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Objective: This study was designed to provide information on the genetic diversity of
HIV-1 and drug resistance mutations in Nigeria, as there is limited understanding of
variants circulating in the country.

Methods: We used an advanced next-generation sequencing platform, Primer ID, to:
investigate the presence of high and low abundance drug resistance mutations; charac-
terize preexisting Integrase Strand Transfer Inhibitor (INSTI) mutations in antiretroviral
therapy (ART)-experienced but dolutegravir-naive individuals; detect recent HIV-1
infections and characterize subtype diversity from a cohort of people with HIV-1 (PWH).

Results: HIV-1 subtype analysis revealed the predominance of CRF02_AG and subtype
G in our study population. At detection sensitivity of 30% abundance, drug resistance
mutations (DRMs) were identified in 3% of samples. At a sensitivity level of 10%, DRMs
were identified in 27.3% of samples. We did not detect any major INSTI mutation
associated with dolutegravir-resistance. Only one recent infection was detected in our
study population.

Conclusion: Our study suggests that dolutegravir-containing antiretroviral regimens
will be effective in Nigeria. Our study also further emphasizes the high genetic diversity
of HIV-1 in Nigeria and that CRF02_AG and subtype G are the dominant circulating
forms of HIV-1 in Nigeria. These two circulating forms of the virus are largely driving the
epidemic in the country.

Copyright � 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
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Introduction

The major defining characteristic of HIV-1 is its high
genetic diversity, which is a result of a fast replication cycle,
high mutation rate and high recombination rates. This high
genetic diversity results in the presence of different variants
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of the virus in different regions of the world, and the
emergence of new variants especially in areas with multiple
circulating subtypes continues to occur [1,2].

There are four phylogenetic groups of HIV-1, these are
the groups M (major), O (outlier), N (non-M/non-O),
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and the most recent group P [3–5]. The group M is
majorly responsible for the global epidemic, includes
more than 95% of globally sequenced HIV-1 samples and
can be further classified into nine different subtypes (A–
D, F–H, J, K), six A (A1–A6), and two F (F1 and F2) sub-
subtypes together with 102 circulating recombinant
forms (CRFs) reported (http://hiv-web.lanl.gov/CRFs/
CRFs.html) and 100 unique recombinant forms (URFs)
[1,6–8].

Subtype B is the predominant strain of HIV-1 in high-
income countries whereas in low-income and middle-
income countries (LMICs), especially in the African
continent, the non-B subtypes together with several
CRFs and URFs currently drive the epidemic. In sub-
Saharan Africa, several studies have reported the presence
of multiple HIV-1 subtypes along with a number of
CRFs, such as CRF01_AE in Central Africa and
CRF02_AG in West Africa [9–21].

The epidemic in Nigeria is complex. Several subtypes and
other recombinants have been circulating, these include:
subtype G, CRF06-cpx, CRF02-AG, sub-subtype A3,
and other recombinants [14,18,20,22–26]. The high
diversity of the virus within the country further
contributes to the challenge of viral diagnosis, viral load
determination, drug resistance testing, and HIV vaccine
development. Although abundant information has been
obtained from HIV type 1 (HIV-1) subtypes A, B, C, and
CRF01_AE for HIV-1 vaccine design, Nigerian
sequences are poorly represented [27]. As at 4 August
2021, there were only 84 complete HIV-1 genomes from
Nigeria available on HIV-1 Los Alamos National
Laboratory (LANL) Database (https://www.hiv.lanl.gov)
compared with 978 from South Africa, 6679 from the
United States of America, 372 from the United Kingdom
or 1324 from Thailand.

Globally, the management of HIV infection has been
seriously affected by the genetic diversity of the virus,
because of the emergence of drug-resistant variants
[28,29] and resultant treatment failure. A 2017 report
from the WHO revealed that in quite a number of
LMICs, about 10% of HIV-infected patients initiating
antiretroviral therapy (ART) have preexisting HIV drug
resistance to efavirenz and nevirapine [30,31]. These
pretreatment drug resistance mutations can result in poor
treatment outcomes and increased rate of death in adults
and children. In response to the threat of drug resistance,
many LMICs are moving away from nonnucleoside
reverse transcriptase inhibitors (NNRTIs) and imple-
menting policies to transition to dolutegravir as part of a
more affordable and standardized ART. This is, however,
not without its own challenges as most patients who have
had access to dolutegravir reside in high-income
countries and are infected with subtype B. Little is
known about resistance pathways and mutation patterns
of the virus to dolutegravir in PWH in Nigeria and
Africa. Recent data have shown the possibility of
dolutegravir resistance in places and countries where
the predominant subtypes driving the epidemic are non-
B subtypes, including Uganda [32], Cameroon [33], or
South Africa [34]. There have also been reports
suggesting that the mutational patterns of Integrase
Strand Transfer Inhibitor (INSTI) (which dolutegravir is
a class of) resistance might be different depending on the
subtype [35–38].

In this study, we used an advanced next-generation
sequencing platform, Primer ID, to determine the
presence of high and low abundance drug resistance
mutations, characterize preexisting INSTI mutations in
ART-experienced but dolutegravir-naive individuals,
detect recent HIV-1 infections and characterize subtype
diversity from a cohort of PWH in Nigeria.
Materials and methods

Study design
Plasma samples were obtained from individuals who are
part of the US Military HIV Research Program’s African
Cohort Study (AFRICOS) in Nigeria. AFRICOS is a
prospective observational HIV-focused cohort, which
seeks to longitudinally assess the impact of clinical
practices, biological factors, and sociobehavioral issues on
HIV infection and disease progression in five African
countries [39]. Only adult participants were enrolled.
Written informed consent was obtained from all
participants. The study was approved by the institutional
review boards of the Walter Reed Army Institute of
Research, Redeemer’s University, and the Nigerian
Ministry of Defense. All samples were anonymized. The
investigators have adhered to the policies for protection of
human participants as prescribed in AR 70–25.

Primer ID deep sequencing
Plasma samples were inactivated in buffer AVL and viral
RNA was extracted according to the QiAmp viral RNA
mini kit (Qiagen, Hilden Germany) manufacturer’s
instructions. Deep sequencing was carried out using the
Primer ID (PID) Miseq Library Prep protocol previously
described [40,41]. Full description of the PID sequencing
protocol is available as Supplementary File 1, http://links.
lww.com/QAD/C336.

Near full-length genome sequencing
Full description of the methodology for the near full-length
genome sequencing [42] is also available as Supplementary
File 1, http://links.lww.com/QAD/C336.

Sequence and phylogenetic analyses
Following sequencing, initial processing and construction
of template consensus sequences (TCSs) was carried out
using the Illumina bcl2fastq pipeline and the TCS
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pipeline version 1.33 (https://github.com/Swanstrom-
Lab/PID). This was followed by alignment of the TCSs to
an HXB2 reference to remove sequences not mapped to
the targeted region or with large deletions. Sequences
from the Protease (PR), Reverse Transcriptase (RT), Integrase
(IN), and V3 regions were aligned separately using
MUSCLE version 3.8.31 [43] followed by calculation of
raw (uncorrected) pairwise distances using the R ‘ape’
package [44]. Drug resistance was defined using a 2009
updated list of surveillance drug resistance mutations
(https://hivdb.stanford.edu/pages/surveillance.html) to
exclude polymorphisms that may not contribute to a
resistance phenotype. We used a custom bash script to
extract representative sequences from our template
sequences for each sample. Subtype analysis was carried
out using Stanford University HIVdb program version
9.0 (https://hivdb.stanford.edu/hivdb) and NCBI geno-
typing tool [45]. All nonproblematic complete genomes
of HIV-1 from Nigeria were obtained from the HIV-1
Los Alamos National Laboratory (LANL) Database (80 in
total) and codon-aligned with the eight near full-length
genomes (NFLGs) obtained from this study in order to
understand the evolutionary relationship between the near
full-length genomes obtained from this study and previous
genomes from Nigeria. Codon alignment was performed
using Gene Cutter (https://www.hiv.lanl.gov/content/
sequence/GENE_CUTTER/cutter.html). A maximum
likelihood phylogenetic tree was constructed using
IQTREE [46] with the GTRþFþR7 model.
Results

Samples’ summary
Using the PID protocol, sequences were obtained from
samples from 42 PWH enrolled in the AFRICOS in
Lagos (n¼ 38) and Abuja (n¼ 4). Samples were collected
between 2016 and 2018 and viral loads ranged from 1250
to 1 310 000 copies/ml. Thirty-three IN sequences
(78.6%), 33 PR sequences (78.6%), 17 RT sequences
(40.5%), 24 V1V3 sequences (57.1%), and 8 P17 sequences
(19%) were obtained from sequenced samples (Supple-
mentary Table 1, http://links.lww.com/QAD/C339).

Additionally, near full-length genomes, here referred to as
genomes, were obtained from plasma samples collected
from eight participants between 2014 and 2015 with viral
load ranging between 83 700 and 1 660 000 copies/ml.
One genome per participant was obtained.

Subtype identification
Subtype analysis was carried out for four of the five gene
fragments from which we obtained the most sequences
among the sequenced samples and this revealed that of the
33 integrase sequences obtained, 22 (66.7%) were
CRF02_AG, 8 (24.2%) were subtype G, 1 (3%) was
CRF06_CPX, 1 (3%) was sub-subtype F2, and 1 (3%) was
subtype D. Subtype analysis of the 33 protease sequences
revealed that 23 (69.7%) were CRF02_AG, 5 (15.2) were
subtype G, 3 (9.1%) were subtype A, 1 (3%) was
CRF05_DF, and 1 (3%) was sub-subtype F2. Of the 17
reverse transcriptase sequences obtained, 10 (58.8%) were
CRF02_AG, 4 (23.5%) were subtype G, 1 (5.9%) was
CRF06_CPX, 1 (5.9%) was sub-subtype F2, and 1 (5.9%)
was subtype D. Of the 24 V1V3 sequences obtained, 7
(29.2%) were CRF02_AG, 7 (29.2%) were complexes
(37_CPX, 09_CPX, 45_CPX, 11_CPX and 56_CPX), 4
(16.7%) were CRF43_02G, 3 (12.5%) were subtype A3, 2
(8.3%) were subtype G, and 1 (4.2) was subtype D. These
results are in line with data obtained by testing 189 samples
from the same cohort with a multiregion hybridization
assay (MHA) [47] (Fig. 1) and also data obtained by
screening for intersubtype recombinants (Supplementary
File 2, http://links.lww.com/QAD/C337).

Nine (21.4%) of the 42 sequenced samples had sequences
for the four genes used for subtyping (integrase, protease,
reverse transcriptase and V1V3), 18 (42.9%) had sequences
for three of the four genes, nine (21.4%) had sequences
for two of the four genes whereas 2 (4.8%) had sequences
for one of the four genes.

Further analysis showed that three (33.3%) of the nine
isolates sequenced in the four fragments had subtype
concordance in all four fragments while six (66.7%)
showed discordant subtypes. Of the 18 samples that had
sequences for three genes, nine (50%) had subtype
concordance in the three genes whereas nine (50%)
showed discordant subtypes while of the nine isolates
sequenced in two of the four genes, five (55.6%) had
subtype concordance in the two genes while four (44.4%)
had subtype discordance (Fig. 2).

Subtype and phylogenetic analysis was also carried
out for the eight HIV-1 genomes obtained from this
study (Fig. 3). This revealed that of the eight genomes,
three (37.5%) were CRF02_AG, two (25%) were CRF06_
CPX, one (12.5%) was subtype G, one (12.5%) was
CRF09_CPX, and one (12.5%) was CRF11_CPX.

Time of infection
Using parameters previously described [48], we estimated
recent HIV-1 infection based on the sequence diversity
(p) and the first quintile of the pairwise comparison.

Both RT and V1V3 sequences were used for recency
analysis. Specimens were classified as recent HIV
infection (within 9 months of transmission), chronic
infection, or indeterminate. Only one recent infection
was observed in this study.

Identification of drug resistance mutations
Gene fragments drug resistance mutation analysis
The sensitivity for the detection of drug resistance
mutations (DRMs) that are not fixed (i.e. at 100%) is
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Fig. 1. Results of integrase (IN), protease (PR), reverse transcriptase (RT), V1V3, and MHA subtype analysis.

Fig. 2. Subtype diversity across different genes (IN, PR, RT, and V1V3) from sequenced samples.
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Fig. 3. Mid-point rooted maximum likelihood phylogenetic tree showing relationship between the eight near full-length genome
sequences obtained from this study (coloured blue) and all full nonproblematic Nigerian HIV-1 genomes (80 in total) available in
the HIV-1 Los Alamos National Laboratory (LANL) database.
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defined by the viral sequence population’s sampling
depth. Grouping specimens based on the sequence
sampling depth, and thus the levels of sensitivity of minor
variants, is therefore, essential [49]. The PID sequencing
allows us to tag each sequenced viral RNA with a unique
molecular ID (UMI) and the TCS number of one
specimen represents the sampling depths. Using this
approach, we could greatly reduce the sequencing error
and calculate the true abundance of mutations with
confidence intervals. To compare the mutations at
different abundance levels in the study population, we
grouped the participants based on the minimal number of
TCS at each region based on the detection sensitivity.
The detection sensitivity is defined as the minimal
percentage of mutations we can detect with 95%
confidence given a certain number of TCS (sampling
depth) using binomial distribution. We grouped our
samples based on TCS counts of at least 10 or 34 (Table 1)
and this allowed us to detect mutations at sampling depths
of 30 and 10% abundance, respectively with 95%
confidence of detection.

At detection sensitivity of 30% abundance, DRMs were
identified in 3% of the samples (1 of 33) in IN, in 3% (1 of
33) in PR, and in 17.6% (3 of 17) in the RT region. At a
sensitivity level of 10%, DRMs were identified in 27.3%
of samples (9 of 33) in IN, 6.1% (2 of 33) in PR, and in
5.9% (1 of 17) in the RT region.

Q148R was the only IN mutation observed in one sample
at 30% sensitivity level while at 10% sensitivity level, the
IN mutations detected included: L74M (in four samples),
T97A (in four samples), F121Y (in one sample), T66A (in
two samples), S147G (in one sample), Y143C (in one
sample), and Y143H (in two samples).

PR mutations observed at 30% sensitivity level included:
F53L (in one sample) while at 10% sensitivity level, the
following mutations were detected: M46I (in two
samples), F53L (in one sample), I54T (in one sample),
and I54S (in one sample).

RT mutations observed at 30% sensitivity level included:
P225H (in two samples), L74I (in one sample), M184I (in
one sample), K103N (in two samples) while at 10%
sensitivity level, each of the mutations L100I, K101E,
K103N, V106A, V106 M, Y181C, Y188H, G190A and
M230L were observed in one sample.
Table 1. Number of samples with template consensus sequence of at
least 10 (sampling depth of 30%) or 34 (sampling depth of 10%).

Sampling depth (%) PR RT IN

30 9 10 7
10 9 2 20

IN, integrase; PR, protease; RT, reverse transcriptase.
A total of 14.3% (6 of 42) of individuals in this study had
drug resistance mutations in at least two genes while none
had mutations in all three drug resistance genes (IN, PR,
and RT). Also, out of 10 individuals in which we observed
IN mutations, eight (80%) had CRF02_AG infections
while one was a subtype G and one a subtype D infection;
of three individuals in which we observed PR mutations,
two had CRF02_AG infections and one was a subtype G
infection; of four individuals in which we observed RT
mutations, two had CRF02_AG infections, one was a
subtype D and one was a CRF06_CPX infection.

Near full-length genomes drug resistance
mutation analysis
Drug resistance analysis carried out on the eight genome
sequences obtained from this study revealed the presence
of IN mutations E157Q (in one sample) and Q146QR (in
one sample). Nonnucleoside reverse transcriptase muta-
tions (NNRTIs) V106I (in one sample) and V179E (in
two samples) were also observed.

The IN mutations observed in this study occurred in
CRF06_CPX and CRF02_AG sequences while the
NNRTIs occurred in CRF09_CPX, G and CRF06_
CPX sequences.
Discussion

This study shows the circulation of HIV-1 subtypes/sub-
subtypes A, A3, G, CRF02_AG, D, F2, CRF37_CPX,
CRF06_CPX, CRF09_CPX, CRF45_CPX, CRF11_
CPX, CRF56_CPX, and CRF05_DF in different pro-
portions among PWH in Nigeria. The predominance of
CRF02_AG (22 out of 33 in integrase, 23 out of 33 in
protease, 10 out of 17 in reverse transcriptase, seven out of
24 in V1V3, three out of eight in whole genome
sequences) and subtype G (8 out of 33 in integrase, five out
of 33 in protease, four out of 17 in reverse transcriptase, two
out of 24 in V1V3, and one out of eight in whole genome
sequences) is in line with previous studies carried out in
Nigeria [14,18,20–21,25,50–56]. CRF02_AG and sub-
type G are the dominant circulating forms of HIV-1 in
Nigeria and they are largely driving the epidemic in the
country. The observed dominant spread of CRF02_AG
in West Africa may be attributed to the replicative fitness
it confers over subtypes A and G in the same geographical
region [57,58]. The observation of a wide array of
subtypes among a small number of individuals in this
study further emphasizes the high genetic diversity of the
virus in Nigeria. Previous studies have shown that
movement of people from one country to another has
contributed largely to the spread of HIV-1 diversity
worldwide [20]. In developing countries, the migration
of rural populations because of poverty, famine, civil wars,
and so forth have been additional contributing factors to
the genetic diversity of the virus [59,60].
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This study also revealed recombination among the isolates
from which we obtained sequences from more than one
genomic region that was genotyped. Six (66.7%) of the
nine samples sequenced in four genomic regions used for
subtyping (integrase, protease, reverse transcriptase and V1V3)
had disparate subtypes. For samples in which three
genomic regions were sequenced, nine (50%) of 18
samples had different subtypes while four (44.4%) of nine
samples in which two genomic regions were sequenced
had discordant subtypes. This could be as a result of
marked genetic heterogeneity of the virus in these gene
regions and demonstrates the complex diversity of the
HIV-1 strains circulating in Nigeria. This also emphasizes
the need to sequence the complete genomes of the virus
in Nigeria to better understand subtype diversity in the
country; prior to our study, there have only been 84
whole genome sequences of HIV-1 from Nigeria
deposited in public databases, here we added eight new
sequences. This can in turn help improve drug and
vaccine development processes. Previous studies have
noted that in regions where multiple subtypes are in
circulation, there is an increased possibility of recombi-
nant strains arising [61]. Recombinant strains of HIV-1
usually have biological advantages over their parental
strains, and some of these advantages could manifest in
different forms, some of which include: improved viral
fitness, enhanced co-receptor usage, and so forth. This
has a lot of implications for clinical management of
patients in the region. It can affect the sensitivity of
diagnostic kits and can result in reduction in the
susceptibility of patients to antiretroviral drugs [20,62,63].

A major objective of this study was to understand if there
were preexisting INSTI mutations in ART-experienced
but dolutegravir-naive individuals that confer resistance
to dolutegravir present in our study population. The
WHO and the US President’s Emergency Plan for AIDS
Relief (PEPFAR) are recommending regimens that
include tenofovir (as the disoproxil fumarate or alafena-
mide formulation), together with lamivudine and
dolutegravir, as a first-line regimen to replace efavir-
enz-based regimens in LMICs and this is now being rolled
out in Nigeria (starting from 2018). The high genetic
barrier to dolutegravir resistance when administered as a
dolutegravir (DTG)-containing combination antiretrovi-
ral therapy (cART) has been demonstrated in vivo but in
majorly HIV-1 subtype B-infected individuals, so little/
nothing is known about the genetic correlates of
resistance for nonsubtype B infections [31]. At 30%
sampling depth, we detected the INSTI mutation
Q148R while at 10% sampling depth, we detected
INSTI mutations L74M, T97A, F121Y, T66A, S147G,
Y143C/H in varying numbers of samples. Q148R,
which is a major INSTI mutation was the only INSTI
mutation observed at 30% sensitivity level, it is a
nonpolymorphic mutation selected in patients receiving
raltegravir (RAL) and elvitegravir (EVG) but has been
reported in patients with virologic failure during
dolutegravir monotherapy or salvage therapy [64,65].
However, these studies were restricted to subtype B.

Other major INSTI mutations observed in our study at
10% sensitivity level included: T66A, S147G, Y143C/H.
T66A is a nonpolymorphic mutation selected in patients
receiving EVG and RAL. It, however, has minimal effect
on DTG susceptibility [66–68]. S147G is a nonpoly-
morphic mutation selected in patients receiving EVG, it
reduces EVG susceptibility by five-fold but has been
shown to have minimal if any effect on DTG
susceptibility [66,69]. Y143C/H are also nonpoly-
morphic mutations selected by RAL but do not reduce
DTG susceptibility [70,71]. Accessory INSTI resistance
mutations observed in our study occurred only at a
sensitivity level of 10% and they include L74M, T97A,
F121Y. L74M, and T97A were the most common
accessory mutations that we observed, which is in line
with previous studies carried out in sub-Saharan Africa
[72]. Also, similar to previous reports, L74M and T97A
were more frequent in participants infected with subtype
A, G, and recombinant viruses [73]. L74I/M are
polymorphic mutations, which are commonly selected
by all three INSTI drugs, they occur at varying degrees in
antiretroviral-naive populations (usually between 0.5 and
20%) and they are highly prevalent in subtypes, A, G, and
A/G recombinants. However, unless they occur in
combination with other major INSTI mutations, mainly
Q148H/K/R, they do not affect INSTI susceptibility
[74]. In the same line, T97A, on its own, has little/no
effect on susceptibility to INSTIs but when occurring in
combination with Y143 and N155H major resistance
mutations, it can cause significant reduction in suscepti-
bility to RAL and EVG [68,75]. F121Y is a non-
polymorphic mutation that has been shown to have little
to no effect on DTG susceptibility [76,77]. Our findings
from this study suggest that dolutegravir-containing
antiretroviral regimens will be effective in Nigeria. This is
important as Nigeria begins to adapt and implement the
recent guidelines advocating for dolutegravir-based first-
line treatment. It is, however, important to monitor
patients as they begin on dolutegravir in order to obtain
first hand data on response to treatment and resistance
mutations selected by dolutegravir in non-B subtypes. It
is also important to understand if resistance pathways in
non-B subtypes are different as previous studies have
postulated a different resistance pathway for dolutegravir
that involves the G118R mutation selected mainly in
nonsubtype B viruses [78].

Using the Primer ID approach also allowed us to find a
class of mutations notably F53L protease mutation and
K103N reverse transcriptase mutation, which were
present in a similar number of samples irrespective of
genome sampling depth. This implies that whenever
these mutations are present in a virus population, they are
usually high in number and relatively stable over time
[79]. We also only detected one recent infection in our
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study, which implies that almost all samples were collected
at the late stage of infection.

In conclusion, we did not detect any major INSTI
mutation associated with dolutegravir resistance, and
therefore, suggest that dolutegravir-containing antiretro-
viral regimens will be effective in Nigeria.

Our study further emphasizes the high genetic diversity of
HIV-1 in Nigeria and that CRF02_AG and subtype G are
the dominant circulating forms of HIV-1 in Nigeria.
These two circulating forms of the virus are largely
driving the epidemic in the country.
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