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Summary: The Coronavirus Disease 2019 (COVID-19) pandemic has presented
a major threat to public health worldwide alongside unprecedented global eco-
nomic and social implications. In the absence of a “gold standard” treatment, the
rapid development of a safe and effective vaccine is considered the most promis-
ing way to control the pandemic. In recent years, traditional vaccine technologies
have seemed insufficient to provide global protection against the rapid spread
of emerging pandemics. Therefore, the establishment of novel approaches that
are independent of whole pathogen cultivation, cost-effective, and able to be rap-
idly developed and produced on a large scale are of paramount importance for
global health. This article summarizes the current efforts to develop a COVID-
19 vaccine, including the ongoing and future anticipated clinical trials. We also
provide plastic and reconstructive surgeons with insight into the novel technolo-
gies currently utilized for COVID-19 vaccine development, focusing on the very
promising viral-vector-based and gene-based vaccine technologies. Each plat-
form has its own advantages and disadvantages related to its efficacy and ability to
induce certain immune responses, manufacturing capacity, and safety for human
use. Once the fundamental key challenges have been addressed for viral-vector-
based and gene-based vaccines, these novel technologies may become helpful in
winning the fight against COVID-19 and transforming the future of health care.
(Plast Reconstr Surg Glob Open 2020;8:3206; doi: 10.1097/GOX.0000000000003206;
Published online 15 October 2020).)

Science knows no country, because knowledge belongs to
humanity, and is the torch which illuminates the world.

has infected a total of 20,840,381 individuals, causing
754,566 global deaths as of August 14, 2020. An estimated
5,248,722 cases have been confirmed in the United States,
and the death toll there has surpassed 160,000.
COVID-19 has a relatively high degree of pre-symptom-

—Louis Pasteur

INTRODUCTION
The Coronavirus Disease 2019 (COVID-19) pandemic
has presented a major threat to public health worldwide
alongside unprecedented global economic and social
implications. Identified in Wuhan, Hubei Province, China,
in December 2019, the novel coronavirus, Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2),'
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atic transmission,”™" high mortality rate, severe morbidity
rate, and relatively long hospitalization period.® As a result,
the fight against COVID-19 has required extensive inter-
ventions such as quarantine, social distancing, isolation of
infected populations, border closures, school shutdowns,
and extensive lockdowns to contain the virus, “flatten
the curve,” and save lives.” The COVID-19 pandemic has
changed the landscape of plastic surgery,” restructured
the daily experience of plastic surgery practices,”'! altered
the way residents and fellows are trained,'*"” substantially
impacted research,'*'"” and revolutionized patient care.
The implications of the current COVID-19 pandemic on
plastic surgery are summarized in Table 1.

Due to the profound global implications of the COVID-
19 crisis, there has been an unprecedented race to develop
treatments and vaccines against SARS-CoV-2. Multiple
clinical trials are underway to define potential roles for
antiviral agents and specific immunomodulators'®'® as
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Table 1. Effects of COVID-19 on Plastic Surgery

PRS Global Open ¢ 2020

Aspect Affected

Effects

Clinical care 3

o

Practice closures

o

o

o

o

o

o

Updated safety protocols for elective surgery
New informed consent form for COVID-19 risk
Relatively bear market for elective surgery
Residency and Fellowship Training Programs

> Redeployment to ICUs and emergency rooms

o

o

Education and
training

Rescheduling/cancellation of surgeries, procedures, and in-person appointments

Telehealth for preoperative and postoperative discussions, no in-person physical examination
Implementation of patient flow plans that allow for social distancing protocols

Reassessment of cleaning and disinfecting protocols

PPE requirements for surgeons, anesthesia, and staff

Patients’ screening upon entrance, “no visitors” policy, masking requirement

e Utilization of virtual platforms for didactic sessions: daily team briefings, morning conferences, and grand

rounds and nationally integrated didactics

e Case category minimum requirements by the ACGME and the ABPS might not be reached due to decreased

surgical volumes
lastic Surgery Residency Application Cycle
e Cancellation of away rotations

o

o

o

Online residency interviews and virtual visits

o

o

o

Research Laboratory closures

Suspension of clinical trials

o

o

o

Virtual away rotations and program-applicant communication via social media
Utilization of virtual platforms for didactic sessions

Rescheduling/cancellation of USMLE, subsequent changes to the ERAS application cycle and adjusted deadlines

Postponement and cancellation of national and regional conferences

Postponement and cancellation of national and regional conferences
Utilization of virtual platforms for research and didactic sessions

ABPS, American Board of Plastic Surgery; ACGME, Accreditation Council for Graduate Medical Education; COVID-19, Coronavirus disease 2019; ERAS, Electronic
Residency Application Service; ICU, intensive care unit; PPE, personal protective equipment; USMLE, United States Medical Licensing Examination.

well as passive immunization with convalescent plasma.'
However, no “gold standard” treatment or prophylactic
medication has been approved for COVID-19. Optimizing
supportive care for COVID-19 positive patients remains
the mainstay of therapy, including oxygen, mechanical
ventilation, and treatment of the sequelae and complica-
tions.”” With multiple waves of illness anticipated,” and in
the absence of approved treatments, the development of a
safe and effective vaccine will be a game-changing step in
the global fight against COVID-19 and is considered the
most promising way to eradicate the virus.*

This article summarizes the current efforts to develop
a SARS-CoV-2 vaccine, including the ongoing and future

A Clinical Trials

COVID-19 Candidate Vaccines in Clinical 1'rials
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anticipated clinical trials. We also provide plastic and
reconstructive surgeons with insight into the novel tech-
nologies currently utilized for SARS-CoV-2 vaccine devel-
opment, focusing on the very promising viral-vector-based
and gene-based vaccine technologies (Fig. 1).

VACCINES: IMMUNOLOGICAL PRINCIPLES
AND VACCINE DEVELOPMENT STRATEGIES

Since the development of the first vaccine by Dr. Edward
Jenner more than 200 years ago,* vaccinations have made
an enormous contribution to global health.** However,
the development process for conventional vaccines takes

B Preclinical Trials

COVID-19 Candidate Vaccines in Preclinical Trials
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Fig. 1. Pie charts showing the development of COVID-19 candidate vaccines: (A) clinical trials and (B) preclinical trials.
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more than 10 years® and requires 4 Phases,”* as sum-
marized in Figure 2. Therefore, the lack of time remains a
major barrier for safe and effective vaccine development
in outbreak situations.

Immunological Principles of Vaccination

Immunization can be derived from either passive or
active immunization.?” Passive immunization occurs with
the transfer or administration of already preformed anti-
bodies, providing temporary immunity.” One investiga-
tional treatment being explored for COVID-19 is the use
of convalescent plasma collected from previously infected
individuals, which is administered via direct transfusion
to COVID-19 patients, in an attempt to confer passive
immunity.*-*

Active immunization occurs with the exposure to an
antigen and typically produces long-term immunity due to

Sample Size: 20 - 80 participants
Duration: Several months
Objectives:

the immune system stimulation.” The immune system is
divided into two main subsystems: the innate system, which
provides an initial, non-specific response, with no memory
induced, and the adaptive system, which provides a later,
antigen-specific response and induces immunological
memory.” When antigens are introduced into the blood-
stream via infection or vaccination, they are captured and
processed by Antigen Presenting Cells (APCs), which then
display an antigen-derived peptide fragment on their sur-
faces. APCs then migrate to lymph nodes, and activate T
helper cells through a process called “antigenic presenta-
tion.” T helper cells stimulate both arms of the adaptive
immunity: humoral (antibody-based) and cellular.
Humoral immunity is achieved via differentiation,
proliferation, and maturation of B-lymphocytes into
antibody-secreting plasma cells and memory lympho-
cytes of the same antigenic specificity, and cell-mediated

Evaluate safety, tolerability and side effects in humans
Assess pharmacodynamics and pharmacokinetics
Adjust dosing schemes based on pre-clinical studies, design Phase Il research protocols

Sample Size: Up to several hundred participants

Duration: Several months - 2 years

Objectives:

Phasell

Gather preliminary efficacy data on the dose/s selected

Provide additional safety data on the dose/s selected
Refine research questions, develop research methods, and design Phase Il research protocols

Duration: 1-4 years
Objectives:

treatments/standard of care

Sample Size: Several thousands
Duration: Varied
Objectives:

FDA

Fig. 2. Diagram displaying the various phases of a clinical trial.

Sample Size: 300-3,000 participants

Evaluate efficacy in different populations and dosages, compare with existing

Provide additional safety data: monitor side effects, demonstrate long-term/rare side effects
which might have gone undetected in previous phases

Monitor long-term efficacy in the general population once the drug/device has been approved by

Monitor long-term safety and collect information regarding further adverse effects associated
with widespread use once the drug/device has been approved by FDA



immunity is achieved via activation of naive cytotoxic T
cells to active, antigen-specific cells.”” The stimulation of
both the humoral and cell-mediated arms of the adap-
tive system by the production of effector cells (plasma B
cells for humoral immunity and active cytotoxic T cells for
cell-medicated immunity) and memory cells is required to
ensure protection upon re-exposure to the same antigen.”
Figure 3 illustrates the immune stimulation response in
detail.

Conventional Vaccine Platforms

The main conventional vaccine technologies include
inactivated vaccines (which utilize a killed pathogen), sub-
unit/recombinant vaccines (which utilize specific pieces
of the pathogen administered along with adjuvants),
toxoid vaccines (pathogen-toxin-based), and live attenu-
ated vaccines.” Each platform has its own advantages and
disadvantages related to its efficacy, immunogenicity, and
ability to induce certain immune responses, manufactur-
ing capacity, and safety for human use, as summarized in
Table 2.%6-12

Novel Vaccine Platforms

In recent years, traditional vaccine technologies that
consist of working with a virulent pathogen during manu-
facturing seem insufficient to provide global protection
against the spread of emerging pandemics. Therefore, the
establishment of novel approaches that are independent
of pathogen cultivation (a relatively lengthy and high-risk
process), are cost-effective, and could be rapidly devel-
oped and produced on a large scale, are of paramount
importance for global health."

Two promising novel platforms that have generated
significant attention in recent years due to their potential

PRS Global Open ¢ 2020

use for a variety of applications include the viral-vector-
based and gene-based vaccine technologies. Their advan-
tages over conventional approaches highlight the role of
these platforms in the new era of vaccinology, as potential
game-changers in epidemics and emerging diseases.*” The
strengths and weaknesses of these platforms are summa-
rized in Table 2 and discussed below.

Viral-vector-based Vaccines

Viral vector vaccines use separate, genetically engi-
neered, viruses to carry DNA of target antigens into human
cells. The DNA contained in the viral vector encodes
antigens that, once expressed in the infected human
cells, elicit antigen-specific humoral and cell-mediated
immune responses via antigen presentation (Fig. 3)."* A
variety of viruses have been employed as viral vectors,*
with Adenovirus (Ad) vectors being the most commonly
utilized due to their various advantages. Ad vectors’ advan-
tages over other viral vectors include their ability to enter
a broad range of target cells in humans," deliver various
target antigens and large DNA insertions,” and induce
potent humoral and cellular responses.” However, utiliz-
ing an unrelated virus for delivery poses several challenges
in terms of manufacturing, safety, and immunogenicity, as
summarized in Table 2.

Gene-based Vaccines

Gene-based vaccine platforms consist of genetic
sequences in the form of plasmid DNA* and mRNA.”
Once injected intramuscularly (IM), the genetic sequence
enters the myocytes’ to achieve encoding of the desired
antigen.” The endogenously synthesized antigens are then
secreted from myocytes for cross presentation and con-
secutive stimulation of humoral and cellular responses,

006 6]

Cellular
Immunity
&z S Proein S Protin  Nawe Memory T Cell
sn Cytotoxic T Cell Cytotc
:}},UI%{: (CTL) ’
S Protein
SARS-CoV-2 @ S+ X 9 ) Antibodies
Virus b o G Humoral
Antigen /‘k Vs y i
c Presenting Immunity
Cell
(APC) Naive B Cell Plasma B Cell Memory B Cell
@ N L/ "4 = Y4
Uptake APCs Antigen Antigenic Presentation + Clonal Expansion of Specific Humoral and Memory cells
Antigens are introduced Processing T Helper Cells Activation Effector Cells Cellular Immunity

into the bloodstream via
infection or vaccination.

Antigens are captured
and processed by Antigen
Presenting Cells (APCs).
Antigenic peptides are
displayed on APCs
surfaces.

APCs migrate to lymph
nodes, and activate CD4+
and CD8+T helper cells
via antigenic peptides’
presentation.

CD4+ and CD8+T
helper cells trigger
differentiation,
proliferation and
maturation of B cells and
differentiation,
proliferation and activity in
cytotoxic T cells (CTLs),
respectively.

Naive CTLs become active
CTLs specific to antigen.
Naive B cells, activated
cither by T" helper cells or
directly by antigens, become
plasma B cells producing
antibodies specific to the
antigen. Antibodies prevent
the antigen from binding
host cells and mark it for
destruction by CTLs.

Memory B and T cells are
produced to ensure any
succeeding exposures to
the antigen will result in a
more rapid and effective
secondary immune
response.

Fig. 3. lllustration depicting the stimulation of humoral and cellular immune responses.
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as illustrated in Figure 3. The main advantages of the
gene-based platform include the construction of antigens
directly from the genetic sequence of the desired pro-
tein and a generic manufacturing process, which allows
for efficient production of different vaccines using the
same established processes and facilities, given the genetic
sequence is available.™

Unlike conventional vaccine technologies, which con-
sist of a lengthy process of inactivating or attenuating a
live pathogen or making a recombinant protein, making a
gene-based vaccine is relatively rapid and potentially low-
risk, eliminating the need to work with a virulent patho-
gen during manufacturing.” In addition, plasmid DNA
and mRNA vaccine constructs encode only the antigen
of interest, avoiding other redundant, potentially detri-
mental proteins and the replication of infectious viral
particles.”

However, since their initial presentation in 1990,
there has never been a commercial vaccine utilizing gene-
based technologies approved for use. There have been
many technical challenges to overcome to enable the
promise of the gene-based platform,” including optimiz-
ing the delivery of these foreign nucleic acids into human
cells” and increasing the potency, stability, and expres-
sion of the encoded protein.” These goals have been
achieved by new formulations, including lipids, polymers,
and novel delivery devices for improved intracellular
delivery and stability, and strong molecular adjuvants for
improved potency.*"!

DNA-based Vaccines consist of antigen-encoding
plasmids. While allowing a relatively simple, safe, and
time-saving production process, the DNA-based plat-
form poses several challenges related to administration,
safety, and immunogenicity, as summarized in Table 2.
Unlike DNA vaccines, mRNA-based vaccines translate
directly into the cytoplasm, undergo natural degrada-
tion,” and cannot integrate into the host genome."
These advantages in terms of safety, efficacy, and man-
ufacturing make the mRNA technology a promising
avenue for a rapid response to the emerging COVID-19
pandemic, and are summarized, alongside the disad-
vantages, in Table 2.

COVID-19 VACCINE DEVELOPMENT:

CURRENT CLINICAL TRIALS

Finding the most suitable target site for SARS-COV-2
vaccine development is extremely important. The
SARS-CoV-2 coronavirus belongs to the subfamily of
Coronavirinae, with a genomic structure of (+) ss-RNA.
Hoffman et al.”® described the SARS-CoV-2 cell entry and
replication mechanisms in detail and Bouhaddou et al.”*
recently demonstrated the role of virus-containing filopo-
dia induced in host cells by SARS-CoV-2 in viral replica-
tion. Cell entry of SARS-CoV-2 is orchestrated by the viral
spike (S) proteins, which give the virus its characteristic
corona-like morphology, via binding the host cellular
receptors.”® Due to its pivotal role, a vaccine against
S protein can prevent SARS-CoV-2’s proliferation and
spread.®

As of August 14, 2020, there have been 29 vaccine
candidates in clinical trials, as summarized in Table 3 and
Figure 1. In total, 13 trials are currently in Phase 1, 8 in
joint Phase 1/2, 2 in Phase 2 and 6 in Phase 3. An esti-
mated 138 vaccine candidates are currently in preclinical
studies.®” While 12 clinical trials are based on traditional
techniques utilizing inactivated viruses (5 trials),”"
and protein subunits (7 trials),” " 16 trials utilize novel
platforms including the viral vector-based platform (6
trials),”* and gene-based platform (10 trials: 6 mRNA-
based, 4 DNA-based).®*" Current viral-vector-based and
gene-based vaccines under development target the S pro-
tein of SARS-CoV-2.56:58

Viral-vector-based Clinical Trials

Three viral-vector-based vaccines are currently under
clinical trials (Table 3). The Adenovirus Type 5 Vector
(Ad5-nCoV) and ChAdOx1 nCoV-19 trials are the furthest
along in development and will be discussed below.

Adenoviral Vectors of Human Origin: Ad5-nCoV

Ad5-nCoV is a recombinant adenovirus type-5b (Adb)
vectored COVID-19 vaccine expressing the S protein of
SARS-CoV-2.” Adb is a non-replicating vector of human
origin, and one of the most widely used adenoviral vec-
tors.”” However, the widespread pre-existing immunity
to Ad5 among the human population might hinder its
immunogenicity and hamper its clinical use.”” Phase 1
results have recently been published,*”” demonstrating
that the Adb vectored COVID-19 vaccine was tolerable and
immunogenic at 28 days postvaccination. Most adverse
reactions were mild or moderate in severity, with the most
common adverse reactions being fever, fatigue, headache,
and muscle pain. No serious adverse events were noted
within 28 days postvaccination. Neutralizing antibod-
ies increased significantly at day 14, and peaked 28 days
post-vaccination, while specific T-cell response peaked at
day 14 after one administration of the vaccine. However,
in patients with pre-existing anti-Ad5 immunity, both the
specific antibody response and T-cell response induced
by vaccination were diminished.” The recently published
Phase II results®*® have confirmed Phase I results, demon-
strating that the Ad5-vectored COVID-19 vaccine was safe,
and induced significant immune responses in the majority
of recipients after a single immunization. Phase III results
are expected before the end of 2020.

Adenoviral Vectors of Non-human Origin: ChAdOx1
nCoV-19 (AZD1222)

Adenoviral vectors of non-human origin induce
enhanced memory and more poly-functional CD8" T
cells compared with Ad5 and are less likely to be ham-
pered by pre-existing immunity.** ChAdOx1 nCoV-19
is a replication-deficient chimpanzee adenovirus express-
ing the S protein of SARS-CoV-2. Phase I/II results have
recently been published,”!"” demonstrating an acceptable
safety profile of ChAdOxI nCoV-19with no serious adverse
events. The vaccine induced both humoral and cellular
immune responses and all participants had neutralizing
activity after a booster dose. Phase III is currently ongoing
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in the UK, the USA, Brazil, and South Africa, and results
are expected in the Fall of 2020.%1

Gene-based Vaccines Clinical Trials

Totally, 4 DNA-based and 5 mRNA-based vaccines are
currently in clinical trials (see Table 3). The m-RNA-1273
trial is the furthest along in development and will be dis-
cussed below.

m-RNA-1273

mRNA-1273 developed in collaboration with the
National Institute of Allergy and Infectious Disease
(NIAID) of the National Institute of Health (NIH) is con-
sidered one of the frontrunners in vaccine development.
The mRNA-1273 vaccine consists of mRNA of the S pro-
tein synthesized in vitro, and coated with lipid nanopar-
ticles for effective delivery.

Phase I results have recently been published,*>'*? dem-
onstrating that mRNA-1273 was generally safe and well
tolerated, with 1 incidence of a grade 3 adverse event
(erythema around the injection site), and 3 incidences of
grade 3 systemic symptoms (including fever, muscle pain
and headache) seen at the highest dose group, only follow-
ing the 2nd dose. All adverse events have been transient
and self-resolving. No grade 4 adverse events or serious
adverse events have been reported. Phase II is currently
ongoing,” and Phase III is expected to commence before
the end of July 2020 in collaboration with the NIAID.
Phase III results are expected before the end of 2020.'"
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LOOMING CHALLENGES OF COVID-19
VACCINE DEVELOPMENT

While the preliminary results of the discussed trials
are encouraging, whether a vaccine generates the needed
types of immune responses to result in protective efficacy
is unknown and cannot be predicted by Phase I studies.
There still remain significant questions and uncertainties
as to clinical efficacy and effects of potential mutations
on the vaccine’s immunogenicity and long-term efficacy,
safety, and potential benefit for specific target populations.

Clinical Efficacy and Long-term Immunity

One of the main questions that arise is whether a
COVID-19 vaccine would be able to provide immunity,
when it is still uncertain whether previously infected
patients are protected from reinfection.'”*'"” Research in
other coronavirus species has shown that immunity may
not be long-lasting, with 2-3 years of protection estimated
from work with SARS and MERS. 0108109

To date, there is no evidence for cases of SARS-CoV-2
reinfections, ' and preliminary evidence in humans'"
and rhesus macaques'' suggests that acquired immunity
may protect from future reinfection, at least temporar-
ily'**!""=11 with most patients who recovered from COVID-
19 producing sufficient amounts of neutralizing antibodies
to protect against reinfection. A recently reported case
series also indicated sufficient neutralizing antibody titers
in convalescent plasma to neutralize SARS-CoV-2 in 5
COVID-19 patients, who all recovered after treatment.'"
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While further research is needed to assess the benefits
and risks of convalescent plasma therapy for people with
COVID-19,%" these preliminary findings provide hope
for the development of an effective vaccine against SARS-
CoV-2.”2 However, there have been few reports of post-
recovery positive PCR tests performed in asymptomatic
or mildly symptomatic patients, which could be explained
as either false-negative results, prolonged viral clearance,
and shedding or reinfection.'0¢107.115-117

Further points that need to be addressed to better
understand the immune responses to SARS-CoV-2 and
the optimal vaccine profile and administration regimens
include the lack of correlation between antibody titer
rates and clinical improvement, the durability of neu-
tralizing antibodies, and their correlation with durable
immunity.""®"" The current gaps in knowledge highlight
the importance of inducing potent humoral and cellular
immune responses as potentially generated by viral-vector-
based and gene-based vaccines.

Potential mutations in the S protein may also affect
the long-term efficacy of a vaccine. There has been direct
evidence of functionally meaningful S protein mutations
that appear to mediate a higher binding affinity when
compared with previous SARS viruses.'"” Therefore, it is
difficult to ensure that the current novel vaccines target-
ing SARS-CoV-2 protein S could be used for a long term.
This highlights the importance of a cost-effective plat-
form that is able to produce different vaccines rapidly and
safely using existing production processes and already
established manufacturing infrastructure. This is one of
the main potential strengths of the gene-based technology
over the conventional vaccine development platforms.

Clinical Safety and Adverse Events

There have been previous reports of systemic reactions
to mRNA, DNA, and viralvectored vaccines, including
adverse reactions identified in the Ad5-nCoV*> and mRNA-
1273 Phase 1 trials.* These outcomes have raised concerns
about the safety of these novel platforms. As previously dis-
cussed, one of the main concerns of utilizing mRNA-based
platforms is the potential toxicity of synthetically formu-
lated mRNA due to its inherent inflammatory nature.” The
use of DNA-based vaccines and viral-vector-based vaccines
raises safety concerns due to their potential long-term per-
sistence,'?"'* genome integration,'*'*! autoantibody gen-
eration, potential induction of anti-vector immunity,'** and
adverse effects due to co-stimulatory molecule expression.'®

These safety concerns cannot be fully investigated
by pre-clinical studies because humans may respond dif-
ferently than the animal models used in the pre-clinical
safety testing.””® Therefore, it is of vital importance to
fully characterize the potential risks of these novel plat-
forms and adjust dosing schemes accordingly. This holds
true especially for mRNA-based vaccines, where repeated
administration (boosting) is needed for generating the
desired neutralizing antibody titer levels.'*’

Clinical Benefit for Specific Target Populations
A major question that requires further investigation is
whether the elderly and immunocompromised populations,
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who experience higher clinical attack rates and a more
severe clinical course,'” would be able to mount a suffi-
ciently robust antibody response to provide immunity in
response to the vaccine. Most current trials are designed
to include healthy elderly participants as part of advanced
clinical phases; however, safety and potential efficacy should
be established to include immunocompromised patients.

CONCLUSIONS

In conclusion, the rapid development of an effective
and safe vaccine has become the most promising way to
control the COVID-19 pandemic. Over 20 candidate vac-
cines are in clinical trials and over 100 are in preclinical
trials, utilizing both conventional and novel technologies.
The viral-vector-based and gene-based vaccine technolo-
gies are promising novel platforms that have generated
significant attention in recent years due to their potential
use for a variety of applications. Their various advantages
over conventional approaches highlight their role in the
new era of vaccinology as potential game-changers in epi-
demics and emerging diseases. Once the fundamental
key challenges have been addressed for viral-vector-based
and gene-based vaccines, these novel technologies may
become helpful in winning the fight against COVID-19
and in transforming the future of health care.

In the words of Louis Pasteur: In the field of observation,
chance favors only the prepared mind.

Stav Brown, MD

Sackler School of Medicine
Tel Aviv University

35 Klatskin St,

Tel Aviv 69978, Israel

E-mail: brown.stav@gmail.com
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