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Abstract

This study aimed to examine the macrophage phenotype and its relationship to renal func-

tion and histological changes in human DN and the effect of TREM-1 on high-glucose-

induced macrophage activation. We observed that in renal tissue biopsies, the expression

of CD68 and M1 was apparent in the glomeruli and interstitium, while accumulation of M2

and TREM-1 was primarily observed in the interstitium. The numbers of CD68, M1, and M2

macrophages infiltrating in the DN group were increased in a process-dependent manner

compared with the control group, and the intensities of the infiltrates were proportional to the

rate of subsequent decline in renal function. M1 macrophages were recruited into the kidney

at an early stage (I+IIa) of DN. The M1-to-M2 macrophage ratio peaked at this time,

whereas M2 macrophages predominated at later time points (III) when the percentage of

M1/M2 macrophages was at its lowest level. In an in vitro study, we showed that under high

glucose conditions, macrophages began to up-regulate their expression of TREM-1, M1,

and marker iNOS and decreased the M2 marker MR. However, the above effects of high-

glucose were abolished when TREM-1 expression was inhibited by TREM-1 siRNA. In con-

clusion, our study demonstrated that there was a positive correlation between the M1/M2

activation state and the progress of DN, and TREM-1 played an important role in high-glu-

cose-induced macrophage phenotype transformation.

Introduction

Diabetes mellitus (DM) is one of the most common chronic diseases and, increasingly, a

major cause of morbidity and mortality worldwide. DM with diabetic complications is becom-

ing a highly important public health issue. Diabetic nephropathy (DN) is the most severe renal

complication of DM, and it remains the largest single cause of end-stage renal disease (ESRD)

[1–3]. Although DN is traditionally considered a nonimmune disease, accumulating evidence

now indicates that immunological and inflammatory mechanisms play a significant role in its

development and progression [3].
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In experimental and human DN, macrophages are key inflammatory cells medicating renal

injury through a variety of mechanisms, including production of reactive oxygen species, cyto-

kines and proteases [4]. Previously, the degree of macrophage accumulation was thought to

correlate with the severity of renal injury and be predictive of disease progression [5]. How-

ever, macrophages are heterogeneous and plastic cells. In response to cytokine cues, these cells

undergo differentiation into two distinct subsets that are categorized as either classically acti-

vated (M1) or alternatively activated (M2). M1 (induced by IFN-γ or LPS) are associated with

high microbicidal activity, proinflammatory cytokine production and tissue injury, while M2

(stimulated by IL-4 or IL-13) releases trophic cytokines, down-regulates inflammation and

promotes wound healing [6–8]. More importantly, macrophages do not remain committed to

a single activation [9]. M1–M2 polarization of macrophages is a highly dynamic process, and

the phenotype of polarized macrophages can be reversed under physiological and pathological

conditions [6]. This finding emphasizes the need for further research investigating macro-

phage function and phenotype at different time points during the course of the kidney disease

[10].

Triggering receptor expressed on myeloid cells (TREM) is a newly identified activating

receptor of the immunoglobulin superfamily present on human myeloid cells [11]. TREM-1,

the first member of the TREM family to be identified, is selectively expressed on neutrophils,

monocytes and macrophages and implicated in the amplification of inflammatory responses

by coordinating with the signal pathway mediated by Toll-like and NOD-like receptors [12,

13]. Recent studies showed that in obstructive nephropathy, TREM-1 can modulate macro-

phage polarization by inhibiting M1 macrophage activation and enhancing M2 macrophage

activation, and plays a pivotal role in the development of the disease [14].

Therefore, the aim of the current study was to examine macrophage function and pheno-

type at different pathological stages during the process of DN and under high glucose condi-

tions to investigate the role of TREM-1 on the macrophage activation state.

Materials and methods

Patients and pathological classification

IEC for Clinical Research of Zhongda Hospital, Affilited to Southeast University (2015ZDKYS

B002) approved this study. We retrospectively studied 46 patients with DN who were con-

firmed by diagnosis of a renal biopsy between 2011 and 2015 at Southeast University School of

Medicine Affiliated Zhong Da Hospital. The other four normal renal tissue specimens, taken

from patients with renal trauma or renal tumors, were the control group. Pathologic classifica-

tion of diabetic nephropathy was referred to Thijs W’ article which pubilshed on JASN in 2010

[15].

Renal pathology

Kidney tissue from the DN and control were fixed in 10% formalin solution and embedded in

paraffin. Sections (2 μm) were stained with the periodic acid-Schiff reagent and counterstained

with hematoxylin. Digital images of glomeruli and interstitium areas were obtained from light

microscopy (magnification ×200).

Immunohistochemistry

Immunohistochemistry was performed on formalin-fixed, paraffin-embedded sections (3 μm)

using a microwave based antigen retrieval technique. Sections were treated with 0.3% hydro-

gen peroxide to quench the endogenous peroxidase activity. Titrated primary antibodies
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against the following antigens were used: for humans, anti-CD68 (Novues, USA), anti-MR

(R&D Systems, USA), anti-TREM-1 (Sigma, USA). Next, the samples were incubated with the

appropriate secondary antibodies. The immunostaining was visualized using the diaminoben-

zidine substrate system, and the slides were counterstained with hematoxylin. CD68+, MR+

and TREM-1+ glomerular and interstitial infiltrating cells in the cortex were counted blindly

in at least 5 high-power (magnification ×400) fields. The number of M1 macrophages was

equal to the number of CD68+ macrophages minus the number of MR+ macrophages. Data

were converted to cells/gcs and cells %/area.

Immunofluorescence

Antigens were retrieved by microwaving paraffin-fixed sections (3 μm). CD68, MR and iNOS

antibodies from Abcam were detected using goat anti-rabbit and goat anti-mouse secondary

antibodies (Jackson, America). After staining the nuclei with DAPI, double-immunostaining

for CD68 and iNOS, CD68 and MR were visualized with a fluorescence microscope (magnifi-

cation ×400).

Cell culture

Murine macrophage cells (RAW264.7), purchased from Shanghai Bogoo Biotechnology Com-

pany (Shanghai, China), were routinely maintained in RPMI 1640 media (containing 11.1 mM

glucose) supplemented with 10% fetal bovine serum (Sciencell, USA) and incubated at 37˚C in

5% CO2. Firstly, RAW264.7 cells were stimulated with 25 mM high glucose for 24 h. Second,

in order to examine the effect of TREM-1 on high-glucose induced macrophage polarization,

the RAW264.7 cells were treated with TREM-1 siRNA (Invitrogen, America) and the cells

were washed three times with PBS followed by RNA harvest for quantitative real-time poly-

merase chain reactions (RT-PCR) and the proteins for western blotting.

Treatment of cells with siRNA

TREM-1 siRNA and disorderly NC sequences were designed and synthesized and the TREM-

1 siRNA sequences were as follows: TREM-1 siRNA-1 (sense: 5'-CCUGGUCUUGGAGUCAC
UAUCAUAA-3', antisense: 5'-UUAUGAUAGUGACUCCAAGACCAGG-3'), TREM-1 siRNA-

2 (sense: 5'-UCVVGUGACAGACUCUGGAUUGUAU-3', antisense: 5'-AUACAAUCCAGAGU
CUGUCACUUGA-3'), TREM-1 siRNA-3 (sense: 5'-CAUUGUUCUAGAGGAAGAAAGGUAU-
3', antisense: 5'-AUACCUUUCUUCCUCUAGAACAAUG-3'). RAW264.7 macrophages were

transfected with either non-specific siRNA oligomers or Stealth siRNAs targeting TREM-1

mRNA by using the RNAiMAX reagent according to the manufacturer’s instructions. Before

transfection, the cells were seeded in 6-well plates at 1×105 cells/well and incubated in RPMI

1640 containing 10% FBS for 24 h. After the cells achieved 50% to 70% confluence, they were

washed twice with PBS before adding fresh medium, and siRNA-lipid complexes containing

TREM-1 siRNA were formed by incubating 50 pmol of each siRNA duplex with 7.5 μl of

RNAiMAX for 20 min at room temperature in a total volume of 250 μl of RPMI without anti-

biotics. The liposomes were added to the cells, and siRNA treatment was continued for 24 h.

Silencing of TREM-1 at the gene and protein level was verified by RT-PCR and western

blotting.

Quantitative RT-PCR

TRIzol (TaKaRa, Japan) was used to isolate total cellular RNA from RAW264.7 cells according

to the manufacturer’s protocol. According to the manufacturer’s recommendations, cDNA
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synthesis was performed using the High-Capacity cDNA Reverse Transcription Kit (Thermo

Fisher Scientific, China) and SuperScript III Reverse Transcription (Thermo Fisher Scientific,

China). For the RT-qPCR, the SyBR Select Master Mix and the ViiA 7 instrument was been

used from Thermo Fisher Scientific. All of the PCR primers were synthesized by Shanghai

Generay Biotechnology Company (Shanghai, China). The primer sequences were as follows:

Mouse iNOS (5'-TCTTGGAGCGAGTTGTGGATGT-3' forward; 5'-TAGGTGAGGGCTTG
GCTGAGTG-3' reverse), mouse MR (5'-CCTCAGCAAGCGATGTGCCTAC-3' forward;

5'-GTCCCCACCCTCCTTCCTACAA-3' reverse), mouse TREM-1(5'- GACTGCTGTGCG
TGTTCTTTG -3' forward; 5'- GCCAAGCCTTCTGGCTGTT -3' reverse), and β-actin

(5'-CCCAAAGCTAACCGGGAGAAG-3' forward; 5'-GACAGCACCGCCTGGATAG-3'
reverse). Real-time PCR was performed on an ABI PRISM 7300 real-time PCR System

(Applied Biosystems, USA). The reaction conditions were as follows: melting for 15 minutes at

37˚C, 5 seconds at 95˚C and 40 cycles of two-step PCR including melting for 5 seconds at

95˚C and annealing for 31 seconds at 60˚C. The 2-44Ct method was used to determine the

relative amounts of product using β-actin as an endogenous control.

Western blot analysis

Total protein was extracted from the RAW264.7 cells using a Total Cell Protein Extraction Kit

(Kaiji, Nanjing, China) according to the to the manufacturer’s instructions. Proteins (70 μg)

were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

and transferred to a nitrocellulose membrane. The membranes were then incubated overnight

at 4˚C with the primary antibodies against iNOS, MR, TREM-1 and β-actin. After three washes

with PBST/5 min, horseradish peroxidase-conjugated secondary antibody at a 1:5000 dilution

was added to incubate with the nitrocellulose membrane for 1–2 hours. Finally, the mem-

branes were visualized with an enhanced chemiluminescence advanced system (GE Health-

care, UK) and captured on X-ray film. Immunoreactive bands were quantified with

densitometry using ImageJ software (NIH, USA).

Flow cytometry

RAW264.7 cells obtained after different intervention conditions and characterized by fluores-

cence activated cell sorting (FACS) analysis after immunostaining with monoclonal antibodies

against the M1 markers APC-CD11b (0.20μg per million cells in 100μl volume, Biolegend,

USA) or M2 markers APC-CD206 (0.20μg per million cells in 100μl volume, Biolegend, USA),

FITC- CD68 (0.20μg per million cells in 100μl volume, Biolegend, USA).

Statistical analysis

Results are expressed as the mean ± standard deviation (SD). Statistical analysis was assessed

using one way analysis of variance followed by the least-significant difference test or Tamha-

ne’s test and was analyzed with SPSS 16.0. Associations between parameters were examined by

calculating Spearman’s correlation coefficient. A p-value <0.05 was considered to be

significant.

Results

Changes of renal histopathology, macrophage phenotype and TREM-1

expression in human DN

Human DN displayed a severe kidney morphological injury compared with the control group

and was characterized by glomerular hypertrophy, thickening of the glomerular basement
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membrane and accumulation of extracellular matrix that finally resulted in tubulointerstitial

and glomerular fibrosis and Kimmelstiel–Wilson lesions (Fig 1). As the disease progresses,

serum creatinine and proteinuria gradually increase (Fig 1K and 1L).

In biopsies of renal tissue with human diabetic nephropathy, with the progress of DN,

CD68, M1 macrophages (iNOS), M2 macrophages (MR) and TREM-1 were mainly detected

in interstitium and significantly increased compared with the control group. Moreover, the

expression of CD68, M1, M2, TREM-1 were significantly higher in DN late stage (III + IV)

than in DN early stage (I + IIa + IIb) (Figs 1 and 2).

Relationship between macrophage phenotype, TREM-1 and renal function

As shown in Fig 3, glomerular CD68, iNOS (an M1 macrophage marker) correlated with pro-

teinuria (r = 0.578, p< 0.001; r = 0.578, p < 0.001) and serum creatinine (r = 0.697, p< 0.001;

r = 0.697, p< 0.001). Likewise, there were positive correlations between interstitial CD68,

iNOS (an M1 macrophage marker), MR (an M2 macrophage marker), TREM-1, proteinuria

(r = 0.578, p< 0.001; r = 0.321, p = 0.030; r = 0.582, p< 0.001; r = 0.585, p< 0.001) and serum

creatinine(r = 0.697, p< 0.001; r = 0.461, p = 0.001; r = 0.644, p< 0.001; r = 0.553, p< 0.001).

Macrophage activation state during the different pathological phases of

DN

As shown in Fig 3, positive correlations were observed between the protein expression of

TREM-1 and M1 (r = 0.337, p = 0.022). M1/M2 macrophage infiltration strongly correlated

with the progress of DN. An interesting feature of the early phase (I+IIa) of DN was an

increase in M1 macrophage accumulation, and the percentage of M1/M2 macrophages

reached its maximum. However, during the late period (III) of DN, M2 macrophage was

increased, and the ratio of M1 and M2 macrophage was at its lowest level.

High glucose induces macrophages towards a M1 phenotype and increases

the expression of TREM-1 in vitro

To investigate the effect of high glucose on the macrophage phenotype, RAW264.7 cells were

stimulated with 25 mM high glucose for 24 h, and the iNOS (an M1 marker), MR (an M2

marker) and TREM-1 were measured. iNOS and TREM-1 expression were up-regulated,

while MR was down-regulated by high glucose compared with the control group. No signifi-

cant differences in the levels of iNOS, MR or TREM-1 were found between the mannitol and

the control group, which excluded the influence of hyperosmolarity (Fig 4).

TREM-1 siRNA inhibits M1 macrophage activation and enhances M2

macrophage activation in vitro

To determine the role of TREM-1 in the high-glucose-induced macrophage activation state,

TREM-1-siRNA was administered to the RAW264.7 cells to inhibit TREM-1 and a non-target

control (NTC) siRNA was used to eliminate the non-specific effects of the transfection

reagents. Compared with the control group, the levels of transcription and protein signifi-

cantly decreased in all three TREM-1 siRNA groups, whereas no significant differences were

observed between the control and NTC siRNA group. The inhibition ratios of TREM-

1-siRNA-1, 2 and 3 were 89.2%, 70.4% and 63.7%, respectively. Therefore, we used TREM-

1-siRNA-1 as the best intervention siRNA (Fig 5A and 5B).

As shown in Fig 5, TREM-1 knockdown significantly inhibited the high glucose induced

increase in iNOS mRNA (high-glucose versus TREM-1-siRNA: 5.048 ± 0.645 versus

Macrophage phenotype and its relationship with renal function
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Fig 1. Histopathological features and the expression of CD68, MR, and TREM-1 in the kidneys of diabetic nephropathy patients. A: PAS stains of patients’ renal

tissues (×200, bar = 100μm). B–E: Immunohistochemical staining of CD68, MR and TREM-1 (black arrows) in glomeruli and the interstitial areas (×400, bar = 50μm).).

F–H: Quantification of the number of CD68, MR TREM-1. The data are presented as the mean±SD (n = 6 per group). ap<0.05 vs. control, bp<0.05 vs. I+IIa+IIb.

https://doi.org/10.1371/journal.pone.0221991.g001
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2.260 ± 0.062) and decrease in MR mRNA expression (high-glucose versus TREM-1-siRNA:

1.042 ± 0.036 versus 2.214 ± 0.083). The data indicated that inhibition of TREM-1 expression

eliminated the high glucose-induced macrophage phenotype switch to M1. The changes in the

protein expression levels were in keeping with those of the mRNA.

Fig 2. Identification of M1 macrophages in diabetic glomeruli and interstitium. A: Immunofluorescent staining for M1 macrophages (iNOS+CD68) and M2

macrophages (MR+CD68) in control and DN patients(×400, bar = 50μm).). The data are presented as the mean±SD (n = 6 per group). ap<0.05 vs. control, bp<0.05 vs.

I+IIa+IIb.

https://doi.org/10.1371/journal.pone.0221991.g002
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Discussion

DM is one of the main risk factors for developing chronic kidney disease. The risk of develop-

ing nephropathy is approximately 30% and 20% in DM1 and DM2, respectively. DN is the

most common cause of ESRD, and both the incidence and prevalence of DN continue to

Fig 3. Correlations between CD68, TREM-1, M1/M2 macrophages and serum creatinine or proteinuria. A–L: The correlation between different markers and renal

function. r = Spearman’s correlation coefficient. N–R: Correlations between M1/M2 activation state and the progress of DN. S: The percentage of M1/M2 macrophages

at different stages of DN. The data are presented as the mean±SD (n = 6 per group). ap<0.05 vs. M1(I+IIa), bp<0.05 vs.M1(III).

https://doi.org/10.1371/journal.pone.0221991.g003
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Fig 4. The effect of high glucose on M1/M2 macrophage-specific markers and TREM-1 expression. RAW264.7 cells were treated with 25mM glucose (HG) for 24h.

The cells were collected for western blot (A and B) and RT-PCR (C) and flow cytometry (D, E and F) analysis. β-actin was used as an internal control. A concentration of

11.1mM glucose was used as the control. Results are the mean±SD (n = 3). ap< 0.05 vs control.

https://doi.org/10.1371/journal.pone.0221991.g004
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increase [2, 3, 16]. The molecular mechanisms responsible for its development are complex

and not completely understood [16, 17]. The classic view considered metabolic and hemody-

namic alterations as the main causes lead to renal injury in diabetes [3]. However, recent stud-

ies have shown that inflammation-related molecules and pathways are critically involved in

the pathophysiology of DN. while a substantial increase in tissue macrophages is a common

feature of kidney disease and play an important role in the process [18, 19]. Chow et al. showed

macrophages account for almost all kidney leucocyte infiltration in this disease and their accu-

mulation is associated with both the progression of diabetes (hyperglycemia, glycosylated

hemoglobin) and the severity of kidney damage (histological lesions, renal dysfunction) in

Type 2 diabetic db/db mice [4, 20].

Our study results suggest that CD68, M1 and M2 macrophages infiltrated into the glomer-

uli and interstitium, even in the early stage of DN with nonspecific histological renal changes.

The number of infiltrations was higher than that in the control group, increased progressively

with the duration of diabetes and was correlated with serum creatinine and proteinuria. These

results are consistent with both human and experimental studies, and establish the importance

of macrophages in the progression of DN. A body of evidence supports the hypothesis that

macrophages can induce renal injury through interacting with resident renal cells or be acti-

vated by components of the diabetic milieu, which lead to the production of a host of proin-

flammatory and profibrotic factors [4, 21, 22], but direct proof of the role and mechanism of

macrophages in the entire process of DN has been lacking.

Macrophages are heterogeneous and plastic cells, and adapt to their surrounding microen-

vironment by undergoing two different polarization states: the classically activated M1 pheno-

type and the alternatively activated M2 phenotype [23, 24]. The M1 phenotype is characterized

by high production of reactive nitrogen and oxygen intermediates and plays a central role in

inflammation and host defense. In contrast, M2 macrophages are considered to have immuno-

regulatory functions and to be involved in tissue remodeling, repair and healing [8, 24]. The

Fig 5. Effects of TREM-1 siRNA on M1/M2 macrophage-specific markers expression. RAW264.7 cells were treated with

25 mM glucose (HG) for 24 h. β-actin was used as an internal control. A concentration of 11.1 mM glucose was used as the

control. The data are presented as the mean±S (n = 3). ap<0.05 vs. control, bp<0.05 vs. HG.

https://doi.org/10.1371/journal.pone.0221991.g005
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identification of M1 and M2 macrophages relies on a combination of membrane receptors,

cytokines, chemokines, and effector mediators [25].

Wang et al. demonstrated that in severe combined immunodeficient (SCID) mice with

adriamycin nephropathy, injection of M1 macrophages stimulated with LPS worsened their

histological and functional injury, whereas administration of IL-4 and IL-13 activated M2

macrophages reduced the severity of renal damage and promoted repair [26, 27]. Furthermore,

Lee et al. observed an increase in the numbers of iNOS-positive pro-inflammatory (M1) mac-

rophages in the first 48 hours after ischemia/reperfusion injury, whereas arginase 1- and man-

nose receptor-positive non-inflammatory (M2) macrophages predominated during the

recovery stage, indicating that M2 plays an important role in injury repair [28]. These results

are consistent with the suggestion of Han et al. in that they found macrophage infiltration

decreased with an apparent change from a pro-inflammatory M1 phenotype to an alternatively

activated M2 phenotype during the fibrotic phase of rat crescentic glomerulonephritis [29].

Our previous study also found that streptozocin (STZ)-induced DN rats show increased M1

macrophages in the early stage of the disease, followed by progression of histopathological

lesions and renal dysfunction, while M2 macrophages inhibited inflammation and attenuated

podocyte impairment and facilitated wound healing [30, 31]. All of the above studies reveal

different diseases and changes in the renal microenvironments determine macrophage activa-

tion states, while the development and prognosis of kidney diseases are finally dominated by

macrophage phenotypes [32].

Our study showed the initial influx of macrophage is the M1 phenotype in the early stage (I

+IIa) of DN, and the ratio of M1 and M2 macrophages is at its highest level. However, in

response to progression of the disease, there is a subsequent switch to an alternatively activated

macrophage phenotype, and most of the interstitial macrophage infiltration is the M2 pheno-

type during the late stage (III) of DN when the percentage of M1/M2 falls to its lowest level.

This finding indicates that as DN progresses; macrophages undergo a phenotype shift with a

change from a classically activated M1 to an alternatively activated M2. This phenotypic switch

reflects a critical role for different macrophage states in the different pathological stages of DN.

Current clinical therapies for diabetic nephropathy target regulation of the development of

hyperglycemia, hyperlipidemia, and hypertension, but a large number of DM patients ulti-

mately progress to DN [33]. As a result, a search for techniques for modulating macrophage

activation based on the macrophage functional diversity is of great importance [34]. TREM-1

is a recently discovered cell surface receptor of the immunoglobulin superfamily member

selectively expressed on neutrophils and subsets of monocytes and tissue macrophages [35,

36]. Human TREM-1 is a 30 kDa glycoprotein [37]. This protein consists of a single extracellu-

lar immunoglobulin-like domain of the V-type, a transmembrane region, and a short cyto-

plasmic tail, and associates with DAP12 for signaling and function [38]. In response to

receptor ligation, activation of TREM-1/DAP12 signaling is implicated in the amplification of

inflammatory responses by potentiating the secretion of proinflammatory chemokines and

cytokines [13]. A recent study in a mouse model of experimental unilateral ureteral obstruc-

tion found loss of TREM-1 attenuated activation of M1 macrophages, resulting in reduced

renal pathology [14]. In addition, TREM-1 deficiency attenuated Kupffer cell activation by

down-regulating cytokine production and signal induction and controlled the development of

hepatocellular carcinoma [39].

In an in vivo study, we reported that TREM-1 expression in renal interstitium is signifi-

cantly correlated with the DN progression. In an in vitro study, under high glucose conditions,

RAW264.7 cells exhibited an M1 phenotype, expressing high iNOS and up-regulated TREM-1

but with inhibition of M2 marker MR. Intriguingly, after TREM-1 siRNA treatment, the M1

marker iNOS was decreased, while the M2 marker MR was increased, indicating that the
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absence of TREM-1 induced a switch in high glucose-induced macrophages from the M1 to

the M2 phenotype. Our data demonstrated that TREM-1 critically modulates macrophage

polarization.

Conclusions

This study established that the number of macrophages was significantly increased, and the

intensity of the infiltration correlated strongly with the classes of DN, and for the first time, we

demonstrated the M1/M2 activation state correlated strongly with the progress of DN, while

TREM-1 played a critical role in the high-glucose induced macrophage phenotype switch.

Taken together, these findings help to elucidate the different effects of macrophage phenotypes

in diabetic nephropathy.
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