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Science knows no country, because knowledge belongs to 
humanity, and is the torch which illuminates the world.

—Louis Pasteur

INTRODUCTION
The Coronavirus Disease 2019 (COVID-19) pandemic 

has presented a major threat to public health worldwide 
alongside unprecedented global economic and social 
implications. Identified in Wuhan, Hubei Province, China, 
in December 2019, the novel coronavirus, Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2),1 

has infected a total of 20,840,381 individuals, causing 
754,566 global deaths as of August 14, 2020. An estimated 
5,248,722 cases have been confirmed in the United States, 
and the death toll there has surpassed 160,000.2

COVID-19 has a relatively high degree of pre-symptom-
atic transmission,3,4 high mortality rate, severe morbidity 
rate, and relatively long hospitalization period.5 As a result, 
the fight against COVID-19 has required extensive inter-
ventions such as quarantine, social distancing, isolation of 
infected populations, border closures, school shutdowns, 
and extensive lockdowns to contain the virus, “flatten 
the curve,” and save lives.6 The COVID-19 pandemic has 
changed the landscape of plastic surgery,7 restructured 
the daily experience of plastic surgery practices,7–11 altered 
the way residents and fellows are trained,12,13 substantially 
impacted research,14,15 and revolutionized patient care. 
The implications of the current COVID-19 pandemic on 
plastic surgery are summarized in Table 1.

Due to the profound global implications of the COVID-
19 crisis, there has been an unprecedented race to develop 
treatments and vaccines against SARS-CoV-2. Multiple 
clinical trials are underway to define potential roles for 
antiviral agents and specific immunomodulators16–18 as 
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well as passive immunization with convalescent plasma.19 
However, no “gold standard” treatment or prophylactic 
medication has been approved for COVID-19. Optimizing 
supportive care for COVID-19 positive patients remains 
the mainstay of therapy, including oxygen, mechanical 
ventilation, and treatment of the sequelae and complica-
tions.20 With multiple waves of illness anticipated,21 and in 
the absence of approved treatments, the development of a 
safe and effective vaccine will be a game-changing step in 
the global fight against COVID-19 and is considered the 
most promising way to eradicate the virus.22

This article summarizes the current efforts to develop 
a SARS-CoV-2 vaccine, including the ongoing and future 

anticipated clinical trials. We also provide plastic and 
reconstructive surgeons with insight into the novel tech-
nologies currently utilized for SARS-CoV-2 vaccine devel-
opment, focusing on the very promising viral-vector-based 
and gene-based vaccine technologies (Fig. 1).

VACCINES: IMMUNOLOGICAL PRINCIPLES 
AND VACCINE DEVELOPMENT STRATEGIES

Since the development of the first vaccine by Dr. Edward 
Jenner more than 200 years ago,23 vaccinations have made 
an enormous contribution to global health.24 However, 
the development process for conventional vaccines takes 

Table 1. Effects of COVID-19 on Plastic Surgery

Aspect Affected Effects

Clinical care ◦  Rescheduling/cancellation of surgeries, procedures, and in-person appointments
◦  Practice closures
◦  Telehealth for preoperative and postoperative discussions, no in-person physical examination
◦  Implementation of patient flow plans that allow for social distancing protocols
◦  Reassessment of cleaning and disinfecting protocols
◦  PPE requirements for surgeons, anesthesia, and staff
◦  Patients’ screening upon entrance, “no visitors” policy, masking requirement
◦  Updated safety protocols for elective surgery
◦  New informed consent form for COVID-19 risk
◦  Relatively bear market for elective surgery

Education and 
training

Residency and Fellowship Training Programs
◦  Redeployment to ICUs and emergency rooms
◦  Utilization of virtual platforms for didactic sessions: daily team briefings, morning conferences, and grand 

rounds and nationally integrated didactics
◦  Case category minimum requirements by the ACGME and the ABPS might not be reached due to decreased 

surgical volumes
Plastic Surgery Residency Application Cycle
◦  Cancellation of away rotations
◦  Virtual away rotations and program-applicant communication via social media
◦  Utilization of virtual platforms for didactic sessions
◦  Online residency interviews and virtual visits
◦  Rescheduling/cancellation of USMLE, subsequent changes to the ERAS application cycle and adjusted deadlines
◦  Postponement and cancellation of national and regional conferences

Research ◦  Laboratory closures
◦  Suspension of clinical trials 
◦  Postponement and cancellation of national and regional conferences
◦  Utilization of virtual platforms for research and didactic sessions

ABPS, American Board of Plastic Surgery; ACGME, Accreditation Council for Graduate Medical Education; COVID-19, Coronavirus disease 2019; ERAS, Electronic 
Residency Application Service; ICU, intensive care unit; PPE, personal protective equipment; USMLE, United States Medical Licensing Examination.

Fig. 1. Pie charts showing the development of COVID-19 candidate vaccines: (A) clinical trials and (B) preclinical trials.
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more than 10 years25 and requires 4 Phases,26–28 as sum-
marized in Figure 2. Therefore, the lack of time remains a 
major barrier for safe and effective vaccine development 
in outbreak situations.

Immunological Principles of Vaccination
Immunization can be derived from either passive or 

active immunization.29 Passive immunization occurs with 
the transfer or administration of already preformed anti-
bodies, providing temporary immunity.29 One investiga-
tional treatment being explored for COVID-19 is the use 
of convalescent plasma collected from previously infected 
individuals, which is administered via direct transfusion 
to COVID-19 patients, in an attempt to confer passive 
immunity.30–34

Active immunization occurs with the exposure to an 
antigen and typically produces long-term immunity due to 

the immune system stimulation.29 The immune system is 
divided into two main subsystems: the innate system, which 
provides an initial, non-specific response, with no memory 
induced, and the adaptive system, which provides a later, 
antigen-specific response and induces immunological 
memory.35 When antigens are introduced into the blood-
stream via infection or vaccination, they are captured and 
processed by Antigen Presenting Cells (APCs), which then 
display an antigen-derived peptide fragment on their sur-
faces. APCs then migrate to lymph nodes, and activate T 
helper cells through a process called “antigenic presenta-
tion.” T helper cells stimulate both arms of the adaptive 
immunity: humoral (antibody-based) and cellular.

Humoral immunity is achieved via differentiation, 
proliferation, and maturation of B-lymphocytes into 
antibody-secreting plasma cells and memory lympho-
cytes of the same antigenic specificity, and cell-mediated 

Fig. 2. Diagram displaying the various phases of a clinical trial.
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immunity is achieved via activation of naive cytotoxic T 
cells to active, antigen-specific cells.29 The stimulation of 
both the humoral and cell-mediated arms of the adap-
tive system by the production of effector cells (plasma B 
cells for humoral immunity and active cytotoxic T cells for 
cell-medicated immunity) and memory cells is required to 
ensure protection upon re-exposure to the same antigen.35 
Figure  3 illustrates the immune stimulation response in 
detail.

Conventional Vaccine Platforms
The main conventional vaccine technologies include 

inactivated vaccines (which utilize a killed pathogen), sub-
unit/recombinant vaccines (which utilize specific pieces 
of the pathogen administered along with adjuvants), 
toxoid vaccines (pathogen-toxin-based), and live attenu-
ated vaccines.36 Each platform has its own advantages and 
disadvantages related to its efficacy, immunogenicity, and 
ability to induce certain immune responses, manufactur-
ing capacity, and safety for human use, as summarized in 
Table 2.36–42

Novel Vaccine Platforms
In recent years, traditional vaccine technologies that 

consist of working with a virulent pathogen during manu-
facturing seem insufficient to provide global protection 
against the spread of emerging pandemics. Therefore, the 
establishment of novel approaches that are independent 
of pathogen cultivation (a relatively lengthy and high-risk 
process), are cost-effective, and could be rapidly devel-
oped and produced on a large scale, are of paramount 
importance for global health.41

Two promising novel platforms that have generated 
significant attention in recent years due to their potential 

use for a variety of applications include the viral-vector-
based and gene-based vaccine technologies. Their advan-
tages over conventional approaches highlight the role of 
these platforms in the new era of vaccinology, as potential 
game-changers in epidemics and emerging diseases.43 The 
strengths and weaknesses of these platforms are summa-
rized in Table 2 and discussed below.

Viral-vector-based Vaccines
Viral vector vaccines use separate, genetically engi-

neered, viruses to carry DNA of target antigens into human 
cells. The DNA contained in the viral vector encodes 
antigens that, once expressed in the infected human 
cells, elicit antigen-specific humoral and cell-mediated 
immune responses via antigen presentation (Fig. 3).44 A 
variety of viruses have been employed as viral vectors,45 
with Adenovirus (Ad) vectors being the most commonly 
utilized due to their various advantages. Ad vectors’ advan-
tages over other viral vectors include their ability to enter 
a broad range of target cells in humans,46 deliver various 
target antigens and large DNA insertions,47 and induce 
potent humoral and cellular responses.48 However, utiliz-
ing an unrelated virus for delivery poses several challenges 
in terms of manufacturing, safety, and immunogenicity, as 
summarized in Table 2.

Gene-based Vaccines
Gene-based vaccine platforms consist of genetic 

sequences in the form of plasmid DNA49 and mRNA.50 
Once injected intramuscularly (IM), the genetic sequence 
enters the myocytes51 to achieve encoding of the desired 
antigen.52 The endogenously synthesized antigens are then 
secreted from myocytes for cross presentation and con-
secutive stimulation of humoral and cellular responses, 

Fig. 3. Illustration depicting the stimulation of humoral and cellular immune responses.
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as illustrated in Figure  3.53 The main advantages of the 
gene-based platform include the construction of antigens 
directly from the genetic sequence of the desired pro-
tein and a generic manufacturing process, which allows 
for efficient production of different vaccines using the 
same established processes and facilities, given the genetic 
sequence is available.54

Unlike conventional vaccine technologies, which con-
sist of a lengthy process of inactivating or attenuating a 
live pathogen or making a recombinant protein, making a 
gene-based vaccine is relatively rapid and potentially low-
risk, eliminating the need to work with a virulent patho-
gen during manufacturing.38 In addition, plasmid DNA 
and mRNA vaccine constructs encode only the antigen 
of interest, avoiding other redundant, potentially detri-
mental proteins and the replication of infectious viral 
particles.55

However, since their initial presentation in 1990,56 
there has never been a commercial vaccine utilizing gene-
based technologies approved for use. There have been 
many technical challenges to overcome to enable the 
promise of the gene-based platform,57 including optimiz-
ing the delivery of these foreign nucleic acids into human 
cells58,59 and increasing the potency, stability, and expres-
sion of the encoded protein.38,55 These goals have been 
achieved by new formulations, including lipids, polymers, 
and novel delivery devices for improved intracellular 
delivery and stability, and strong molecular adjuvants for 
improved potency.60,61

DNA-based Vaccines consist of antigen-encoding 
plasmids. While allowing a relatively simple, safe, and 
time-saving production process, the DNA-based plat-
form poses several challenges related to administration, 
safety, and immunogenicity, as summarized in Table 2. 
Unlike DNA vaccines, mRNA-based vaccines translate 
directly into the cytoplasm, undergo natural degrada-
tion,50 and cannot integrate into the host genome.41 
These advantages in terms of safety, efficacy, and man-
ufacturing make the mRNA technology a promising 
avenue for a rapid response to the emerging COVID-19 
pandemic, and are summarized, alongside the disad-
vantages, in Table 2.

COVID-19 VACCINE DEVELOPMENT: 
CURRENT CLINICAL TRIALS

Finding the most suitable target site for SARS-COV-2 
vaccine development is extremely important. The 
SARS-CoV-2 coronavirus belongs to the subfamily of 
Coronavirinae, with a genomic structure of (+) ss-RNA.62 
Hoffman et al.63 described the SARS-CoV-2 cell entry and 
replication mechanisms in detail and Bouhaddou et al.64 
recently demonstrated the role of virus-containing filopo-
dia induced in host cells by SARS-CoV-2 in viral replica-
tion. Cell entry of SARS-CoV-2 is orchestrated by the viral 
spike (S) proteins, which give the virus its characteristic 
corona-like morphology, via binding the host cellular 
receptors.63,65 Due to its pivotal role, a vaccine against 
S protein can prevent SARS-CoV-2’s proliferation and 
spread.66

As of August 14, 2020, there have been 29 vaccine 
candidates in clinical trials, as summarized in Table 3 and 
Figure 1. In total, 13 trials are currently in Phase 1, 8 in 
joint Phase 1/2, 2 in Phase 2 and 6 in Phase 3. An esti-
mated 138 vaccine candidates are currently in preclinical 
studies.67 While 12 clinical trials are based on traditional 
techniques utilizing inactivated viruses (5 trials),68–73 
and protein subunits (7 trials),74–77 16 trials utilize novel 
platforms including the viral vector-based platform (6 
trials),78–84 and gene-based platform (10 trials: 6 mRNA-
based, 4 DNA-based).85–94 Current viral-vector-based and 
gene-based vaccines under development target the S pro-
tein of SARS-CoV-2.86,88

Viral-vector-based Clinical Trials
Three viral-vector-based vaccines are currently under 

clinical trials (Table  3). The Adenovirus Type 5 Vector 
(Ad5-nCoV) and ChAdOx1 nCoV-19 trials are the furthest 
along in development and will be discussed below.

Adenoviral Vectors of Human Origin: Ad5-nCoV
Ad5-nCoV is a recombinant adenovirus type-5 (Ad5) 

vectored COVID-19 vaccine expressing the S protein of 
SARS-CoV-2.95 Ad5 is a non-replicating vector of human 
origin, and one of the most widely used adenoviral vec-
tors.96 However, the widespread pre-existing immunity 
to Ad5 among the human population might hinder its 
immunogenicity and hamper its clinical use.97 Phase 1 
results have recently been published,80,95 demonstrating 
that the Ad5 vectored COVID-19 vaccine was tolerable and 
immunogenic at 28 days post-vaccination. Most adverse 
reactions were mild or moderate in severity, with the most 
common adverse reactions being fever, fatigue, headache, 
and muscle pain. No serious adverse events were noted 
within 28 days post-vaccination. Neutralizing antibod-
ies increased significantly at day 14, and peaked 28 days 
post-vaccination, while specific T-cell response peaked at 
day 14 after one administration of the vaccine. However, 
in patients with pre-existing anti-Ad5 immunity, both the 
specific antibody response and T-cell response induced 
by vaccination were diminished.95 The recently published 
Phase II results81,98 have confirmed Phase I results, demon-
strating that the Ad5-vectored COVID-19 vaccine was safe, 
and induced significant immune responses in the majority 
of recipients after a single immunization. Phase III results 
are expected before the end of 2020.

Adenoviral Vectors of Non-human Origin: ChAdOx1 
nCoV-19 (AZD1222)

Adenoviral vectors of non-human origin induce 
enhanced memory and more poly-functional CD8+ T 
cells compared with Ad5 and are less likely to be ham-
pered by pre-existing immunity.48,99 ChAdOx1 nCoV-19 
is a replication-deficient chimpanzee adenovirus express-
ing the S protein of SARS-CoV-2. Phase I/II results have 
recently been published,79,100 demonstrating an acceptable 
safety profile of ChAdOx1 nCoV-19 with no serious adverse 
events. The vaccine induced both humoral and cellular 
immune responses and all participants had neutralizing 
activity after a booster dose. Phase III is currently ongoing Pr
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in the UK, the USA, Brazil, and South Africa, and results 
are expected in the Fall of 2020.83,101

Gene-based Vaccines Clinical Trials
Totally, 4 DNA-based and 5 mRNA-based vaccines are 

currently in clinical trials (see Table 3). The m-RNA-1273 
trial is the furthest along in development and will be dis-
cussed below.

m-RNA-1273
mRNA-1273 developed in collaboration with the 

National Institute of Allergy and Infectious Disease 
(NIAID) of the National Institute of Health (NIH) is con-
sidered one of the frontrunners in vaccine development. 
The mRNA-1273 vaccine consists of mRNA of the S pro-
tein synthesized in vitro, and coated with lipid nanopar-
ticles for effective delivery.

Phase I results have recently been published,86,102 dem-
onstrating that mRNA-1273 was generally safe and well 
tolerated, with 1 incidence of a grade 3 adverse event 
(erythema around the injection site), and 3 incidences of 
grade 3 systemic symptoms (including fever, muscle pain 
and headache) seen at the highest dose group, only follow-
ing the 2nd dose. All adverse events have been transient 
and self-resolving. No grade 4 adverse events or serious 
adverse events have been reported. Phase II is currently 
ongoing,85 and Phase III is expected to commence before 
the end of July 2020 in collaboration with the NIAID. 
Phase III results are expected before the end of 2020.102

LOOMING CHALLENGES OF COVID-19 
VACCINE DEVELOPMENT

While the preliminary results of the discussed trials 
are encouraging, whether a vaccine generates the needed 
types of immune responses to result in protective efficacy 
is unknown and cannot be predicted by Phase I studies. 
There still remain significant questions and uncertainties 
as to clinical efficacy and effects of potential mutations 
on the vaccine’s immunogenicity and long-term efficacy, 
safety, and potential benefit for specific target populations.

Clinical Efficacy and Long-term Immunity
One of the main questions that arise is whether a 

COVID-19 vaccine would be able to provide immunity, 
when it is still uncertain whether previously infected 
patients are protected from reinfection.103–107 Research in 
other coronavirus species has shown that immunity may 
not be long-lasting, with 2–3 years of protection estimated 
from work with SARS and MERS.102,108,109

To date, there is no evidence for cases of SARS-CoV-2 
reinfections, 103 and preliminary evidence in humans110 
and rhesus macaques111 suggests that acquired immunity 
may protect from future reinfection, at least temporar-
ily104,111–113 with most patients who recovered from COVID-
19 producing sufficient amounts of neutralizing antibodies 
to protect against reinfection. A recently reported case 
series also indicated sufficient neutralizing antibody titers 
in convalescent plasma to neutralize SARS-CoV-2 in 5 
COVID-19 patients, who all recovered after treatment.114 

While further research is needed to assess the benefits 
and risks of convalescent plasma therapy for people with 
COVID-19,33,34 these preliminary findings provide hope 
for the development of an effective vaccine against SARS-
CoV-2.32 However, there have been few reports of post-
recovery positive PCR tests performed in asymptomatic 
or mildly symptomatic patients, which could be explained 
as either false-negative results, prolonged viral clearance, 
and shedding or reinfection.106,107,115–117

Further points that need to be addressed to better 
understand the immune responses to SARS-CoV-2 and 
the optimal vaccine profile and administration regimens 
include the lack of correlation between antibody titer 
rates and clinical improvement, the durability of neu-
tralizing antibodies, and their correlation with durable 
immunity.118,119 The current gaps in knowledge highlight 
the importance of inducing potent humoral and cellular 
immune responses as potentially generated by viral-vector-
based and gene-based vaccines. 

Potential mutations in the S protein may also affect 
the long-term efficacy of a vaccine. There has been direct 
evidence of functionally meaningful S protein mutations 
that appear to mediate a higher binding affinity when 
compared with previous SARS viruses.120 Therefore, it is 
difficult to ensure that the current novel vaccines target-
ing SARS-CoV-2 protein S could be used for a long term. 
This highlights the importance of a cost-effective plat-
form that is able to produce different vaccines rapidly and 
safely using existing production processes and already 
established manufacturing infrastructure. This is one of 
the main potential strengths of the gene-based technology 
over the conventional vaccine development platforms.

Clinical Safety and Adverse Events
There have been previous reports of systemic reactions 

to mRNA, DNA, and viral-vectored vaccines, including 
adverse reactions identified in the Ad5-nCoV95 and mRNA-
1273 Phase 1 trials.89 These outcomes have raised concerns 
about the safety of these novel platforms. As previously dis-
cussed, one of the main concerns of utilizing mRNA-based 
platforms is the potential toxicity of synthetically formu-
lated mRNA due to its inherent inflammatory nature.55 The 
use of DNA-based vaccines and viral-vector-based vaccines 
raises safety concerns due to their potential long-term per-
sistence,121,122 genome integration,123,124 autoantibody gen-
eration, potential induction of anti-vector immunity,124 and 
adverse effects due to co-stimulatory molecule expression.125

These safety concerns cannot be fully investigated 
by pre-clinical studies because humans may respond dif-
ferently than the animal models used in the pre-clinical 
safety testing.126 Therefore, it is of vital importance to 
fully characterize the potential risks of these novel plat-
forms and adjust dosing schemes accordingly. This holds 
true especially for mRNA-based vaccines, where repeated 
administration (boosting) is needed for generating the 
desired neutralizing antibody titer levels.127

Clinical Benefit for Specific Target Populations
A major question that requires further investigation is 

whether the elderly and immunocompromised populations, 
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who experience higher clinical attack rates and a more 
severe clinical course,128 would be able to mount a suffi-
ciently robust antibody response to provide immunity in 
response to the vaccine. Most current trials are designed 
to include healthy elderly participants as part of advanced 
clinical phases; however, safety and potential efficacy should 
be established to include immunocompromised patients.

CONCLUSIONS
In conclusion, the rapid development of an effective 

and safe vaccine has become the most promising way to 
control the COVID-19 pandemic. Over 20 candidate vac-
cines are in clinical trials and over 100 are in preclinical 
trials, utilizing both conventional and novel technologies. 
The viral-vector-based and gene-based vaccine technolo-
gies are promising novel platforms that have generated 
significant attention in recent years due to their potential 
use for a variety of applications. Their various advantages 
over conventional approaches highlight their role in the 
new era of vaccinology as potential game-changers in epi-
demics and emerging diseases. Once the fundamental 
key challenges have been addressed for viral-vector-based 
and gene-based vaccines, these novel technologies may 
become helpful in winning the fight against COVID-19 
and in transforming the future of health care.

In the words of Louis Pasteur: In the field of observation, 
chance favors only the prepared mind.

Stav Brown, MD
Sackler School of Medicine

Tel Aviv University
35 Klatskin St, 

Tel Aviv 69978, Israel
E-mail: brown.stav@gmail.com
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