of this component of filamentous fungal language will enable
many technological breakthroughs in the future.

9. Surviving in the Community

In the natural niche, filamentous fungi interact with many organisms, including
resource competition with other fungi or bacteria, or predation from amoeba and insects.
Many secreted proteins, acids, and secondary metabolites may function to attack, defend
against, and manipulate other community members, thus producing a wealth of bioactive
molecules with diverse applications (recently reviewed in [225]). Consequently, moving
from conventional axenic to mixed laboratory cultures is a highly promising strategy
to activate the biosynthesis of previously undescribed fungal molecules, most notably
secondary metabolites [226]. In this section, we summarize exemplar fundamental insights
and applications for secretion which may play direct role(s) in filamentous fungal survival
in mixed communities, including repurposing fungal antimicrobial production for new
bioactive molecule discovery, harnessing and inhibiting membrane efflux pumps, and
considering if organic acid secretion could be a strategy to kill competing microbes.

9.1. Harnessing Fungal Chemical Defence for New Bioactive Molecule Discovery: A Case Study
Using Enniatin and Related Compounds

The most successful repurposing of fungal offensive chemical weaponry is the use of
beta-lactam antibiotics in medicine. These molecules are likely used in the natural niche to
inhibit growth of competing bacteria by disruption of cell wall synthesis. However, the
fungal chemical repertoire is vast, and numerous new classes of bioactive molecules have
recently been discovered and manipulated for new applications. For example, enniatins are
a group of secreted cyclohexadepsipeptide secondary metabolites isolated from Fusarium
moulds with a range of bioactivities, including antiinsectan, antifungal, antibacterial
and anticancer properties [31]. Experimental evidence suggests that one of their natural
functions may be to prevent consumption of the fungus by insects, for example by beetles
when growing as a contaminant on wheat grains [227]. Enniatins have been developed
into the antimicrobial and anti-inflammatory throat spray fusafungine [228], supporting
the hypothesis that these molecules and their derivatives are promising for therapeutic
applications. In order to generate a highly efficient expression host, the enniatin NRPS
gene esynl from F. oxysporum was codon optimized and expressed in the cell factory
A. niger [229]. Through optimization of culture conditions, and additional expression
of a second enniatin biosynthetic gene (which was necessary for the synthesis of the
precursor d-2-hydroxyvaleric acid, d-Hiv), highly efficient production of enniatins was
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possible in the heterologous host (up to 4.5 g/L, [229]). Subsequent studies have used
A. niger for heterologous expression of other cyclic peptide secondary metabolites, including
the beauvericins and bassianolide [230]. Interestingly, by adding different analogues of
the d-Hiv precursor to growth media, beauvericin derivatives could be generated, such
as bromo-beauvericin [230]. A more recent study which also generated new-to-nature
cyclodepsipeptide derivatives in A. niger conducted domain swap experiments of NRPS
genes to produce compounds octa-enniatin and octa-beauvericin (at mg/L concentrations)
and hexa-bassianolide (at g/L concentrations) [231]. Excitingly, two hybrid molecule
peptides demonstrated higher antiparasitic activity when compared to their naturally
occurring compounds. Moreover, both were several times more efficacious when compared
to existing therapeutics, e.g., benznidazole activity against Trypanosoma cruzi [231].

As reviewed recently [225], the chemical strategies which filamentous fungi use to
protect and survive in mixed communities are hugely diverse. Indeed, many genomes
contain biosynthetic gene clusters for several dozen putative metabolites (e.g., over 80 in
A. niger [232]), and most of these are transcriptionally silent during in vitro culture [233].
Therefore, the above studies which developed highly efficient heterologous expression
hosts and methods for generating new-to-nature derivative molecules pave the way for
future repurposing of secreted fungal metabolites in drug discovery.

9.2. Secretion of Xenobiotics: Surviving Chemical Attack

In the natural niche, filamentous fungi are constantly exposed to toxic compounds,
which can be synthesized by competing microbes or by the host during disease. One of the
most fundamental functions of secretion is therefore to export toxic molecules from the cell,
thus preventing intracellular accumulation and enabling resistance. Fungi have evolved a
remarkable diversity of plasma membrane drug efflux pumps, including ATP-binding cas-
sette transporters (ABC transporters) which use ATP to translocate the substrate, and major
facilitator superfamily (MFS) transporters which move small solutes via chemiosmotic
gradients. Several dozen or even hundreds of ABC and MFS transporter genes are typically
encoded in a single fungal genome, many of which may act as drug efflux pumps [234-236].
Additionally, these proteins may be necessary for the export of specific molecules or may
function as pleiotropic transporters with broad substrate specificity, making them highly ef-
fective at cell detoxification. These xenobiotic membrane transporters are of major interest,
both for generating hypersecretion isolates in biotechnology, and for combating antifungal
resistance in medical and agricultural settings.

9.3. Applications of Fungal Efflux Pumps

In addition to protecting against xenobiotic compounds, efflux pumps play a crucial
role in protecting the producing host fungus from self-toxicity. Given that many secondary
metabolites are promising for new bioactive molecule discovery (see above), the controlled
expression of efflux pumps is a promising strategy to maximize product titres, which is
highly comparable to approaches used for organic acids [132,237].

In some instances, identification of the cognate transporter for a molecule of interest
can be achieved by delineation of secondary metabolite BGCs on the fungal genome.
BGCs commonly consist of a gene encoding a core biosynthetic enzyme (e.g., a NRPS or
polyketide synthase), which are contiguously clustered with genes encoding (i) tailoring
enzymes, which modify the nascent molecule; (ii) transcription factors for regulation
of BGC expression, (iii) and secondary metabolite plasma membrane transporters for
molecule efflux from the cell. One of the best characterized BGC is necessary for gliotoxin
production by A. fumigatus, which includes an NRPS (gl/iP), transcription factor (gliZ),
numerous tailoring genes, and the membrane transporter gliA [238]. Disruption of gliA
in A. fumigatus increases susceptibility to exogenous gliotoxin, and reduces export of this
molecule from the cell [238]. Additionally, gliA overexpression in S. cerevisiae also elevated
resistance to exogenous gliotoxin [238]. Therefore, screening fungal genomes for putative
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drug transporters within BGCs may be an effective strategy to identify and functionally
characterize secondary metabolite transporters in order to generate hyperproducing strains.

It should be noted, however, that in some instances transporter genes founds within a
BGC are functionally redundant. For example, deletion of the putative MFS transporter
gene aflT, which is located in the aflatoxin BGC, did not impact export of this metabo-
lite in Aspergillus parasiticus [239]. One exciting possibility is that pleiotropic MFS or
ABC transporters, which export multiple secondary metabolites from the cell, could be
used to generate hypersecretion of multiple products in a single mutant background.
These transporters must exist in fungal genomes, as evidenced by heterologous expres-
sion systems efficiently secreting xenobiotic metabolites in pilot fermentation studies (see
enniatins above).

Antifungal resistance is a persistent problem both in agriculture and the clinic [13]. It
is possible that the use of certain fungicides for crop disease, notably azoles, may cause
elevated resistant to this class of antifungals in medical settings [240]. Resistance can occur
by multiple mechanisms, including mutations in the target enzyme and via the overexpres-
sion of multidrug efflux pumps, such as the MFS transporter Mdr1 in C. albicans or various
ABC transporters in A. fumigatus [241,242]. Encouragingly, structural aspects of these mem-
brane transporters may be unique to fungi, such as the presence of two extracellular loops
between transmembrane spanning regions in fungal ABC transporters [242]. Thus, the
chemical inhibition of efflux pumps should theoretically have minimal toxicity to humans
and may act to improve efficacy of existing antifungals when used in combinational ther-
apy. Several studies have screened compound libraries for inhibitors of fungal multidrug
efflux pumps. Heterologous expression of efflux pump encoding genes is an attractive
option compared to assays using clinical isolates, as the latter strains may possess multiple
mechanism of antifungal resistance (reviewed in [243]). In S. cerevisiae, the deletion of many
predicted efflux pump encoding genes in a single strain has been conducted to generate
an improved heterologous expression host for such assays [244], and the inhibition of
drug transport can be easily screened in high throughput. Screens have included natural
product libraries [245], small molecule libraries [246], or hypothesis-driven libraries based
on predicted transport inhibitors, e.g., octapeptides [247]. Many of these screens have
been successful in generating new leads for chemical inhibition of fungal efflux pumps,
including enniatins (see above), octapeptides, and cerulenin derivatives. In summary,
increased understanding of the genetic and mechanistic basis of fungal drug efflux and the
chemical inhibitors of these proteins may enable effective control of antifungal resistance
in future.

9.4. Revisiting Organic Acids: Are They Secreted to Inhibit Competing Neutrophiles?

The above sections have discussed evidence that certain organic acids may be secreted
to chelate micronutrients (Section 4) or to rebalance intracellular metabolism by removal of
overflow metabolites (Section 5). An additional and mutually not exclusive hypothesis is
that acidification of the external environment may inhibit the growth of other organisms
which cannot intrinsically tolerate low pH. While many fungi are capable of producing
organic acids and growing at low pH [248], direct evidence supporting the competing
microbe hypothesis is limited, with minimal experiments regarding fungal organic acid
secretion conducted in mixed cultures [226]. It is interesting, however, that certain other
systems use organic acids as antibacterials. For example, mammalian macrophages produce
itaconic acid to perturb pathogen metabolism [249], and the degradation of this acid is
required for full virulence of some bacteria [250]. Thus, it is conceivable that, in some
instances, TCA derived organic acids may be secreted as a generalist antimicrobial weapon
in the natural niche. It is interesting to speculate that the production of certain organic acids
during fermentation may become more efficient in future by either co-cultivation [226] of
synthetic activation of antimicrobial fungal defences.
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9.5. Summary

Free living, pathogenic, and symbiotic fungi must survive amongst a range of com-
peting and/or predatory organisms. We have summarized only three aspects of this
secrete-to-survive strategy with bioactive secondary metabolites, detoxification via efflux
pumps, and killing via organic acids as exemplars for a staggeringly diverse armamentar-
ium of defensive and offensive fungal capabilities. Clearly, applications to reengineer and
apply such secretion will provide major benefits to medicine, agriculture, and industrial
biotechnology. Consequently, a detailed mechanistic understanding of how and why fungi
secrete to survive in the natural niche will enable significant applied breakthroughs in
the future.

10. Concluding Remarks

Filamentous fungal secretion is as varied as the many lifestyles and niches in which
these organisms thrive. Indeed, given the role of secretion in polar growth and nutrient
acquisition, secretion can be viewed both as something that fungi do, and also essentially
what they are: a chassis for selectively turning the inside out, and then the outside in.
This review has covered secretion from an interdisciplinary and non-anthropocentric
viewpoint, and as such cannot summarize the staggering diversity of fungal secretion and
its many applications in bioeconomy, human health, food security, and many other aspects
of life on earth. Nevertheless, we argue that understanding secretion across disciplinary
boundaries both in the applications and the class of extracellular molecules will facilitate
rapid methodological and technological breakthroughs which will enable the full potential
of filamentous fungi to be realized.
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