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Autophagy fights against harmful stimuli and degrades cytosolic macromolecules,
organelles, and intracellular pathogens. Autophagy dysfunction is associated with many
diseases, including infectious and inflammatory diseases. Recent studies have identified
the critical role of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3)
inflammasomes activation in the innate immune system, which mediates the secretion of
proinflammatory cytokines IL-1b/IL-18 and cleaves Gasdermin D to induce pyroptosis in
response to pathogenic and sterile stimuli. Accumulating evidence has highlighted the
crosstalk between autophagy and NLRP3 inflammasome in multifaceted ways to
influence host defense and inflammation. However, the underlying mechanisms require
further clarification. Histone deacetylase 6 (HDAC6) is a class IIb deacetylase among the
18 mammalian HDACs, which mainly localizes in the cytoplasm. It is involved in two
functional deacetylase domains and a ubiquitin-binding zinc finger domain (ZnF-BUZ).
Due to its unique structure, HDAC6 regulates various physiological processes, including
autophagy and NLRP3 inflammasome, andmay play a role in the crosstalk between them.
In this review, we provide insight into the mechanisms by which HDAC6 regulates
autophagy and NLRP3 inflammasome and we explored the possibility and challenges
of HDAC6 in the crosstalk between autophagy and NLRP3 inflammasome. Finally, we
discuss HDAC6 inhibitors as a potential therapeutic approach targeting either autophagy
or NLRP3 inflammasome as an anti-inflammatory strategy, although further clarification is
required regarding their crosstalk.

Keywords: HDAC6, autophagy, NLRP3 inflammasome, inflammation, post-translational modification
INTRODUCTION

Autophagy is a conservative mechanism for maintaining homeostasis in cells, which degrades
misfolded proteins, damaged organelles, and intracellular pathogens (1). It is associated with many
diseases, including infectious and inflammatory diseases (2). The NACHT, LRR, and PYD domain-
containing protein 3 (NLRP3) inflammasomes are oligomeric complexes activated by invading
pathogens, endogenous danger signals, and stress signals (3). The activation of NLRP3
inflammasome induces interleukin-1b (IL-1b) and interleukin-18 (IL-18) release and pyroptosis,
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which is a caspase-1-dependent form of programmed cell death
(4). NLRP3 inflammasome is essential for defense against
infectious and inflammatory diseases, and its aberrant
activation aggravates inflammation and tissue damage (5, 6).
Recent studies have suggested that autophagy eliminates the
overaction of NLRP3 inflammasome and maintains homeostasis
(7–9). Additionally, NLRP3 inflammasome activation can
upregulate autophagy to suppress excessive responses and
protect the host (10, 11). There is emerging evidence
highlighting the importance of crosstalk between autophagy
and NLRP3 inflammasome in various inflammatory diseases
(12–16).

Histone deacetylase 6 (HDAC6) is a class IIb deacetylase
found in 18 mammalian HDACs. It harbors two functional
deacetylase catalytic domains and a ubiquitin-binding zinc
finger domain (ZnF-BUZ) (17). HDAC6 is a structurally and
functionally unique cytoplasmic deacetylase that can deacetylate
multiple non-histone proteins such as a-tubulin, cortactin,
heat shock protein (HSP90), heat shock transcription
factor-1 (HSF-1), peroxiredoxin I (Prx I), and peroxiredoxin II
(Prx II) (18–21). In addition, HDAC6 binds to ubiquitinated
misfolded proteins through the ZnF-BUZ (22). Therefore, it is
essential for multiple physiological and pathological processes.
Recent studies have demonstrated that HDAC6 regulates
autophagy and NLRP3 inflammasome activation through
various mechanisms (14, 23–27). It is suggested that HDAC6
plays a possible role in the crosstalk between autophagy and
NLRP3 inflammasome, although there is little direct evidence
to date. In this review, we present the distinct roles of HDAC6
in the regulation of autophagy and NLRP3 inflammasome.
We then focus on exploring the possibility and challenges of
HDAC6 involvement in the crosstalk between autophagy
and NLRP3 inflammasome. Finally, we discuss HDAC6
inhibitors as a promising therapeutic target for various diseases
and its prospect in the crosstalk between autophagy and
NLRP3 inflammasome.
THE ROLE OF HDAC6 IN AUTOPHAGY

Autophagy, specifically macroautophagy, is a conserved self-
eating process that is vital for cellular homeostasis and delivery
intracellular components, including soluble proteins, aggregated
proteins, organelles, macromolecular complexes, and foreign
bodies for degradation (28). This process begins with the
sequestration of organelles or portions of the cytoplasm into a
double-membrane structure, the autophagosome (29).
Autophagosomes fuse with lysosomes to form hybrid organelles
called autophagolysosomes (30). Autophagolysosomes degrade
the contents to achieve cell homeostasis and organelle renewal
(31). HDAC6 is involved in the regulation of autophagy at
multiple levels, including participation in post-translational
modifications (PTM) of autophagy-related transcription factors
(32, 33), the formation of aggresomes that are routinely cleaned
through the autophagy pathway (22, 34, 35), and the
transportation and degradation of autophagosomes (Figure 1)
(23, 25).
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The Role of HDAC6 in PTM of Autophagy-
Related Transcription Factors
PTM of autophagy-related transcription factors (36), such as
transcription factor EB (TFEB) and Forkhead Box 1 (FOXO1)
affect their activities, which regulate the autophagy-lysosome
pathway (37–39). Recently, it was reported that HDAC6
deacetylates TFEB and FOXO1 to decrease their activity and
inhibit autophagy (32, 33, 40, 41).

TFEB is a major regulator of the autophagy-lysosomal
pathway (42). Acetylation of TFEB causes translocation to the
nucleus and enhancement of autophagy and lysosomal gene
transcription (32, 40). It was reported that acetylated TFEB
accumulates in the nuclei, which is associated with increased
transcriptional activity and lysosomal function following
treatment with a pan-HDAC inhibitor, SAHA (40). Similarly,
in subtotally nephrectomized rats, the HDAC6 inhibitor
Tubastatin A (Tub-A) promotes the acetylation of TFEB,
which translocates into the nucleus and enhances the
expression of autophagy-related protein Beclin 1 (32), a known
direct target of TFEB (43). However, Jung et at. showed that
HDAC6 overexpression activated c-Jun NH2-terminal kinase
(JNK) and increased the phosphorylation of c-Jun, which
activated Beclin 1 dependent autophagy in liver cancer (44).

Besides TFEB, HDAC6 also deacetylates the transcription
factor FOXO1 (33), which is a conserved transcription factor that
modulates autophagy (45). It has been reported that HDAC6
binds to and deacetylates cytosolic FOXO1, which is required for
nuclear translocation and stabilization of interleukin-17 (IL-17)-
producing helper T cells (46). Zhang et al. found that trichostatin
A (TSA), an HDAC inhibitor, enhances the transcriptional
activity of FOXO1 by increasing its acetylation, which
enhances the process of autophagy (41). Recently, another
study reported that HDAC6 was suppressed by the calcium
binding protein S100 calcium binding protein A11 (S100A11)
in hepatocytes, which leads to the upregulation of FOXO1
acetylation to enhance its transactional activity and activate
autophagy (33).
The Role of HDAC6 in Aggresome
Degradation Mediated by Autophagy
Under physiological conditions, misfolded and aggregated
proteins are cleaned through ubiquitylation and proteasome-
mediated degradation (47, 48). When the degrading capacity is
overwhelmed (47), misfolded or aggregated proteins are
generally transported along microtubules towards the
microtubule-organizing center (MTOC) through motor protein
dynein (49). Once at the MTOC, they are packaged into a single
aggresome (49), which is eventually degraded by autophagy (50).
Aggresomes are crucial for the clearance of accumulated
misfolded proteins and cellular death (51). HDAC6 is a
component of aggresomes induced by misfolded proteins. In
the process of forming aggresomes containing ubiquitinated
proteins, HDAC6 works as a bridge between ubiquitinated-
misfolded proteins and the dynein motor (22). It binds to
polyubiquitinated misfolded CFTR-DF508 via its C-terminus
ubiquitin binding ZnF-BUZ domain, and it binds to the
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dynein motor through a separate domain, dynein motor domain
(DMB) (22). However, HDAC6 may not recognize protein
aggregates and may not bind directly to polyubiquitinated
proteins. A recent study indicated that the ZnF-UBP domain
of HDAC6 binds to unconjugated C-terminal diglycine motifs
of ubiquitin, and this interaction is important for the binding
and transport of polyubiquitinated protein aggregates (35).
In addition, small-molecule inhibition of HDAC6 has been
Frontiers in Immunology | www.frontiersin.org 3
shown to inhibit the formation of aggresomes in multiple
myeloma and lymphoma models (52–54). Recently, HDAC6
was found to be involved in the formation of aggresomes of
a-synuclein, TAR DNA-binding protein 43, and Tau (34, 55, 56).
It has been suggested that HDAC6 acts as a scaffold for a variety
of ubiquitinated proteins. Strikingly, although HDAC6 was
initially concentrated at the aggresome as previously reported
(22), it was no longer detectable in the ubiquitin-positive
A

B

C

FIGURE 1 | The role of HDAC6 in autophagy. (A) The role of HDAC6 in PTM of autophagy-related transcription factors. HDAC6 deacetylates transcription factors,
TFEB and FOXO1, to reduce their transcriptional activity and inhibit autophagy. (B) HDAC6 promotes the autophagic degradation of aggresome in various ways.
Left: HDAC6 interacts with the microtubule motor protein dynein to escort the ubiquitinated misfolded protein or ubiquitinated damaged mitochondria to form the
aggresome, to transport the lysosome for the degardaion of aggresome, and to deliver LC3-II (the purple point) to promote the formation of the autophagosome
containing aggresome. Right: HDAC6 deacetylates LC3-II to promote the formation of the autophagosome. (C) HDAC6 plays various roles in the regulation of
autophagy via deacetylating a-tubulin and cortactin (positive and negative roles are marked with red and green respectively). Top-left: HDAC6 deacetylates microtubules
to block the ER–Mit contact where autophagosome generates. Top-right: HDAC6 suppresses the transport of autophagosomes through deacetylating and reducing the
stability of the microtubules. Bottom: HDAC6 blocks the fusion of the autophagosome that contains the misfolded protein or mitochondria and the lysosome by
deacetylating cortactin. HDAC6, Histone deacetylase 6; TF, Transcription factor; PTM, Post-translational modifications; AC, Acetylation; FOXO1, Forkhead Box
1; TFEB, Transcription factor EB; MTOC, Microtubule-organizing center; LC3, Microtubule-associated protein 1 light chain 3; ER, Endoplasmic Reticulum;
Mit, Mitochondria.
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structures once aggresomes were cleared by autophagy (57). As
the HDAC6 protein levels remained stable during the biological
process of aggresome formation and clearance, HDAC6 is not
degraded together with aggresomes (57). HDAC6 seems recycled
during aggresome-autophagy.

Other studies have shown that HDAC6 is required for
lysosomes to form aggregates. Lysosomes are generated in the
cell periphery and transported to MTOC to degrade aggresomes
(58). HDAC6 and dynein transport lysosomes along microtubules
to promote autophagic degradation of aggresomes (59, 60).
Lee et al. found that lysosomes in HDAC6 knockout mouse
embryonic fibroblasts were dispersed to the cell periphery
and not concentrated to protein aggregates (59). Similarly, Iwata
et al. also showed that HDAC6 knockdown leads to the
periplasmic dispersion of lysosomes (60). This indicates that the
targeting of lysosomes to autophagic substrates is regulated
by HDAC6.

Microtubule-associated protein 1 light chain 3 (LC3) is a well-
known regulator of autophagy (61). LC3-I is conjugated to
phosphatidylethanolamine to form LC3-PE conjugate (LC3-II),
which is recruited to autophagosomal membranes to promote its
formation (62, 63). HDAC6 transports LC3 to the MTOC to
promote autophagosome formation (60). The knockdown of
HDAC6 attenuates the recruitment of LC3 to aggregated
Huntingtin protein for degradation in Neuro2a cells and HeLa
cells (60). However, the mechanism by which HDAC6 regulates
LC3 needs to be further elucidated. In addition, the deacetylation
of LC3 influences autophagy in starvation-induced cells (64). Liu
et al. reported that the deacetylation of LC3-II modulated by
HDAC6 promotes autophagic flux in starvation-induced HeLa
cells (65). The acetylation of LC3-II increases in HDAC6 siRNA
Hela cells, which blocks autophagy flux (65). These studies
suggested HDAC6 works as a scaffold protein or deacetylase to
regulate LC3, which promotes autophagy.
HDAC6 Deacetylates a-Tubulin and
Cortactin to Mediate Autophagy
HDAC6 associates with microtubules and filamentous actin (F-
actin) by deacetylating a-tubulin (66–68), and cortactin (19),
both of which play important roles in autophagy (69–71). As the
first reported and most studied physiological substrate of
HADC6, a-tubulin is deacetylated by HDAC6 at lysine 40
(72). Additionally, acetylation of cortactin following inhibition
of HDAC6 reduces its interaction with F-actin (19).

Microtubules, composed of a- and b-tubulin heterodimers
(73), are essential for cell division, shaping, motility, and
intracellular transport (74). Accumulating evidence indicates
that microtubules participate in the mediation of autophagosome
formation (75, 76), autophagosome transport across the cytoplasm
(77, 78), and the formation of autolysosomes (79, 80). Lei et al.
demonstrated that HDAC6 decreases the acetylation of
microtubules to inhibit the formation of autophagosomes in
acidic pH-mediated rat cardiomyocytes (81). The possible
underlying mechanism is that acetylation of a-tubulin enhances
the endoplasmic reticulum-mitochondria contact, which promotes
the formation of autophagosomes (82, 83). Additionally, other
Frontiers in Immunology | www.frontiersin.org 4
studies have reported that HDAC6 mediates a-tubulin
deacetylation to suppress autophagy in podocytes and human
embryonic kidney 293 cells (84, 85). However, the underlying
mechanisms remain unclear. It has been suggested that HDAC6
impairs stable acetylated microtubules via deacetylating a-tubulin,
which leads to the blockade of autophagosome-lysosome
fusion and accumulation of autophagosomes (86). In mouse
embryonic fibroblasts, bpV(phen), an insulin mimic and a PTEN
inhibitor, blocked autophagosomal degradation by reducing
the stability of p62 to activate HDAC6 to impair the fusion of
autophagosomes and lysosomes, followed by acetylation of
microtubules (86). Furthermore, Li et at. found that HDAC6
inhibited the transportation of autophagosomes to fuse with
lysosomes through the deacetylation of a-tubulin, resulting in
the depolymerization of microtubules (25). In conclusion,
HDAC6 suppresses the formation and degradation of
autophagosome via deacetylation the microtubules.

As an important part of the cytoskeleton, the F-actin network
plays an important role in cell movement, adhesion,
morphology, and intracellular material transport (87).
Additionally, the F-actin network is essential for the fusion of
autophagosomes and lysosomes (70). Lee et al. found that
HDAC6 promotes autophagy by recruiting a cortactin-
dependent, actin-remodeling machinery, which in turn
assembles an F-actin network that stimulates autophagosome-
lysosome fusion and substrate degradation (23). However, this
mechanism has been demonstrated in quality control autophagy
but not in starvation-induced autophagy (23). It is possible that
substrates of starvation-induced autophagy are widely
distributed in the cell and encounter lysosomes more easily
(23). Recently, another study reported that HDAC6 was
recruited by ATP13A2, whose mutations are associated with
Kufor-Rakeb syndrome (KRS), an autosomal recessive form of
juvenile-onset atypical Parkinson’s disease (PD), which is known
as Parkinson’s disease-9, to deacetylate cortactin and promote
autophagosome-lysosome fusion and autophagy (88). Impaired
ATP13A2/HDAC6/cortactin signaling likely contributes to KRS
and PD pathogenesis by disrupting the clearance of protein
aggregates and damaged mitochondria (88). These results
indicate HDAC6 deacetylates cortactin which enhances the
activity of the F-actin network to promote the fusion of
autophagosomes and lysosomes.

The Role of HDAC6 in Mitophagy
Mitophagy is an autophagic response that specifically targets
damaged and potentially cytotoxic mitochondria (89, 90).
HDAC6 has also been reported to mediate mitophagy (88, 91,
92). The underlying mechanisms may include the formation
of mitochondrial aggregates (mito-aggresomes) (91–94), and
degradation of mitophagosomes through cortactin or a-tubulin
action (88, 92, 93, 95). Parkin, a ubiquitin ligase, promotes
mitophagy by catalyzing mitochondrial ubiquitination, which
in turn recruits ubiquitin-binding autophagic components,
HDAC6 and p62, leading to mitochondrial clearance (91, 92).
Similar to the aggresome, the formation of mito-aggresomes
depends on the transportation of microtubule dynein motors
mediated by HDAC6 to MTOC (91, 92). HDAC6 deacetylates
October 2021 | Volume 12 | Article 763831
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cortactin to promote the fusion of mitophagosomes and
lysosomes (91, 93). Mito-aggresomes are then degraded by the
conventional autophagy pathway (88, 91, 93). Conversely, Pedro
et al. found that pharmacological inhibition of the HDAC6
deacetylase activity with Tub-A, did not block striatal neuronal
autophagosome-lysosome fusion, suggesting no impairment in
mitophagy (95). Interestingly, that HDAC6 inhibition increased
acetylated a-tubulin levels, and induced mitophagy in striatal
neurons (95). Overall, the effects and mechanisms of HDAC6 in
mitophagy remain to be elucidated.

The Relationship of HDAC6 and p62 in
Autophagy
P62 is the first selective autophagy adaptor protein discovered in
mammals (96, 97), and plays multiple roles in autophagy,
including participating in the formation of aggresomes (98,
99), anchoring the aggresomes to the autophagosome (100),
and the degradation of aggresomes in selective autophagy (101,
102). Accumulating evidence indicates that the interaction
between HDAC6 and p62 is curial for autophagy (23, 39, 86,
91, 103–108). As mentioned above, HDAC6 and p62 work as two
ubiquitin-binding proteins required for efficient autophagy that
target protein aggregates and damaged mitochondria (23, 91).
Cyclin-dependent kinase 1 (CDK1) in human breast cancer is
degraded by p62- and HDAC6- mediated selective autophagy
(104). Additionally, interferon-stimulated gene 15 (ISG15)
interacts with HDAC6 and p62 independently to be degraded
through autophagy (105). These studies suggest that HDAC6
and p62 may mediate autophagy in parallel. However, other
studies have indicated that HDAC6 and p62 may regulate
autophagy synergistically. Yan et al. reported that HDAC6
regulates lipid droplet turnover in response to nutrient
deprivation via p62-mediated aggresome formation (107).
Interestingly, some studies have indicated that p62 inhibits the
deacetylase activity of HDAC6 to enhance the acetylation of
microtubules or cortactin, promoting autophagic flux (86, 103,
108). In contrast, Jiang et al. showed that p62 promotes the
expression of HDAC6, reducing the acetylation level of
microtubules and inhibiting autophagy in hormone-
independent prostate adenocarcinoma cell lines (109).
However, the mechanisms by which p62 regulates HDAC6
remain to be clarified. The relationship between HDAC6 and
p62 is complicated. Thus, further research is required to
elucidate the underlying mechanisms.

It is interesting that HDAC6 differentially regulates
autophagy via multiple mechanisms. It may depend on the
specific cell type, disease, and autophagy inducer/inhibitor. The
mechanisms of HDAC6 regulation in autophagy require
further investigation.
THE ROLE OF HDAC6 IN NLRP3
INFLAMMASOME

The canonical NLRP3 inflammasome consists of NLRP3 (the
sensors), apoptosis-associated speck-like protein containing a
Frontiers in Immunology | www.frontiersin.org 5
caspase recruitment domain (ASC) (the adaptor), and protein-
caspase-1 (the effector) (4). It is critical for the innate immune
system to mediate caspase-1 activation to release proinflammatory
cytokines IL-1b/IL-18 and cleave Gasdermin D to induce
pyroptosis in response to microbial infection and cellular
damage (110–112). The mechanism of the canonical NLRP3
inflammasome is currently considered to include the following:
priming, activation, and PTM- interacting components. The
primary signal induces the activation of Toll-like-receptors
(TLRs) and nuclear factor-kappa B (NF-kB), leading to
transcriptional upregulation of NLRP3, pro-IL-1b, and pro-
IL-18 (112). The secondary signal is provided by multiple
molecular or cellular events, including ionic flux, mitochondrial
dysfunction, and reactive oxygen species (ROS) generation (113).
The aberrant activation of NLRP3 inflammasome is responsible
for a wide range of inflammatory diseases such as sepsis,
trauma and gout (3, 114–116). HDAC6 plays various roles in
the priming, activation and PTM of NLRP3 inflammasome
(Figure 2) (14, 26, 27, 117).

The Role of HDAC6 in the Priming of
NLRP3 Inflammasome
NF-kB, activated by the primary signal, promotes the
transcription of NLRP3, pro-IL-1b, and pro-IL-18 (112). The
NF-kB transcription factor complex plays a central role in
regulating the inducible expression of inflammatory genes in
response to immune and inflammatory stimuli. Acetylation of
p65, a subunit of NF-kB, has been found to regulate its
translocation (118, 119). Jia et al. found that HDAC6
inhibition induces the acetylation of p65 to inhibit its nuclear
translocation in diffuse large B-cell lymphoma (120). Xu et al.
showed that HDAC6 inhibition upregulated p65 expression in
the cytoplasm and reduced p65 expression in the macrophage
nucleus to attenuate the transcription of NLRP3 and reduce
pyroptosis (27). The inhibition of HDAC6 also reduces p65
expression levels in the nucleus after high glucose stimulation of
human retinal pigment epithelium cells, thereby inhibiting the
expression of NLRP3 protein and attenuating inflammation
(121). These studies suggest HDAC6 deacetylates p65 to
upregulate the priming of NLRP3 inflammasome.

Additionally, HDAC6 has been reported to promote the
expression of NF-kB to enhance the transcription of pro-IL-
1b, increase the release of IL-1b, and aggravate inflammation via
the interaction of upstream activators of NF-kB, including
myeloid differentiation primary response protein 88 (Myd88),
a-tubulin, and ROS (93, 122, 123). Gonzalo et al. found that
HDAC6 interacts with the TLR adaptor molecule Myd88 (93).
The absence of HDAC6 appears to diminish NF-kB induction by
TLR4 stimulation and decrease the release of inflammatory
factors, including IL-1b (93). Inhibition of HDAC6 upregulates
the acetylation of a-tubulin, which decreases the depolymerization
of microtubules, to attenuate the activation of NF-kB by blocking
IkBa phosphorylation and IL-1b release in mouse lung tissues
challenged with lipopolysaccharide (LPS) (122). ROS are mainly
produced by NADPH oxidases (124, 125), which are composed
of two membrane-bound subunits (p22phox and gp91phox/
October 2021 | Volume 12 | Article 763831
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Nox2), three cytosolic subunits (p67phox, p47phox, and
p40phox), and a small G-protein Rac (Rac1 and Rac2) (126).
HDAC6 upregulates the expression of Nox2-based NADPH
oxidase subunits to increase the production of ROS (123, 127–
129), which promotes NF-kB activation and IL-1b release (123,
127). Given that the maturation and release of pro-IL-1b are
mainly mediated through inflammasome-activating caspase-1
(130, 131), it is possible that HDAC6 stimulates NF-kB
activation via Myd88, microtubules or ROS to activate NLRP3
Frontiers in Immunology | www.frontiersin.org 6
inflammasomes. However, the underlying mechanisms remain
to be elucidated.

The Role of HDAC6 in the Activation of
NLRP3 Inflammasome
Following the primary signal that licenses the cell, the secondary
signal occurs following the recognition of an NLRP3 activator and
induces full activation and inflammasome formation (113). NLRP3
is activated by a wide variety of stimuli including ROS (132–134).
A B

FIGURE 2 | The role of HDAC6 in NLRP3 inflammasome. (A) In the priming of NLRP3 inflammasome, HDAC6 promotes NF-kB to enhance the transcription of
NLRP3, pro-IL-1b and pro-IL-18. HDAC6 promotes NF-kB in a number of mechanisms. (1) TLR4 senses PAMPs and recruits the downstream adapter proteins
MyD88. HDAC6 interacts with MyD88 to enhance the activation of NF-kB. (2) HDAC6 deacetylates microtubules to promote the activity of NF-kB. (3) HDAC6
elevates the expression of NOX2, the component of NADPH oxidase, to promote the level of ROS which upregulates NF-kB activity. (4) HDAC6 directly deacetylates
NF-kB. Then, NF-kB upregulates the transcription of NLRP3, pro-IL-1b, and pro-IL-18. (B) The role of HDAC6 in the activation and PTM of NLRP3 inflammasome
includes a variety of signaling mechanisms (positive and negative roles are marked with red and green respectively). HDAC6 regulates the activation of NLRP3
inflammasome in different ways. (1) HDAC6 suppresses the activity of Prx II via deacetylation and increase the level of ROS which is vital for the activation of NLRP3
inflammasome. (2) HDAC6 promotes the activation of NLRP3 inflammasome via suppressing F-actin, a negative factor of NLRP3 assembly. (3) HDAC6 enhances the
expression of DDX3X. And DDX3X facilitates NLRP3 assembly. In addition, HDAC6 plays both the negative and positive roles in the PTM of NLRP3 inflammasome.
The negative one: HDAC6 interacts with ubquitinated NLRP3 protein directly to prevents the activation of NLRP3 inflammasome. The positive one: In an aggresome-
like way, HDAC6 works as a dynein adapter to facilitate retrograde transport of NLRP3 inflammasome for activation. Finally, NLRP3 inflammasome releases active
caspase-1, which can promote pro-IL-1b/IL-18 to IL-1b/IL-18 and cleave GSDMD to induce pyroptosis. HDAC6, Histone deacetylase 6; NF-kB, Nuclear factor-
kappaB; NLRP3, NACHT, LRR, and PYD domains-containing protein 3; Pro-IL-1b, Pro-interleukin-1b; Pro-IL-18, Pro-interleukin-18; PAMPs, Pathogen-associated
molecular patterns; TLR4, Toll-like-receptor 4; MyD88, Myeloid differentiation primary response protein 88; AC, Acetylation; MT, microtubule; NADPH, nicotinamide
adenine dinucleotide phosphate; NOX2, NADPH oxidase 2; ROS, Reactive oxygen species; Prx II, Peroxiredoxin II; DDX3X, DEAD-Box Helicase 3 X-Linked; F-actin,
Filamentous actin; GSDMD, Gasdermin D.
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The crystal structure of NLRP3 contains a highly conserved
disulfide bond connecting the PYD domain and the nucleotide-
binding site domain, which is highly sensitive to altered redox states
(135). Redox regulatory proteins, Prx I and Prx II, are highly
homologous 2-cysteine members of the Prx protein family that
function as antioxidants at low resting levels of H2O2, an ROS
(136). Prx I and Prx II are specific targets of HDAC6 deacetylases.
Inhibition ofHDAC6 increases the levels of acetylatedPrx I andPrx
II (20, 137). Recently, Yan et al. reported that pharmacological
inhibition of HDAC6 attenuates the expression of NLRP3 and
mature caspase-1 and IL-1b, and protects dopaminergic neurons
via Prx II acetylation, which reduces ROS production (26). These
studies suggest that HDAC6 alsomediates the activation of NLRP3
inflammasome, probably through Prx I and Prx II deacetylation
whichupregulatesROSproduction.However,with the treatment of
LPS,ZnF-BUZbutnotdeacetylasedomains facilitates the activation
of NLRP3 inflammasome in mouse bone marrow-derived
macrophages (iBMDM) (14). Hence, the role of deacetylase
domains in the activation of NLRP3 inflammasome remain to
be elucidated.

Additionally, HDAC6 inhibitor ACY1215 downregulates the
activation of NLRP3 inflammasome via modulating F-actin and
DEAD-Box Helicase 3 X-Linked (DDX3X) (138, 139). F-actin
acts as a negative regulator by interacting directly with NLRP3
and ASC, following the activation of NLRP3 inflammasome
(140). Flightless-I (FliI) and leucine-rich repeat FliI-interaction
protein 2 (LRRFIP2) are required for the co-localization of
NLRP3, ASC, and F-actin (140). Recently, Chen et al. reported
that the HDAC6 inhibitor ACY1215 decreases the activation of
NLRP3 inflammasome in acute liver failure (ALF) by increasing
the expression of F-actin (138). However, the mechanism
underlying HDAC6 inhibition that upregulates the expression
of F-actin still needs to be elucidated. Interestingly, another study
also found similar results that ACY1215 inhibits the activation of
M1 macrophages by regulating NLRP3 inflammasome in ALF,
but by a different mechanism (141). In LPS-stimulated ALFmice,
ACY1215 decreased the expression of NLRP3 and increased the
expression of DEAD-Box Helicase 3 X-Linked (DDX3X) (141), a
critical factor for NLRP3 inflammasome assembly (139). It is
suggested that the DDX3X/NLRP3 pathway is involved in the
protective effects of the HDAC6 inhibitor ALF, but the
interaction of HDAC6 and DDX3X needs to be further studied.

The Role of HDAC6 in the PTM of NLRP3
Inflammasome
PTM, includingubiquitination, deubiquitination, phosphorylation,
and degradation, occurs in almost every aspect of inflammasome
activity, and can either lead to the activation of the inflammasome
or suppression of inflammasome activation (142). Recently,
Magupalli et al. proved that NLRP3 inflammasome activation
depends on regulated ubiquitination (143, 144) and engagement
of the dynein adaptor HDAC6 to transport NLRP3 inflammasome
to the MTOC for activation in a ubiquitin-misfolded protein-like
manner (14). However, it is unknown which inflammasome
components need to be ubiquitinated. Hwang et al. previously
reported that HDAC6 negatively regulates NLRP3 inflammasome
Frontiers in Immunology | www.frontiersin.org 7
activation through its interaction with ubiquitinated NLRP3
(117). Co-immunoprecipitation data revealed a specific
association between HDAC6 and NLRP3 (117). PR619 treatment
(deubiquitinase inhibitor) resulted in an increase in the interaction
of NLRP3 with HDAC6 and a decrease in NLRP3-dependent
caspase-1 activation (117). This indicates that the Zn-BUZ
domain of HDAC6 might interact with ubiquitinated NLRP3
(117). The effect of HDAC6 on the PTM of NLRP3 inflammasome
is controversial, although previous studies indicated that the
HDAC6 ubiquitin-binding domain but not deacetylase activity, is
required for NLRP3 activation.
DISCUSSION

The association between autophagy and inflammasomes was
discovered more than ten years ago. Satioh et al. first reported the
interplay between autophagy and the endotoxin-induced
inflammatory immune response through activation of the
inflammasome and release of cytokines (145). In LPS-stimulated
macrophages, autophagy-related protein Atg16L1 (autophagy-
related 16-like 1) deficiency resulted in increased caspase-1
activation, leading to increased IL-1b production (145). Since
then, Nakahira et al. indicated that autophagic proteins regulate
NLRP3-dependent inflammation by preserving mitochondrial
integrity (146). LC3B-deficient mice produced more caspase-1-
dependent cytokines in sepsis models and were susceptible to LPS-
inducedmortality than controls (146). In the last decade, numerous
studies have further indicated that autophagy can affect NLRP3
inflammasome activation through various mechanisms (147).
Autophagy can suppress NLRP3 inflammasome activation by
removing endogenous inflammasome activators, such as ROS-
producing damaged mitochondria (148) and removing
inflammasome components (149) and cytokines (150).
Additionally, NLRP3 inflammasome activation regulates
autophagosome formation through various mechanisms.
Silencing NLRP3 downregulated autophagy (151, 152).
Interestingly, caspase-1 also regulates the autophagic process
through cleavage of other substrates (153, 154). Interplay between
autophagy and NLRP3 inflammasomes is essential for the balance
between the required host defense inflammatory response and
prevention of excessive inflammation. As mentioned above,
previous studies have shown that HDAC6 mediates the process of
autophagy and the functioning of NLRP3 inflammasomes via
multiple mechanisms. However, the role of HDAC6 in the
crosstalk between autophagy and NLRP3 inflammasome is poorly
understood. In the following sections, we will discuss the possible
link between HDAC6 and the interplay between autophagy and
inflammasomes, considering the current evidence (Figure 3).

The Possible Role of HDAC6 in the
Autophagic Degradation of the
Component of NLRP3 Inflammasomes and
Endogenous Inflammasome Activators
Components of NLRP3 inflammasome, including NLRP3 and
ASC, are recognized by p62, a ubiquitin-binding protein, that
October 2021 | Volume 12 | Article 763831
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forms aggresomes and is degraded by autophagy (149). Similarly,
a recent study by Han et al. showed that small molecules
(kaempferol-Ka) induced autophagy to promote the degradation
of inflammasome components and reduce inflammasome
activation in an LPS-induced Parkinson disease mouse model
(155). As described previously, HDAC6 can also function as a
ubiquitin-binding protein to participate in aggresome formation
(22). Additionally, HDAC6 can also mediate the acetylation
of cortactin and microtubules to regulate autophagy via
autophagosome-lysosome fusion and autophagosome transportation
(23, 86, 156). Furthermore, HDAC6 interacts with p62 to regulate
autophagy via variousmechanisms (23, 91, 104, 107). Although, there
Frontiers in Immunology | www.frontiersin.org 8
are no studies indicating that HDAC6 promotes autophagy to reduce
the activation of NLRP3 inflammasomes directly, according to the
current evidence, it is possible that HDAC6 participates in the
autophagic degradation of the components of NLRP3 inflammasomes
to regulate its activation.

On the other hand, autophagy removes damaged organelles,
such as mitochondria, leading to a reduction in the release of
mitochondrial-derived damage-associated molecular patterns
(DAMPs), mitochondrial ROS (mtROS), and mitochondrial
DNA (mtDNA) (148, 157). Numerous studies have shown that
Parkin-mediated mitochondrial autophagy suppresses the
production of mtROS and mtDNA, which inhibits the activation
of NLRP3 inflammasomes (158–162). As mentioned above,
following the decoration of mitochondria with ubiquitin by
Parkin, HDAC6 is recruited as a ubiquitin-binding autophagic
component that causes mitochondrial clearance (91–93). This
evidence suggests that HDAC6 may mediate the functioning of
NLRP3 inflammasome via mitophagy eliminating mtROS
and mtDNA.

The Possible Role of HDAC6 in the
Regulation of Autophagy by NLRP3
Inflammasome
Following the activation of the NLPR3 inflammasome, caspase-1
cleaves some components of autophagy to block this process (153,
154).Yuet al. showed that caspase-1 triggersmitochondrial damage
via cleavage of Parkin inhibitingmitophagy, following its activation
by NLRP3 and melanoma 2 (AIM2) inflammasomes (153).
Furthermore, caspase-1 mediated cleavage of the signaling
intermediate Toll-interleukin-1 receptor (TIR)-domain-
containing adaptor-inducing interferon-b (TRIF), an essential
part of the TLR4-mediated signaling pathway, leading to the
promotion of autophagy (154). As HDAC6 regulates the priming,
activation, and PTM of NLRP3 inflammasome (14, 26, 27, 117),
it is possible that HDAC6 may regulate autophagy through the
activation of NLRP3 inflammasomes. The regulation of the
crosstalk between autophagy and NLRP3 inflammasome
machinery by HDAC6 is obviously complex and requires further
investigation, and may be dependent on specific conditions
such as cell type, model of disease, inflammasome activator, and
autophagy inducer/inhibitor.
CONCLUSION AND PERSPECTIVE

An increasing number of studies have reported the crosstalk
between NLRP3 inflammasome and autophagy in various models
and diseases in the last ten years. Numerous studies have indicated
that autophagy suppresses NLRP3 inflammasome activation,
through various mechanisms. In addition, NLRP3 inflammasome
activation regulates autophagosome formation via multiple
mechanisms. The crosstalk between autophagy and NLRP3
inflammasome is essential for host defense and the inflammatory
response. On the other hand, accumulating evidence indicates that
HDAC6 plays important roles in the mediation of autophagy and
functioning of NLRP3 inflammasome via differential mechanisms.
However, the role of HDAC6 in the crosstalk between autophagy
A

B

FIGURE 3 | The possible role of HDAC6 in the crosstalk between autophagy
and NLRP3 inflammasome. (A) The possible role of HDAC6 in the autophagic
degradation of the component of NLRP3 inflammasomes and endogenous
inflammasome activators. As a source of endogenous inflammasome
activators, damaged mitochondrion promotes the activation of NLRP3
inflammasome. Both the damaged mitochondrion and the component of
NLRP3 inflammasome can be limited by autophagy. HDAC6 may promote
the mitophagy and then inhibit the activation of NLRP3 inflammasome
indirectly. Moreover, it is possible that the HDAC6 upregulate or downregulate
autophagy to affect NLRP3 inflammasome. (B) The possible role of HDAC6 in
the regulation of autophagy by NLRP3 inflammasome. HDAC6 plays a dual
role in the activation of NLRP3 inflammasome, which release the caspase-1.
Caspase-1 inhibits the autophagic degradation of the damaged mitochondrion
or the component of NLRP3 inflammasome. Hence, HDAC6 may regulate
autophagy via the activation of NLRP3 inflammasome. HDAC6, Histone
deacetylase 6; NLRP3, NACHT, LRR, and PYD domain-containing protein 3.
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and NLRP3 inflammasome remains poorly understood. In this
review, we explored the possible link between HDAC6 and the
interplay between autophagy and inflammasomes, considering the
current evidence. HDAC6 is a promising therapeutic target in
multiple diseases including inflammatory diseases, cancer, and
autoimmune diseases. With the development of small molecules
inhibiting HDAC6, some clinical trials have shown that selective
HDAC6 inhibitors are effective in tumor treatment (163–166). It is
worth noting that the effects of HDAC6 differ in specific cell types
and conditions. Considering the role of HDAC6 in autophagy and
NLRP3 inflammasome, HDAC6 inhibitors have broad prospects
and should be studied further deserves to pursue in future research.
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