
Overview
Gestational diabetes mellitus (GDM) refers to hypergly­
cemia that first presents during pregnancy and typically 
resolves itself post-partum. There are inadequate data on 
the prevalence of GDM; however, in 1988 it was esti­
mated that about 4% of pregnancies in the United States 
were complicated by diabetes, with 88% of these accoun­
ted for by GDM [1]. More recent data suggest that, as 
with the overall increased prevalence of diabetes, rates of 
GDM are significantly increasing [2]. For example, Dabelea 
and colleagues [3] examined trends in singleton pregnan­
cies from the Kaiser Permanente health maintenance 
organization of Colorado between 1994 and 2002 and 
noted that rates of GDM increased two-fold in all ethnic 

groups. Accurate data on the prevalence and incidence of 
GDM are likely to become available given that screening 
during pregnancy is almost routine and consistent diag­
nostic criteria are now being implemented [4].

Hyperglycemia during pregnancy, whether due to 
GDM or other forms of diabetes, has implications for 
mother, developing fetus, and child. Women diagnosed 
with GDM have a higher risk for future type 2 diabetes 
mellitus (T2DM) [5]. Kjos et al. [6] were the first to 
demonstrate that this risk was even higher in Hispanic 
women with previous GDM by showing that 45% of a 
cohort followed for 5 years post-partum developed 
T2DM despite plasma glucose returning to non-diabetic 
levels. The observation that previous GDM increases risk 
for future T2DM was subsequently confirmed in other 
ethnic groups [7]. Women with GDM have a higher rate 
of caesarean section, gestational hypertension, and large 
for gestational age deliveries [8]. Maternal diabetes has 
been shown to be associated with increased risk for 
macrosomia [8,9], and GDM-associated macrosomia is 
associated with increased rates of a variety of compli­
cations, including hypoglycemia and respiratory distress 
syndrome [10].

Pettitt et al. [11] were among the first to show the asso­
ciation between maternal hyperglycemia and increased 
risk for babies large for their gestational age or macro­
somia, with implications for additional morbidities in 
adulthood [12]. For example, Pima Indian women whose 
birth weight was over 4,500 g had a four-fold higher risk 
of developing GDM when they became pregnant as 
adults [12]. Also, in siblings born from pregnancies 
discordant for diabetes, but who were raised in similar 
environments, the sibling born from the diabetic preg­
nancy was more obese than the sibling born from the 
non-diabetic pregnancy [13].

New insights into pregnancy-related outcomes are now 
becoming available from the Hyperglycemia and Adverse 
Pregnancy Outcome (HAPO) study [14]. HAPO is a 
prospective observational study of over 25,000 pregnant 
women in nine countries who underwent an oral glucose 
tolerance test (OGTT; 75 g glucose administered orally, 
followed by blood sampling at 2 hours) at 24 to 32 weeks 
of gestation, with assessment of several maternal and 
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fetal outcomes. The HAPO study is already providing 
some new insights into the management of GDM [15] 
and has shown that body mass index (BMI), independent 
of glycemia, was associated with the frequency of excess 
fetal growth and pre-eclampsia [16]. The HAPO study 
should provide many new insights into the relationship 
between maternal hyperglycemia and pregnancy-related 
outcomes.

Here, I review the current state of knowledge regarding 
genetic susceptibility to T2DM and its implications for 
GDM. The physiological implications of mutations under­
lying monogenic forms of diabetes and polymorphisms 
underlying complex forms of diabetes are also considered 
(Table 1). The issue of whether GDM and T2DM are 
distinct diseases and whether genetic information can 
shed additional light on this controversy are discussed. 
Finally, a brief discussion of the clinical implications of 
genetic variation is provided.

The role of genetics
Evidence for a genetic basis
The study of genetics in GDM has been relatively lacking 
until the recent advent of genome-wide association 
(GWA) studies (see below). Such studies have been partly 
hampered by the lack of evidence for a genetic basis for 
GDM. That is not to say that GDM does not have a 
genetic basis, but that the ability to accurately assess 
familiality of GDM is limited. Twin concordance rates, 
familial risk estimates, or heritability studies have been 
used to provide evidence of a genetic basis for a given 
phenotype. Prospective studies are complicated by the 
need to study related individuals presenting with GDM, a 
very daunting task. Retrospective studies are also fraught 
with difficulties. The diagnostic criteria for GDM have 
changed over the years [4,17-20], complicating retrospec­
tive identification of GDM cases. Screening for GDM has 
not been a part of routine medical care until recently. 

These factors can lead to ascertainment bias and poor 
estimates of heritability. Finally, the very low prevalence 
of GDM, relative to the population and to other forms of 
diabetes, makes it difficult to accumulate sufficient 
samples for genetic studies.

Several studies have examined clustering of GDM with 
either type 1 or type 2 diabetes. For example, McLellan 
and colleagues [21] identified 14 women with a previous 
diagnosis of GDM with both parents available for study 
and noted that glucose intolerance was observed in 64% 
of the parents. Similarly, Martin et al. [22] showed that a 
higher than expected number of mothers with diabetes 
was observed in 91 women with GDM. These and other 
similar studies hint at the possibility of common genetic 
determinants for GDM, although the effect of in utero 
hyperglycemia on offspring with implications in adult­
hood cannot be discounted. We reported an estimated 
sibling risk ratio for GDM of 1.75, which was based on 
state-wide medical record information from the state of 
Washington [23]. Although this estimate suggests an 
increased sibling risk for GDM, it is likely this is an 
underestimate of the true risk given the methodological 
complications noted above.

Glucokinase
For a good description of candidate gene studies for 
GDM, see a recent review by Robitaille and Grant [24]. 
One issue regarding early genetic associations is that they 
rarely replicated across studies, partly owing to the fact 
that gene effects are relatively small and most candidate 
gene studies were under-powered. However, studies of 
monogenic forms of diabetes, specifically maturity-onset 
diabetes of the young 2 (MODY2), provided some of the 
first insights into the contribution of genetic variation to 
hyperglycemia observed during pregnancy and fetal 
outcomes. MODY2 is an autosomal dominant form of 
MODY due to mutations in glucokinase (GCK) [25-27]. 

Table 1. Characteristics and treatment modalities of different forms of diabetes mellitus

Characteristics Treatment modalities

MODY A series of autosomal dominant forms of diabetes. Mutations in genes 
predisposing to six different forms of MODY have been identified. 
MODY2, which results from mutations in glucokinase (GCK), is unique 
among MODYs in that it results in modest hyperglycemia that does 
not require pharmacological intervention. MODY is characterized by 
β-cell dysfunction in the absences of insulin resistance or obesity

MODY1, MODY3 and MODY4 are typically treated by oral 
hypoglycemics. MODY5 and MODY6 are typically treated using insulin 
therapy. MODY2 can be managed by lifestyle modification alone

GDM Hyperglycemia that presents during pregnancy and typically resolves 
itself post-partum. GDM is characterized by insulin resistance and 
β-cell dysfunction. Women with previous GDM are at high risk for 
future T2DM 

Lifestyle modification is the first choice to manage GDM. However, 
if glycemic control cannot be achieved, then pharmacological 
intervention, primarily insulin therapy, can be implemented

T2DM The predominant form of diabetes characterized by insulin resistance 
and β-cell dysfunction, typically accompanied by obesity

Lifestyle modification is recommended in all cases, but in most 
circumstances pharmacological intervention is required. Choice of 
therapies includes oral hypoglycemics, metformin, thiazolidinediones, 
GLP1 mimetics, and DPP-IV inhibitors. Combination therapy has also 
become more common in the management of T2DM
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Physiological studies revealed that the hyperglycemia 
observed in patients with MODY2 mutations is due to a 
rightward shift in the insulin secretory dose response to 
glucose [27]. This rightward shift indicates that MODY2 
patients can dynamically respond to glycemic excursions, 
but at a higher glucose set point. Thus, MODY2 patients 
are typically treated by lifestyle modification and remain 
modestly hyperglycemic relative to the non-diabetic 
population.

Early evidence suggested that females with GCK muta­
tions frequently presented with GDM, as suggested by 
the observation that 7 of 11 parous women from two 
pedigrees with a specific GCK mutation were diagnosed 
with GDM [28,29]. Hattersley and colleagues [30] posited 
that the association between low birth weight and subse­
quent insulin resistance in adulthood is genetically 
determined, presumably a result of GCK mutations, and 
introduced the ‘fetal insulin’ hypothesis. An important 
component to this hypothesis is that low insulin-
mediated fetal growth in utero is determined by a defect 
in glucose sensing by the pancreas due to GCK mutations, 
resulting in reduced insulin levels during critical periods 
of growth and development of the fetus. In partial support 
of this hypothesis, they showed [30] that maternal hyper­
glycemia due to GCK mutations was associated with an 
increased birth weight that was a consequence of additive 

effects of the maternal and the fetal GCK genotype 
(Figure 1). They further showed [31] that in sibling pairs 
discordant for GCK mutations, the sibling with the GCK 
mutation had a lower birth weight than the sibling 
without the mutation. They proposed that differences in 
birth weight in their sample were a consequence of a 
direct effect of fetal GCK mutations on fetal insulin 
secretion and an indirect effect of maternal hypergly­
cemia due to GCK mutations in the mothers.

It should be noted that common variants in GCK also 
seem to contribute to maternal hyperglycemia that 
subsequently affects birth weight. A large-scale meta-
analysis confirmed observations from previous studies 
that the -30 promoter variant in GCK (rs1799884) was 
associated with both fasting glucose and birth weight 
[32,33]. The presence of at least one copy of the maternal 
A allele increased birth weight by an average of 64 g 
compared with G/G homozygous individuals, with weak 
evidence for an additive effect of the maternal A allele 
[32]. Furthermore, analysis of a subset of the data 
suggested that the effect of rs1799884 on fasting glucose 
partly explains the association with birth weight. Fetal 
genotype information was available on a subset of the 
data, but this study [32] was not able to demonstrate any 
interaction between maternal and fetal GCK genotypes.

T2DM susceptibility loci and GDM
The introduction of GWA has transformed the study of 
complex disease genetics and GWA studies of T2DM 
have been at the forefront of this new era of human 
genetics. Only three T2DM susceptibility loci had been 
identified before 2007: two identified by candidate gene 
analysis [34,35] and one by fine-mapping of a linkage 
signal [36]. GWA meta-analyses of T2DM and of T2DM-
related quantitative traits have resulted in identification 
of 38 T2DM susceptibility loci so far; most have been 
identified within the past 3 years [37-50]. The assembly of 
ever larger samples coupled with the increasing appli­
cation of whole genome sequencing will probably identify 
additional susceptibility loci. However, even the currently 
known loci have illuminated new biology underlying 
T2DM, such as MTNR1B (encoding a member of the 
melatonin receptor family) [45,46] and CRY2 (encoding a 
member of the cryptochrome family that regulates the 
clock gene) [49], which point to regulation of ‘clock’ 
genes and circadian rhythms as contributing to T2DM 
pathogenesis.

How has the discovery of T2DM susceptibility loci 
contributed to our understanding of the genetics of GDM? 
Two groups have examined whether T2DM susceptibility 
loci identified by GWA are also associated with GDM 
[51,52]. Cho et al. [52] examined 18 single nucleotide 
polymorphisms (SNPs) in nine T2DM susceptibility loci 
and tested them for association with GDM in a large 

Figure 1. Effect of maternal and fetal GCK genotype on birth 
weight (mean ± SD). Birth weight decreases as a function of the 
presence (plus sign) or absence (minus sign) of GCK mutations in the 
mother and fetus. Adapted from Table 1 of [31].
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case-control sample of Koreans. CDKAL1, encoding a 
protein of unknown function but having high sequence 
homology with proteins regulating cyclin-dependent 
kinase 5, and CDKN2A and CDKN2B, two genes involved 
in cell cycle regulation, all showed strong evidence for 
association with GDM. Interestingly, the odds ratios for 
GDM were slightly higher (about 1.5) than the odds ratio 
of about 1.2 typically observed for T2DM. One possible 
reason for the larger effect size in this study may be the 
fact that the control group consisted of non-diabetic 
individuals of both sexes. Alternatively, these specific loci 
may make a larger contribution to the genetic risk for 
GDM than for T2DM. Other loci, HHEX (encoding a 
transcription factor involved in development of the 
ventral pancreas and possibly the liver), IGF2BP2 (encod­
ing a protein that binds to the 5’-UTR of insulin-like 
growth factor-2 mRNA and that may regulate transla­
tion), SLC30A8 (encoding a zinc transporter found on 
insulin secretory vesicles), and TCF7L2 (encoding a trans­
cription factor), showed modest evidence for association 
with GDM, with P-values ranging between 0.038 and 
0.003. The odds ratios for risk for GDM across these loci 
were similar to those observed for T2DM.

Similar to the study of Cho et al. [52], Lauenborg and 
colleagues [51] examined the association between 11 
T2DM susceptibility loci for association with GDM in a 
Danish case-control sample. In their study [51], only 
TCF7L2 showed strong evidence for association with 
GDM, with an odds ratio similar to that observed for 
T2DM. Two additional loci, CDKAL1 and HNF1B 
(encoding a member of the homeodomain-containing 
family of transcription factors), showed marginal associa­
tion with GDM. They subsequently derived an allelic 
score for each individual by counting up the number of 
‘risk’ alleles carried by each individual across the 11 loci 
and showed a difference in distribution of these allelic 
scores when comparing GDM with non-GDM women. 
Overall, they estimated the odds ratio for GDM to be 
1.18 per allele in their sample after adjusting for age and 
BMI. Also, there was a 3.3-fold increased risk for GDM 
when they compared women carrying fewer than nine 
risk alleles with those carrying more than 15 risk alleles. 
Lauenborg et al. [51] then tested whether these 11 loci can 
be used to predict GDM by comparing various logistic-
regression-based models, assuming the 11 loci worked in 
an additive manner, and computing the receiver-operator 
curve (ROC) area under the curve (AUC) as a metric of 
accuracy. Age and BMI alone had an AUC of 0.68, 
suggesting a relatively poor ability to predict GDM. The 11 
T2DM susceptibility loci had an AUC of 0.62, which was 
similar to the model with age and BMI alone. The AUC 
increased to 0.73 when the two were combined.

There are important points to be noted from the ROC 
results. First, not surprisingly, age and BMI alone are 

inadequate for discriminating GDM, suggesting that 
other clinical variables, such as the OGTT [4,53], may 
provide better discrimination. Second, many would view 
the near equivalent AUC between the non-genetic and 
genetic models as evidence for a lack of a genetic basis for 
GDM, but it should be noted that comparison across 
models used for ROC analysis cannot be used to assess 
whether a phenotype has a genetic basis or not. Further­
more, it is important to remember that these are known 
T2DM susceptibility loci and not necessarily suscepti­
bility loci for GDM. Thus, there is no a priori reason that 
these loci should provide adequate discrimination of 
GDM. Finally, the genetic variants identified by GWA are 
only landmarks indicating the possible presence of a 
T2DM susceptibility variant. Additional work is neces­
sary to identify the functional variant responsible for the 
increased T2DM risk and, once those variants are identi­
fied, it is possible the performance of genetic models may 
improve.

Implications for family members
The studies by Cho et al. [52] and Lauenborg et al. [51] 
suggest that GDM does not have a unique genetic pre­
disposition and, at a minimum, that there is some overlap 
in genetic susceptibility to GDM and T2DM. This, of 
course, does not exclude the possibility that there are 
some loci uniquely contributing to the risk for GDM. The 
overlap in genetic susceptibility may partly explain the 
increased risk for T2DM in women with previous GDM 
[5-7]. Given this observation, an important question is 
what the implication is for family members of a woman 
with previous GDM.

There are precious few family-based studies of diabetes 
and even fewer studies examining critical diabetes 
phenotypes, given the shift to GWA studies based on 
case-control samples. Although there are family-based 
studies of T2DM in Hispanics [54-63], so far none are 
examining interactions among genes or with environ­
mental exposures. Furthermore, only the Insulin Resistance 
Atherosclerosis Study Family Study [54] has direct 
measures of insulin resistance and insulin secretion, in 
their case based on frequently sampled intravenous 
glucose tolerance test (FSIGT) with Minimal Model 
analysis [64,65]. Other studies rely on indirect measures 
of these critical T2DM-related phenotypes. Furthermore, 
these family-based samples are ascertained on T2DM 
and not GDM.

The BetaGene study has hypothesized that genetic loci 
underlying susceptibility to GDM have implications for 
family members and has been studying the genetics 
underlying T2DM-related quantitative traits in Mexican 
American families of probands with or without a 
previous diagnosis of GDM [66-69]. BetaGene has two 
unique characteristics compared with other genetic 
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studies of diabetes. First, BetaGene is focusing on the 
analysis of T2DM-related quantitative traits, believing 
that understanding the biological effects of genetic varia­
tion may illuminate key components of the pathogenesis 
of GDM and T2DM. Second, a large subset of the 
BetaGene participants have undergone detailed pheno­
typing, including dual energy X-ray absorptiometry for 
body composition and FSIGT with Minimal Model 
analysis to estimate insulin sensitivity and insulin secre­
tion, given the focus on quantitative traits. To my know­
ledge, BetaGene is the only family-based genetic study 
ascertained on GDM in the world, as of this writing.

The BetaGene study has shown associations between 
some T2DM susceptibility loci and T2DM-related quanti­
tative traits [66,68,69], but more importantly it has shown 
that these associations are modified by other factors, 
such as adiposity or other gene variants. For example, 
variation in TCF7L2 is one of the most highly replicated 
T2DM susceptibility loci. BetaGene was the first to show 
that variation in TCF7L2 was associated with GDM [66], 
an observation replicated by others [70]. BetaGene also 
showed that the association between TCF7L2 and 

OGTT-based insulin secretion is modified by total body 
fat [66]. A similar modifying effect on the association 
between TCF7L2 and β-cell function as represented by 
the disposition index, a measure of β-cell function [65], 
was also observed. An interesting observation of this 
modifying effect of adiposity is that individuals carrying 
the T2DM ‘risk’ allele have a ‘better’ trait value than 
individuals carrying the ‘non-risk’ allele in the low body 
fat range, but this relationship flips in the high body fat 
range.

Figure 2 uses IGF2BP2 as an example of this pheno­
menon. This figure shows the IGF2BP2 genotype-specific 
insulin sensitivity (mean ± standard deviation (SD)) in 
the lowest and highest tertiles of body fat in BetaGene 
participants [68]. Here, ‘risk’ allele refers to the allele 
conferring risk for T2DM as determined by the initial 
series of GWA studies [37-39]. Insulin sensitivity 
decreases with each copy of the T2DM risk allele within 
the highest body fat tertile, which ranged from 38.9% to 
54% body fat. This is an expected pattern, given that 
insulin resistance is a hallmark of T2DM and one might 
expect that individuals carrying T2DM susceptibility 
variants might be insulin resistant compared with non-
carriers. However, a counterintuitive pattern is observed 
within the lowest body fat tertile (range 8.7 to 31.7% body 
fat), where insulin sensitivity increases with each copy of 
the T2DM risk allele. This observation suggests a 
different biological effect of the T2DM ‘risk’ allele in the 
low compared with the high adiposity range.

The modifications of these genetic associations by 
adiposity can be viewed in two possible ways. One is that 
they represent potential gene-gene interactions, as GWA 
studies have identified loci underlying susceptibility to 
obesity and contributing to variation in obesity-related 
traits [71-78]. Here, body fat acts as a proxy for the effect 
of one or more of these variants. We have demonstrated 
examples of gene-gene interactions altering variation in 
T2DM-related quantitative traits in BetaGene [79,80]. A 
second perspective is that they represent the effect of 
environmental or lifestyle exposures. In this context, 
body fat could reflect net energy balance, such as the net 
caloric balance between dietary intake (quantity and 
composition) versus physical activity (type and intensity). 
Clearly, additional studies will be required to better 
understand this complex interaction.

Clinical implications
The Human Genome Project was initiated to decode the 
‘book of life’ [81]. The idea that the genetic code for 
humans could be deciphered led to wide speculation 
about how such information could be used to improve 
human health, given the genetic predisposition of many 
common complex diseases. However, the initial results 
from GWA studies raised questions regarding the utility 

Figure 2. Modification of the association between IGF2BP2 and 
insulin sensitivity by adiposity. Genotype-specific means (± SD) 
were computed for IGF2BP2 rs11705701 stratified by percentage 
body fat tertiles in participants of the BetaGene study. The lowest 
body fat tertile is shown on the left and the highest body fat tertile 
on the right. Insulin sensitivity decreases with each copy of the T2DM 
risk allele within the highest body fat tertile, but decreases within the 
lowest body fat tertile.
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of genetic knowledge [82-84]. The currently known 
variants showing association with complex phenotypes, 
such as GDM or T2DM, account for a relatively small 
fraction of the known heritability, and this has raised 
questions about whether gene variants can be used for 
genetic prediction [84]. The study by Lauenborg et al. 
[51] and similar attempts to assess the predictive value of 
gene variants for T2DM [85,86] support the notion that 
gene variants alone may not be useful as predictive tools. 
However, as noted above, genetic prediction models may 
improve once the functional variants are known, as 
suggested by a recent study of height by Yang and 
colleagues [87]. One area in which genetic information 
may be useful is with regard to family history, which is a 
strong clinical predictor for many complex diseases such 
as GDM and T2DM. In many cases, patients are unaware 
of their family history or have biased information about 
it. In this situation, susceptibility variants may provide an 
accurate reflection of the genetic burden carried by 
individuals and, in conjunction with other traditional 
clinical variables, may provide improved disease risk 
prediction.

Furthermore, the effect sizes of loci identified so far 
have been, for the most part, extremely small from a 
clinical or epidemiological perspective. Individual T2DM 
susceptibility loci have had estimated odds ratios for risk 
of T2DM less than 1.5 and the proportion of variance 
explained for T2DM-related quantitative traits has 
typically been less than 5%, with similar results observed 
for GDM [23,51,52,70] and related traits [51,52,66-68,70]. 
Skeptics have dismissed the practical utility of gene 
variants in the face of such small effect sizes. However, as 
elegantly noted by Hirschhorn [83], the goal of GWA 
studies and the identification of genetic loci conferring 
susceptibility to disease is not prediction of individual 
risk for disease, but biological discovery underlying the 
pathogenesis of these diseases. Indeed, one of the high­
lights of GWA studies, as noted above, is the discovery of 
the potential roles of MTNR1B and CRY2. MTNR1B was 
identified as contributing to T2DM susceptibility and 
variation in fasting glucose [45,49] and variation in insulin 
secretion [88], whereas CRY2 contributes to variation in 
fasting glucose [49]. These loci highlight the potential 
importance of pathways related to ‘clock’ genes and 
circadian rhythms and their subsequent regulation of 
insulin secretion as contributing factors in the patho­
genesis of T2DM.

Effect sizes of susceptibility loci should not be equated 
with biological relevance, as also noted by Hirschhorn 
[83]. Two specific examples can be gleaned from among 
the T2DM susceptibility loci. The E23K variant (rs5219) 
in KCNJ11, the ATP-sensitive K+ channel of the 
pancreatic β-cell, is a T2DM susceptibility locus with an 
odds ratio of 1.18 [35]. KCNJ11 is the target of the 

sulfonylurea class of diabetes medications, highlighting 
the biological and clinical importance of this gene. The 
second example is the common Pro12Ala (rs1801282) 
variant in PPARG (peroxisome proliferator-activated 
receptor-γ, a nuclear transcription factor), which has an 
odds ratio of 1.27 for T2DM [34,89]. Thiazolidinediones 
are PPARG agonists that act as insulin-sensitizing agents 
and are used to treat T2DM. Studies also show that 
treating at-risk individuals with thiazolidinediones may 
be effective in significantly reducing, or possibly prevent­
ing, development of future T2DM [90-94]. Thus, one can 
confidently state that both KCNJ11 and PPARG have high 
biological relevance for the pathogenesis and treatment 
of T2DM.

The one area in which genetic variation may be best 
leveraged for clinical care purposes is pharmacogenetics. 
The response to a drug - whether in terms of efficacy of 
treatment or adverse effects - and dosing of medications 
are not likely to be adversely affected by environmental 
exposures and tend to have large effect sizes [95]. There­
fore, some of the variability in response or dosing could 
be due to genetic variation. Pharmacogenetics in the area 
of diabetes is still in its infancy, although there have been 
studies examining KCNJ11 and sulfonylurea therapy for 
both rare [96,97] and common [98,99] variants and res­
ponse to thiazolidinedione therapy and candidate genes 
[100-103]. Results from pharmacogenetic studies could 
potentially provide physicians with a powerful tool to 
adjust therapy appropriately for those individuals carry­
ing variants known to affect a given medication. Distefano 
and Watanabe have recently reviewed the pharmaco­
genetics of diabetes [104].

Gene-gene and gene-environment interactions are also 
likely to be helpful to the clinician in making therapeutic 
decisions. The situation with IGF2BP2 is a good example 
in which a physician may choose to pay closer attention 
to the adiposity of carriers of the T2DM risk allele 
(Figure  2). Studies on the effects of physical activity on 
loci underlying susceptibility to obesity suggest similar 
clinical relevance when individuals whose genetic make-
up is resistant to the effects of physical activity may 
require different interventions [105,106].

Conclusions
The study of the genetics underlying GDM has signifi­
cantly lagged behind that of other forms of diabetes. 
However, the dramatic gains made in understanding the 
genetic basis of both type 1 diabetes mellitus and T2DM 
in the past few years have important implications for 
GDM. Testing T2DM susceptibility loci in GDM case-
control samples provides evidence suggesting that, at a 
minimum, GDM and T2DM share common susceptibility 
loci. Additional studies will be required to determine 
whether there are susceptibility loci unique to GDM. 
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Loci that contribute to GDM are also likely to contribute 
to variation in GDM-related quantitative traits, which 
has implications for offspring. Thus, adverse fetal out­
comes associated with GDM or hyperglycemia in general 
may also have a genetic basis, as evidenced by the inter­
action between maternal and fetal GCK variants. Ultimately, 
a well-designed GWA or genome-wide sequencing study 
of GDM is needed to identify common variants of low 
effect and rare variants of large effect contributing to risk 
for GDM. In addition, there is increasing evidence that 
transcriptional regulation through chromatin modifica­
tion, such as methylation, acetylation, and so on, may be 
an important contributor to disease risk. Genomic 
approaches to assessing chromatin modification are only 
now being applied to complex diseases and could provide 
additional insights into the genetic contribution to risk 
for GDM and fetal outcomes.

Identification of loci underlying GDM and GDM-
related traits will illuminate the biological basis for GDM 
susceptibility and provide important clues for improved 
interventions. However, such new biological insights will 
require additional detailed studies before they can be 
translated into the clinical setting. Thus, one cannot 
expect rapid bench-to-bedside translation of genetic 
findings. However, current medical training is paying 
insufficient attention to the coming transformative effect 
of genetic knowledge. Individualized medicine has not 
yet arrived and may never become a reality to the extent 
that has been previously hyped in the media. However, 
generalized gene-based response profiles to both lifestyle 
and pharmacological interventions may become a regular 
part of a physician’s arsenal to improve clinical care.
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