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Fatigability during volitional walking in incomplete 
spinal cord injury: cardiorespiratory and motor 
performance considerations

Fatigue, Fatigability, and Spinal Cord Injuries 
(SCI)
Fatigue is a symptom describing the lack of physical or 
mental energy interfering with usual or desired activities and 
assessed using self-report questionnaires (Fawkes-Kirby et 
al., 2008; Hammell et al., 2009; Craig et al., 2012; Wijesuriya 
et al., 2012; Nooijen et al., 2015; Smith et al., 2016; Anton 
et al., 2017). Fatigue is common among those with SCI and 
negatively impacts health-related quality of life (Wijesuriya et 
al., 2012). Increased fatigue following SCI is related to pain, 
depression and hopelessness, side effects of medications, poor 
sleep quality, spasticity, poor posture, diet, anxiety, and poor 
self-efficacy (Hammell et al., 2009; Craig et al., 2012). The 
time course of fatigue remains high throughout rehabilitation 
and into community living (Anton et al., 2017). Fatigue has 
also been shown to be negatively associated with participation 
even after controlling for pain, depressive mood, comorbidi-
ties, and level of injury (Smith et al., 2016). Some studies have 
demonstrated that individuals with incomplete injuries are at 
greater risk of fatigue compared to complete injuries (Noo-
ijen et al., 2015; Anton et al., 2017). These findings suggest a 
multitude of factors contributing to the complexity of fatigue 
experienced after SCI and underscore the importance of con-
trolling for fatigue status across SCI recovery. 

Performance fatigability refers to a decline in objective 
measures of performance over a specified period of time 
(Enoka and Duchateau, 2016). Experiments performed on 
paralyzed skeletal muscle have demonstrated greater perfor-
mance fatigability in SCI compared to non-injured persons 
due to alterations in morphological, contractile, and met-
abolic processes (Shields, 1995; Pelletier and Hicks, 2011; 

Papaiordanidou et al., 2014). In a seminal study, Shields 
(1995) observed reduced relaxation time, increased type 
II fiber characteristics, and reduced oxidative capacity in 
chronically paralyzed human soleus muscle. More recently, 
mRNA expression of regulatory genes associated with mus-
cle atrophy and type II muscle fibers were shown to be up-
regulated in response to low force stimulation (3 Hz) fatigue 
protocol while genes associated with oxidative function and 
type I muscle fibers were repressed in chronic SCI (Petrie et 
al., 2014). These data posit skeletal muscle atrophy, shifts in 
muscle fiber-type characteristics from type I to type II, and 
reduced oxidative skeletal muscle capacity as factors con-
tributing to increased performance fatigability in paralyzed 
skeletal muscle following SCI. 

Fatigability associated with whole-body activity reflects 
the relationship between performance fatigability and 
changes in sensations associated with performance regu-
lation (i.e., perceived fatigability) (Dobkin, 2008; Eldadah, 
2010; Schnelle et al., 2012; Enoka and Duchateau, 2016). 
Time-to-exhaustion during constant-load arm cranking 
exercise is significantly reduced in those with paraplegia 
compared to able-bodied individuals (Al-Rahamneh and 
Eston, 2011). Ratings of perceived exertion in response to 
constant-load arm cycling was shown to have a strong lin-
ear relationship with time-to-exhaustion and develop more 
rapidly in those with SCI at the same relative intensities 
(Al-Rahamneh and Eston, 2011). In adults with chronic mo-
tor-incomplete SCI, elevated feelings of tiredness following 
prolonged self-selected volitional treadmill walking were re-
ported whereas the able-bodied group reported no changes 
in feelings of tiredness and in some instances reported feel-
ing more energetic (Figure 1) (Gollie et al., 2017b). This oc-
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curred despite the incomplete SCI group walking for signifi-
cantly less time at slower self-selected walking speeds. This 
was observed despite the incomplete SCI group walking for 
significantly less time at slower self-selected walking speeds. 
The greater sense of effort required to perform a given level 
of activity may prevent individuals with chronic motor-in-
complete SCI from engaging in activities such as walking 
despite the potential for regaining ambulatory function after 
injury (Burns et al., 1997; Yang and Musselman, 2012). 

Cardiorespiratory Limitations and Fatigability 
The ability to overcome disturbances to metabolic homeo-
stasis is an essential characteristic of fatigue resistance. Effi-
cient and rapid cardiorespiratory responses to activity-induced 
metabolic stress prevents the accumulation of metabolic by-
products implicated in muscular fatigue (Keyser, 2010; Grassi 
et al., 2011). The challenge imposed on the cardiorespiratory 
and skeletal muscle bioenergetic systems is dependent upon 
the task and the intensity at which the task is performed. In 
non-pathological conditions, skeletal muscle oxidative capac-
ity is a primary contributor to exercise tolerance during pro-
longed submaximal whole-body activity (Davies et al., 1981; 
Holloszy and Coyle, 1984; Bassett and Howley, 2000; Poole et 
al., 2008; Grassi et al., 2011). In the presence of SCI, the com-
bination of compromised skeletal muscle oxidative capacity 
and limitations in oxygen delivery due to impaired cardiac 
output may contribute to elevated fatigability (Dearwater et 
al., 1986; Hjeltnes, 1986; West et al., 2013b). 

Energetic cost of activity and exercise capacity after SCI is 
shown to be related to the completeness and level of injury 
(Hjeltnes, 1986; Davis, 1993; Collins et al., 2010). Those with 
lower-level incomplete tetraplegia are reporter to have great-
er energy expenditure during wheeling outside compared to 
those with complete SCI (Collins et al., 2010). In paraplegics 
performing arm cranking at 80 watts, those with higher-lev-
el injuries experience elevated energy expenditure com-
pared to lower-level injuries (Collins et al., 2010). During 
prolonged constant work-rate submaximal arm exercise 
paraplegics with injuries below T6 were able to compensate 
for lower stroke volume by increasing heart rate to maintain 
cardiac output and thus oxygen delivery (Hopman et al., 
1993). Conversely, cardiac output is compromised in indi-
viduals with higher level injuries due to reduced stroke vol-
ume and the inability to increase heart rate during maximal 
arm-crank and wheelchair activity (Hopman et al., 1993; 
Hostettler et al., 2012). Furthermore, decreased reactivity 
and vascular atrophy are also observed after SCI impeding 
hemodynamic responses to contracting muscle (Olive et al., 
2002, 2003; West et al., 2013a). 

The rate of oxygen uptake at the rest-to-work transition 
(i.e., oxygen uptake kinetics (VO2 on-kinetics)) is used to 
gain information into the dynamic processes involved in the 
delivery and utilization of oxygen (Poole and Jones, 2012). 
The primary component (i.e., phase II; oxygen uptake time 
constant (τVO2)) of the VO2 on-kinetic response is suggest-
ed to reflect oxidative metabolic processes associated with 
active skeletal muscle in healthy individuals (Grassi et al., 

2011). The on-kinetic response of VO2 is prolonged in in-
dividuals with SCI during electrically stimulated unloaded 
leg cycling with lower than expected heart rates (Barstow et 
al., 1995). When comparing trained individuals with SCI to 
healthy controls, VO2 on-kinetics were reported to be sim-
ilar during upper extremity exercise while cardiac output 
was greater in the control group and arterio-venous oxygen 
oxygen difference (a-vO2 difference) was greater in the SCI 
group (Fukuoka et al., 2002). During self-selected volitional 
treadmill walking τVO2 was 55.4% slower in individuals with 
chronic motor-incomplete SCI compared to able-bodied 
controls (Gollie et al., 2017b). The delayed τVO2 results in a 
greater oxygen deficit at the onset of muscular activity and 
therefore accelerating the accumulation of metabolic byprod-
ucts associated with activity termination due to an increased 
reliance on anaerobic energy metabolism (Figure 2). The 
evidence from VO2 on-kinetic responses following SCI posit 
both reductions in skeletal muscle oxidative properties and 
oxygen delivery as potential mechanisms contributing to 
compromised oxidative metabolism (Barstow et al., 1995; Fu-
kuoka et al., 2002; Gollie et al., 2017b). 

The autonomic nervous system plays a key role in regu-
lation of fatigability in response to metabolic disturbances. 
Feedback from group III/IV muscle afferents stimulates cir-
culatory and ventilatory responses to increase muscle blood 
flow and oxygen delivery to meet the energetic demands of 
activity (Hjeltnes, 1986; Amann et al., 2015). During exhaus-
tive activity group III/IV muscle afferents have been shown 
to limit output of spinal motoneurons through inhibition 
of the central nervous system (CNS) (Amann et al., 2015). 
After SCI, peak oxygen consumption (VO2peak) has been 
shown to be correlated with minute ventilation regardless 
of the level of injury (Hjeltnes, 1986). West et al. (2015) 
demonstrated greater endurance performance in paracy-
cling athletes with autonomic incomplete cervical SCI com-
pared to those with autonomic complete SCI. Athletes with 
autonomic incomplete cervical SCI also had higher maximal 
and average heart rates during competition than athletes 
with autonomic complete cervical SCI (West et al., 2015). 
In addition, thermoregulatory mechanisms are potentially 
impaired below the level of injury increasing the possibility 
of hyperthermia (Theisen, 2012). This highlights the impor-
tance of the autonomic nervous system in the regulation 
of oxygen delivery and utilization and thermoregulation in 
response to activity and thus fatigability severity after SCI. 
However, disassociations between changes in perceived 
ratings of effort and physiological responses have been ob-
served during activity suggesting perceived fatigability may 
not be solely reflective of physiological processes (Chaudhuri 
and Behan, 2004; Lewis et al., 2007; Au et al., 2017). 

Implications of Fatigability on Walking 
Performance and Recovery  
The redundancy of the motor system allows a given motor 
task to be accomplished through a variety of different motor 
solutions. In the presence of fatigue, interjoint and inter-
muscular coordination patterns adapt to compensate for 
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Figure 2 Oxygen uptake kinetic (VO2 on-kinetics) response comparing the oxygen deficit (O2 deficit) for a subject with chronic motor-incomplete spinal 
cord injury (iSCI) (A) and an able-bodied reference subject (B) during 6-minute constant work-rate treadmill walking at a self-selected walking speed.
The iSCI subject had a self-selected treadmill walking speed of 0.31 m/s, τVO2 of 54.6 seconds, and amplitude change in oxygen uptake of 616.5 mL/min. The 
able-bodied subject had a self-selected treadmill walking speed of 1.34 m/s, τVO2 of 29.3 seconds, and amplitude change in oxygen uptake of 694.6 mL/min. 
Adapted by permission from Gollie JM, Herrick JE, Keyser RE, Chin LMK, Collins JP, Shields RK, Panza GS, Guccione AA (2017) Fatigability, oxygen uptake ki-
netics and muscle deoxygenation in incomplete spinal cord injury during treadmill walking. Eur J Appl Physiol 117(10):1989-2000. Copyright © 2017 Springer.

Figure 1 Perceived (A) and performance (B) fatigability for chronic 
motor-incomplete spinal cord injured (iSCI) and able-bodied (REF) 
adults during self-selected volitional treadmill walking for 30 minutes or 
until exhaustion.
Perceived fatigability was assessed at the completion of walking using a 
7-point scale (7 = extremely more tired; 6 = somewhat more tired; 5 = a lit-
tle more tired; 4 = neither tired nor energetic; 3 = a little more energetic; 2 
= somewhat more energetic; 1 = extremely more energetic) (Schnelle et al., 
2012). Performance fatigability was determined by time walked endurance 
assessed in second(s). Open circles represent individual subject response 
and solid black bars represent group median. Adapted by permission from 
Gollie JM, Herrick JE, Keyser RE, Chin LMK, Collins JP, Shields RK, Panza 
GS, Guccione AA (2017) Fatigability, oxygen uptake kinetics and muscle 
deoxygenation in incomplete spinal cord injury during treadmill walking. 
Eur J Appl Physiol 117(10):1989-2000. Copyright © 2017 Springer.

local effects of fatigue and to maintain essential movement 
characteristics necessary for successful task execution (Cote 
et al., 2008). The actions selected as part of the motor rep-
ertoire are influenced, in part, by the mechanical and ener-
getic constraints of the person. Sparrow and Newell (1998) 
hypothesized metabolic energy regulation as a fundamental 
principle underlying the control and learning of motor skills 
(Sparrow and Newell, 1998). Thus, elevated fatigability due 

to cardiorespiratory limitations may contribute to motor 
control strategies and walking performance following SCI 
(Figure 3). 

Locomotor training aims to enhance walking performance 
through the promotion of physiological and behavioral 
adaptations (Behrman and Harkema, 2007; Harkema et al., 
2012; Gollie and Guccione, 2017; Gollie et al., 2017a). From 
a performance outcomes standpoint, locomotor training 

Figure 3 Cardiorespiratory limitations viewed within the context of constraint interactions contributing to fatigability severity impacting 
perception-action coupling and walking performance following chronic motor-incomplete spinal cord injury. 
Adapted by permission from Davids K, Glazier P, Araújo D, Bartlett R (2003) Movement systems as dynamical systems: The functional role of vari-
ability and its implications for sports medicine. Sports Med Auckl NZ 33(4):245-260. Copyright © 2003 Springer.
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has been shown to improve both walking speed and endur-
ance in individuals with incomplete SCI (Alexeeva et al., 
2011; Mehrholz et al., 2012; Morawietz and Moffat, 2013). 
Despite numerous studies demonstrating increased walking 
endurance only modest improvements cardiorespiratory 
fitness have been reported (Alexeeva et al., 2011). Interest-
ingly, the demand placed on the cardiorespiratory system 
seems to play a key role in walking recovery (Yang et al., 
2014; Leech et al., 2016; Leech and Hornby, 2017). While 
enhanced metabolic responses to volitional activity may 
underlie these findings, moderate-to-high intensity training 
has also been shown to be associated with elevated levels of 
serum brain-derived neurotrophic factor (BDNF) (Leech 
and Hornby, 2017). From the perspective of mechanical and 
metabolic constraints, intralimb coordination variability is 
shown to decrease (i.e., coordination becomes more stable) 
with no changes in intralimb coordination pattern in those 
with incomplete SCI (Awai and Curt, 2016) in response to 
rehabilitation. Furthermore, walking becomes more eco-
nomical following periods locomotor training (Kressler et 
al., 2013; Gollie et al., 2017a). 

Recently a framework has been proposed which attempts 
to account for both physiological adaptation and motor 
learning in incomplete SCI following overground locomo-
tor training (Gollie and Guccione, 2017). According to this 
framework, movement after SCI is viewed as an emergent 
phenomenon produced from the interactions of the organ-
ism, task, and environment (Davids et al., 2003; Gollie and 
Guccione, 2017). Modifications of constraints (i.e., organis-
mic, task, environment), either independently or in combi-
nation with one another, alters the affordances available to 
the individual for successful locomotion (Vaz et al., 2017). 
Similarly, the practice of the activity in its entirety allows for 
exploration of the most optimal movement solutions (Gol-
lie and Guccione, 2017). Given the potential constraints of 
the cardiorespiratory system during activity following SCI, 
interventions may aim to increase cardiorespiratory fitness 
prior to engaging in locomotor training. This would enable 
patients to engage in exercises of greater intensities and vol-
ume accelerating the motor learning process (Schmidt and 
Lee, 2014). On the other hand, interventions may emphasize 
simultaneous improvements in cardiorespiratory fitness and 
motor function through appropriate structuring and design 
of locomotor programs. At present, it is not clear how to most 
appropriately design interventions to address both cardiore-
spiratory adaptations and motor performance concurrently. 

Conclusion
Fatigability presents a challenge to activity performance in 
those with SCI. Compromised cardiorespiratory adjust-
ments to whole-body volitional activity may contribute to 
fatigability severity after SCI. The potential for altered auto-
nomic nervous system function increases the risk for greater 
susceptibility to fatigability in responses to activity. The 
increased energy expenditure and injury to the nervous sys-
tem may impact the motor solutions available to accomplish 
walking. Additionally, reductions in training intensities and 

volume as a result of increased fatigability may delay the 
motor learning process. Locomotor training approaches de-
signed to reduce fatigability and enhance aerobic capacity in 
combination with motor learning may to be advantageous 
for promoting functional recovery after SCI. Future research 
is required to advance the understanding of the relationship 
between fatigability, cardiorespiratory function and motor 
performance following SCI. 
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