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Studies featuring multimodal neuroimaging data fusion for understanding brain function

and structure, or disease characterization, leverage the partial information available in

each of the modalities to reveal data variations not exhibited through the independent

analyses. Similar to other complex syndromes, the characteristic brain abnormalities

in schizophrenia may be better understood with the help of the additional information

conveyed by leveraging an advanced modeling method involving multiple modalities.

In this study, we propose a novel framework to fuse feature spaces corresponding

to functional magnetic resonance imaging (functional) and gray matter (structural)

data from 151 schizophrenia patients and 163 healthy controls. In particular, the

features for the functional and structural modalities include dynamic (i.e., time-varying)

functional network connectivity (dFNC) maps and the intensities of the gray matter

(GM) maps, respectively. The dFNC maps are estimated from group independent

component analysis (ICA) network time-courses by first computing windowed functional

correlations using a sliding window approach, and then estimating subject specific states

from this windowed data using temporal ICA followed by spatio-temporal regression.

For each subject, the functional data features are horizontally concatenated with the

corresponding GM features to form a combined feature space that is subsequently

decomposed through a symmetric multimodal fusion approach involving a combination

of multiset canonical correlation analysis (mCCA) and joint ICA (jICA). Our novel combined

analyses successfully linked changes in the two modalities and revealed significantly

disrupted links between GM volumes and time-varying functional connectivity in

schizophrenia. Consistent with prior research, we found significant group differences

in GM comprising regions in the superior parietal lobule, precuneus, postcentral gyrus,

medial/superior frontal gyrus, superior/middle temporal gyrus, insula and fusiform gyrus,

and several significant aberrations in the inter-regional functional connectivity strength

as well. Importantly, structural and dFNC measures have independently shown changes

associated with schizophrenia, and in this work we begin the process of evaluating the
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links between the two, which could shed light on the illness beyond what we can learn

from a single imaging modality. In future work, we plan to evaluate replication of the

inferred structure-function relationships in independent partitions of larger multi-modal

schizophrenia datasets.

Keywords: multimodal fusion, structure-function relationship, schizophrenia, gray matter, dynamic functional

connectivity, mCCA, joint ICA

INTRODUCTION

Structural neuroimaging modalities evaluate anatomical brain
structure and tissue type (e.g., structural MRI or sMRI) or
brain tissue microstructure (e.g., diffusion MRI or dMRI),
whereas functional neuroimaging modalities indirectly estimate
brain function/activity through respective characteristic “source
signals” or “indicators” of the underlying neuronal (e.g.,
electroencephalography or EEG, magnetoencephalography or
MEG), metabolic (e.g., positron emission tomography or PET)
or hemodynamic (e.g., functional MRI or fMRI) activity. As the
modalities are acquired at different spatial and temporal scales,
the spatiotemporal precisions can be enhanced immensely,
for example, by combining a modality with superior spatial
resolution with another modality with superior temporal
resolution. Furthermore, if the modalities are generically thought
of as producing filtered sights of brain’s organization or activity,
working with multiple modalities would enable complementary
sights into brain structure and/or function, thus intrinsically
accomplishing a more comprehensive view (Calhoun et al., 2006;
Calhoun and Adali, 2009; Schultz et al., 2012; Sui et al., 2012b;
Uludag and Roebroeck, 2014; Calhoun and Sui, 2016). Given
the above benefits, multimodal neuroimaging data acquisition
and analysis has become much more widely utilized in recent
years.

In a multimodal study, data corresponding to the different
modalities might be acquired separately or simultaneously
depending on the research question being addressed. Generically,
separate data acquisition results in marginally higher signal to
noise ratio (SNR) and lesser artifacts. However, simultaneous
data acquisition is essential in studies where the objective
is to study time-dependent responses to events, and inter-
modality correlates (Uludag and Roebroeck, 2014). As an
example, it would be important to simultaneously acquire
EEG and fMRI data if the study goal is to identify potential
correlates of time-varying functional connectivity measures
in fMRI data to the EEG data. In this case, the acquired
modalities could be analyzed through separate or collective
pipelines using a variety of univariate or multivariate algorithm
through a model-based or data-driven approach (Calhoun and
Sui, 2016). Previous multimodal work has typically analyzed
data from different modalities separately and correlated the
independent results from the unimodal analyses, or used one
of the modalities to constrain models corresponding to the
other modality. The above mentioned types of multimodal
studies have proven to be very useful, but make minimal
or limited use of the cross-modality (i.e., joint) information,
a resource that is now being increasingly availed by use of

“symmetric” data fusion approaches (Calhoun and Sui, 2016).
“Feature-based” symmetric data fusion approaches inherently
first estimate useful features from the different modalities
independently and then evaluate relationships between these
features. This practice leverages the partial information available
in each of the modalities to reveal data variations not exhibited
through the independent analyses. To date, there have been
several interesting demonstrations of the potential of utilizing
such cross-modality or joint information in understanding the
human brain and its disorders, disease characterization or
biomarker identification, and uncovering disrupted links in
complex mental illness (see Calhoun and Sui, 2016 for a detailed
review).

Notably, multimodal studies with advanced modeling
methods assume greater significance in diagnosis of a
complex syndrome, for example schizophrenia, where striking
pathological and etiological heterogeneity has been observed.
Several previous studies (Olesen et al., 2003; Bassett et al., 2008;
Hagmann et al., 2008; Rykhlevskaia et al., 2008; Honey et al.,
2009; van den Heuvel et al., 2009; Camara et al., 2010; Michael
et al., 2010; Skudlarski et al., 2010; Yu et al., 2011; Segall et al.,
2012; Alexander-Bloch et al., 2013) clearly suggest interactions
between structural and functional connectivity. Thus, it is
reasonable to hypothesize covariation between “feature spaces”
i.e., distilled (or lower dimensional or second/higher order)
measures of brain structure and function in each modality.
Importantly, reducing or projecting the very high dimensional
data to feature spaces facilitates removal of redundant data while
promoting identification of inter-modality relationships in a
simpler, lower-dimensional space. Hence, in symmetric fusion
approaches, it is the lower dimensional feature spaces that are
fused to extract joint information. Some examples of lower
dimensional feature spaces include contrast maps, amplitude
of low frequency fluctuation maps (ALFF), etc. for fMRI data,
segmented gray or white matter maps for sMRI data, fractional
anisotropy (FA) or mean diffusivity (MD) maps for diffusion
tensor imaging (DTI) data, single-nucleotide polymorphism
(SNP) or methylation data for genetic data, etc.

Feature space projection is carried on by using a wide
range of model-driven or data-driven approaches as reviewed
in Calhoun and Sui (2016). Model-driven approaches have
their own benefits in the form of enabling specific hypothesis
testing of inter-regional interaction (provided there is enough
prior information available on the problem being studied). On
the other hand, data-driven approaches, in general, require
specification of lesser assumptions about the data upfront.
This makes them (the data-driven approaches) more suitable
for studying complex problems, for instance a complex
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syndrome, such as schizophrenia, wherein little reliable prior
knowledge is available. Data-driven approaches typically explore
use of a blind or semi-blind multivariate approach so as
to reveal hidden structure of inter-relationships between
two (or more) data feature spaces. The use of multivariate
approaches enables estimation of multiple variables jointly, and
has some additional advantages over the use of univariate
approaches. Multivariate approaches are relatively easy to
interpret due to co-varying nature of the variables (i.e., regions
of interest) and warrant additional robustness to noise as
measures from patterns are explored rather than measures
from paired relationships (Calhoun and Sui, 2016). Recently
used blind multivariate decomposition methods include, but
are not limited to, joint independent component analysis
(jICA) (Calhoun et al., 2006), multiset canonical correlation
analysis (mCCA) (Correa et al., 2007), partial least squares
(PLS) (Martinez-Montes et al., 2004; Chen et al., 2009), and
linked ICA (Groves et al., 2011), while adaptive (semi-blind)
approaches, such as coefficient constrained ICA (CC-ICA)
(Sui et al., 2009), and parallel ICA (Liu et al., 2009) also
exist.

The above discussed multivariate approaches are all based on
linearmixturemodels, but differ considerably in the optimization
strategies/priorities they evolve the data sources through as well
as in their basic limitations. Additionally, combining multiple
multivariate algorithms has also been recently suggested to allow
flexibility in the estimations by reducing the limiting effects of
the individual approaches (Sui et al., 2011) as discussed next.
The joint sources estimated by the jICA (or the linked ICA)
algorithm are optimally maximally independent but share a
common mixing matrix, thus assuming a very strong correlation
between the joint sources. Contrarily, the mCCA algorithm
jointly maximizes the inter-subject covariations thus allowing
for varying levels of connectivity strengths between the joint
sources. In this method, each dataset is decomposed into a set
of sources with corresponding mixing profiles, also termed as
canonical variates (CVs), and their corresponding correlation
values, also called canonical correlation coefficients (CCCs).
Despite allowing for varying activation levels of the joint sources,
there remains the possibility that the spatial maps of the emergent
joint sources inmCCA are highly similar in some cases where, for
example, the CCC estimates are not sufficiently distinct (Correa
et al., 2010; Sui et al., 2012a, 2013). Sui et al. (2011) used the
mCCA+jICA algorithm for fusing the fMRI contrast maps and
DTI FAmaps to investigate group differences in healthy controls,
schizophrenia patients and bipolar patients. Interestingly, this
study concluded increased group classification accuracy with this
algorithm as compared to its constituent algorithms tested alone.
The combined mCCA+jICA model basically uses mCCA in the
first step (Sui et al., 2011, 2013) followed by joint ICA (jICA) in
the second step. In the first step, the different feature spaces are
first linked with flexible linkages, thus adding to the investigator’s
confidence to perform jICA with an objective of identifying both
highly and weakly correlated joint sources in the second step. A
recent paper has proposed a unifying framework to link together
a wide variety of multimodal approaches including the ones
mentioned above (Silva et al., 2016).

Studies leveraging the above mentioned multivariate
approaches have revealed significant information on clinical
aspects of schizophrenia as discussed in several recent reviews
on multimodal fusion (Biessmann et al., 2011; Schultz et al.,
2012; Sui et al., 2012a; Lahat et al., 2015; Calhoun and Sui,
2016). Simultaneous analysis of anatomical and functional
connectivity in Skudlarski et al. (2010) suggested that fusion
allowed identification of deficits in white matter anatomy,
and complex alterations in functional connectivity. In another
multivariate, multimodal analysis, Michael et al. (2010) fused
structural and functional brain images to reveal decreased overall
structure-function linkage in schizophrenia as compared to
healthy controls both in a working memory and an auditory
sensorimotor task. Camchong et al. (2011) revealed convergent
findings in multiple modalities (DTI and fMRI) consistent
with the disconnection hypothesis in medial frontal regions
in subjects with schizophrenia. jICA was used in Sugranyes
et al. (2012) to characterize linked functional and white-matter
changes related to working memory dysfunction, and in
Stephen et al. (2013) to identify structure-function relationships
using MEG and DTI modalities. The latter study concluded
impairments in a posterior visual network in schizophrenia,
with reduced FA and MEG amplitude, and overall weaker
cognitive performance. Furthermore, Xu et al. (2009b) used
joint source based morphometry (joint SBM) to identify
linked white and gray matter (GM) differences in regions
comprising temporal-corpus callosum, occipital/frontal-inferior
fronto-occipital fasciculus, parietal/frontal-thalamus, and
frontal/parietal/temporal-superior longitudinal fasciculus. Using
the mCCA multivariate algorithm, Sui et al. (2015) identified
linked structural and functional deficits in distributed cortico-
striato-thalamic circuits and their association with cognitive
impairments as measured through the Measurement And
Treatment Research to Improve Cognition in Schizophrenia
(MATRICS) consensus cognitive battery (MCCB). Finally,
several classification studies have made use of multivariate,
multimodal approaches to demonstrate improved classification
with use of multiple modalities as compared to the use of a
single modality in classifying patients from controls (Yang et al.,
2010; Ulaş et al., 2011; Nieuwenhuis et al., 2012; Sui et al., 2013;
Peruzzo et al., 2015; Cabral et al., 2016; Cetin et al., 2016).

Recent work assessing dynamic (i.e., time-varying) functional
network connectivity (dFNC) suggests availability of substantial
information beyond time-averaged functional connectivity (FC)
estimates in both resting state and task-based fMRI data
(Hutchison et al., 2013a; Calhoun et al., 2014; Preti et al.,
2016). The term “chronnectome” was recently introduced to
describe a focus on identifying whole brain transient and
recurring patterns in temporal coupling of the human brain
(Calhoun et al., 2014). The temporal dynamics of the time-
courses are often characterized by the sliding window correlation
(SWC) method (Sakoglu et al., 2010; Allen et al., 2012) to
estimate the windowed functional network connectivity (wFNC)
data followed by a rigorous FC “state” estimation process
from the wFNC data (Allen et al., 2012; Miller et al., 2016).
These FC states have been proven to be stably present in
the data and reoccurring over time in a highly structured
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manner in our recent evaluations of replicability of time-
varying FC states and state summary measures (Abrol et al.,
2016, 2017). Several studies have shown the emergent states
to be functionally and behaviorally relevant by demonstrating
direct links with signatures of consciousness (Hutchison et al.,
2013b; Amico et al., 2014; Hudson et al., 2014; Barttfeld
et al., 2015; Wang et al., 2016), tracking day-dreaming/mind-
wandering (Kucyi and Davis, 2014; Kucyi, in press), sleep and
awake states (Tagliazucchi and Laufs, 2014), ongoing cognitive
function and performance (Craddock et al., 2012; Schaefer
et al., 2014; Gonzalez-Castillo et al., 2015; Madhyastha et al.,
2015; Shine et al., 2016a,b). Furthermore, evidence of potential
electrophysiological signatures of dynamic blood-oxygen-level
dependent (BOLD) FC also hints the fluctuations in the BOLD
FC (as captured in the states) to be interesting i.e., having
a neurophysiological origin (Tagliazucchi et al., 2012; Chang
et al., 2013; Allen et al., 2017), although further confirmation
is still needed. Besides, several studies have also used time-
varying connectivity measures to characterize pathophysiology
i.e., identification of disease states (Damaraju et al., 2014; Rashid
et al., 2014; Yu et al., 2015; Du et al., 2016; Miller et al., 2016).

In this work, we focus on feature based fusion analysis of brain
structural (sMRI) and functional (fMRI) images hypothesizing
correspondence between brain structure and function (or more
specifically, correspondence between the feature spaces of the
two studied modalities). We propose exploring where and how
GM corresponds to time-varying functional connections will
improve our understanding of both structural and functional
connectivity. We estimate the feature space for the functional
data as subject-specific states that are revealed from the wFNC
data using a novel framework featuring temporal ICA and
dual regression (Figure 1A). More specifically, aggregate states
are estimated by decomposing the wFC data using temporal
ICA in the first step, followed by a dual regression analysis
to estimate the subject-specific states in the second step. This
derived feature space from fMRI data, referred to as “functional
data feature space” hereon, is simultaneously analyzed with
the corresponding “structural data feature space,” i.e., GM
maps from sMRI data, using the mCCA+jICA data fusion
algorithm.

The fusion analysis in this work could be explained in
a four-stage process (Figure 1B). In the first stage, mCCA
reveals links between the modalities by maximizing the
correlations between their mixing matrices i.e., CVs. In the
second step, the associated maps to the CVs, i.e., the CCCs,
are concatenated and decomposed using jICA to estimate the
joint sources. In the third step, the (effective) modality-specific
mixing matrices are estimated for the combined framework
and analyzed for group differences for each joint source. In
the last step, we focus on qualitative analysis of the subset
of joint sources that feature linked, highly correlated and
significant group difference showing structural and functional
component maps from the jICA decomposition. Our exploratory
investigation on data from 151 schizophrenia patients and 163
healthy controls shows general correspondence between GM
and time-varying FC and also reveals few missing links in
schizophrenia.

MATERIALS AND METHODS

Data Acquisition and Pre-processing
This study worked with T1-weighted structural and T2∗-
weighted resting state (subjects instructed to keep eyes closed but
stay awake) functional images from 151 schizophrenia patients
(114 males, 37 females; average age 37.8), and age and gender
matched 163 healthy controls (117 males, 46 females; average age
36.9). This data were collected at seven different sites across the
United States as a part of the function biomedical informatics
research network (fBIRN) data repository (Keator et al., 2016).
Informed consent was received from the participants as per
institutional guidelines practiced at the seven collection sites. Six
sites used the 3T Siemens Tim Trio Systemwhile one site used the
3T General Electric Discovery MR750 scanner. A total number
of 162 volumes of standard gradient echo planar imaging (EPI)
BOLD fMRI data were captured with a repetition time (TR) of 2 s,
echo time (TE) of 30 s, field of view (FOV) of 220× 220 mm2 (64
× 64 matrix), flip angle (FA) of 77◦ and 32 sequential ascending
axial slices of 4mm thickness and 1mm skip.

The sMRI data were spatial normalized, bias corrected, and
segmented using the SPM unified segmentation model in an
automated analysis pipeline developed at the Mind Research
Network (Bockholt et al., 2010) to obtain the smoothed (using a
full width half maximum Gaussian kernel of 10mm), modulated
and warped GM images for all subjects. The GM maps were
then used as the input feature space to the fusion algorithm
with an objective of estimating the patterns of brain structure
that exhibit co-variations across subjects. The fMRI data were
pre-processed using the SPM, AFNI and GIFT toolboxes as
well as custom code written in Matlab in a similar fashion as
Damaraju et al. (2014). Briefly, rigid body motion correction
was performed using the INRIAlign SPM toolbox for subject
head motion correction. This was followed by slice-timing
correction step in order to account for any timing differences in
scan acquisition following which the data were de-spiked using
AFNI’s “3dDespike” algorithm so as to reduce the impact of
outliers. Next, the data were warped to theMontreal Neurological
Institute (MNI) template and resampled to 3mm cubic isotropic
voxels. Since the fBIRN data came from multiple sites, the
site or scanner variability needed to be smoothed equivalently.
This was done using AFNI’s “BlurToFWHM” algorithm, an
approach that has been shown to decrease scanner-specific
variability in smoothness and provide “smoothness equivalence”
to the multi-site data (Friedman et al., 2008). Finally, the
voxel time-courses were variance normalized before running the
group ICA.

Functional Data Feature Space
Group ICA, Resting State Network (RSN) Selection

and Post-processing
The pre-processed fMRI data were decomposed using spatial
group ICA to reveal spatially independent components each with
a unique time-course profile (Calhoun et al., 2001; Calhoun and
Adali, 2012). The pre-processed datasets were first reduced to
130 principal components in the time-point dimension at the
subject level. Using a (relatively) higher number of principal
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FIGURE 1 | Estimation of the functional (fMRI) data feature space. Aggregate states were estimated by decomposing the windowed correlations by temporal ICA.

Subject-specific states were next estimated through a spatio-temporal (dual) regression procedure wherein, for each subject, the aggregate states were regressed

into the subject’s windowed FNC data to estimate subject-specific component time-courses in the first regression step, and the estimated time-courses were

(Continued)
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FIGURE 1 | Continued

regressed into the subject’s windowed FNC to derive the subject-specific states in the second regression step; (B) Summary of the mCCA + jICA framework. For

each subject, the functional data feature space as estimated in (A) was concatenated with the smoothed, modulated and warped gray matter maps (as the structural

data feature space) and fused using the joint “mCCA+jICA” framework. This framework combines the mCCA and jICA algorithms to decompose the observed data

into a linear combination of sources mixed through “effective” modality-specific mixing matrices as illustrated above.

components at the subject level has been shown to stabilize back-
reconstruction and retain maximum variance in the data, and if
this is the case the specific number does not substantially impact
the results (Erhardt et al., 2011). Accordingly, the entire dataset
was transformed into 130 principal components using standard
principal component analysis (PCA) at the subject level in the
first data reduction step of the group ICA analysis (similar to
Damaraju et al. (2014) on the same fBIRN phase 3 dataset).
Using a relatively high number of principal components in this
step retained a very high percentage of subject level variance
(>99.99%). In the second data reduction step, the PCA reduced
subject data were then concatenated along the time dimension
and further reduced to 100 components by implementing group
level PCA. A higher model order for group ICA was chosen to
enable a more refined (i.e., finer) RSN parcellation (Kiviniemi
et al., 2009; Abou-Elseoud et al., 2010), thus allowing evaluation
of sub-nodes within network domains (Allen et al., 2012; Sockeel
et al., 2016; Abrol et al., 2017; Li et al., 2017; Fu et al., in
press). The reliability of the estimated independent components
from this step was evaluated using ICASSO (Himberg et al.,
2004), and it was found that the estimates exhibited tight
clustering and converged consistently amongst several (twenty)
runs. Finally, subject-specific component spatial maps (SMs)
and time-courses (TCs) were estimated using the GICA back-
reconstruction methods as implemented in the GIFT toolbox
(Erhardt et al., 2011).

The back-reconstructed subject-specific SMs and TCs for
the 100 independent components were extensively analyzed to
identify the physiological, non-artefactual, previously established
RSNs. More specifically, 47 components whose SMs showed peak
activations in GM and low overlap with any known imaging,
physiological, or movement-related artifacts, and mean power
spectra exhibited higher low frequency content were established
as RSNs for further analysis. The RSNs were assessed and
distributed into the sub-cortical (SC), auditory (AUD), visual
(VIS), sensorimotor (SM), attention/cognitive control (CC),
default-mode (DMN), and cerebellar (CB) network domains
(Figure 2).

Subject-specific TCs corresponding to the retained RSNs
underwent additional post-processing steps. The TCs were de-
trended to remove any existing linear, quadratic or cubic low
frequency trends originating from scanner drift, orthogonalized
with respect to estimated subject motion and realignment
parameters, and de-spiked using AFNI’s 3dDespike function to
replace outlier points with values estimated from third order
spline fit to neighboring portions of the TCs.

FC Estimation and Temporal Variability
Similar to previous works (Allen et al., 2012; Damaraju et al.,
2014), time-varying FC was estimated by sliding a window of

length 22 TRs (44 s) in steps of 1 TR (2 s). This sliding window
analysis used a tapered window generated by convolving a
rectangular window of length 22 TRs (44 s) with a Gaussian
window of standard deviation equal to 3 TRs. The window length
parameter has a significant impact on the observed dynamics,
however our choice of 44 s (similar to window duration as
used in Damaraju et al., 2014 on the same fBIRN phase 3
dataset) falls within recommended ranges in multiple works.
In background, Leonardi and Van De Ville (2015) proposed a
lower limit for window length using the (inverse of minimum
frequency) thumb rule, which Zalesky and Breakspear (2015)
formally demonstrated to be overly conservative especially in
moderate SNR conditions (i.e., relatively shorter windows than
as suggested by the thumb rule can be used to capture the
fluctuations in time-varying connectivity). Recent studies have
reported peak maximum detection probability of time-varying
fluctuations (Hindriks et al., 2016) and peaks of significance
of window lengths (Liégeois et al., 2016) in a similar (40–60 s)
range. Furthermore, there are several studies that corroborate
that varying the window length parameter over a range beyond
a certain “safety limit” did not change the overall observed
dynamics (Allen et al., 2012; Li et al., 2014; Yaesoubi et al., 2015;
Deng et al., 2016; Preti et al., 2016).

Functional Data Feature Space Estimation
The wFNC data were decomposed using temporal ICA to reveal
a set of “n” aggregate connectivity patterns (or aggregate states)
shared amongst subjects and a set of “n” temporally independent
connectivity patterns. Notably, the “n” temporally independent
connectivity patterns are a concatenation of “n” individual
subject time-courses which are not independent subject-wise.
We estimate the feature space for the functional data as subject-
specific “versions” of the aggregate states through a modified
form of spatio-temporal (dual) regression (Filippini et al., 2009;
Erhardt et al., 2011). In this analysis, the aggregate states are
regressed into each subject’s wFNC data to obtain a set of subject-
specific time-courses in the first regression step which are then
regressed into each subject’s wFNC data to get the subject-specific
states in the second regression step. The estimated functional
data feature space is next simultaneously analyzed with the GM
maps estimated from structural data using the mCCA+jICA data
fusion algorithm.

The mCCA+jICA Framework
As a framework to evaluate fusion of feature spaces from two
imaging modalities, this method reveals flexible, i.e., both highly
and weakly correlated, joint sources from both the modalities.
The framework (Figure 1B) assumes the multimodal dataset
(Xk) to be a linear mixture of a (M) number of sources (Sk)
mixed with non-singular matrices (Ak), where k is the modality
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FIGURE 2 | Resting State Networks (RSNs). Spatial maps of the 47 retained RSNs at the most activated sagittal, coronal and axial slices.
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index. Following (Sui et al., 2011, 2013), we used the minimum
description length (MDL) criterion to estimate the number of
independent components to be nine. Hence, we evaluate the
feature spaces for a total number of nine components (M = 9)
for both the fMRI and sMRI modalities.

In the first phase of the joint framework, the mCCA algorithm
commences with dimensionality reduction of the feature spaces
of each of the modalities using principal component analysis.
In this work, we reduce the input data to a high (number
of subjects-one) number of principal components so as to
capture maximum subject level variance. Next, the canonical
variates (Dk) are estimated by maximizing the sum of squared
correlations (SSQCOR) cost (Kettenring, 1971) in the “M”
columns of canonical variates. In the final step of the first phase,
the canonical correlation coefficients (CCCs) are estimated as
associated maps (Ck) by inverting the Xk = DkCk model [i.e., Ck

= pinv(Dk)Xk].
In the second phase of the joint framework, the estimated

CCCs are concatenated [(C1..Ck)] and input to the jICA
algorithm which enables transformation of these CCCs to an
orthogonal space. This decomposition reveals “M” maximally
independent joint sources (S) each of which can be interpreted as
a stacked form of co-varying modality-specific components i.e., S
= [S1 . . . Sk]. The stacked components for the differentmodalities
share a common mixing matrix (W) with the jICA linear mixing
model evaluated as [C1..Ck] = W [S1..Sk]. Hence, the effective
mCCA+jICA can be summarized as Xk = (DkW

−1)Sk, where the
effective modality-specific mixing matrices are estimated as Ak

= DkW
−1. The combined framework is illustrated in Figure 1B

and further details on the parametrical/methodological choices
in the algorithm can be found in the referenced original works
(Sui et al., 2011, 2013).

RESULTS

The mCCA+jICA framework identified two sMRI-fMRI joint
sources with (1) significant correlations between their constituent
structural and functional components; and (2) significant
group differences in each of these constituent structural and
functional components. Figures 3, 4 show the spatial maps
for the constituent structural component, the connectivity
strengths for the co-varying functional component’s inter-
regional connections and other associated results for the first and
the second joint source, respectively. It must be noted that the
constituent structural components in the joint sources estimated
here are patterns of brain structure (i.e., clusters of brain
voxels) that exhibit co-variations across subjects. These could be
interpreted analogous to sources as identified with source based
morphometry (SBM) (Xu et al., 2009a; Caprihan et al., 2011;
Turner et al., 2012; Castro et al., 2014; Gupta et al., 2015), an
approach that can be essentially considered as a multivariate
extension of a voxel based approach, for example, voxel based
morphometry (VBM). In both figures, for display purposes,
only the high (and low) activation regions for the structural
component and only the edges or connections with high
(and low) connectivity strengths for the functional component

are shown. More specifically, the structural component maps
are lower thresholded at 25% of the maximum absolute
activation value, whereas for the functional component, the inter-
regional connectivity strengths, after converting to z-scores are
thresholded at |z| > 3. For the functional component, we will
hereon refer to the (post-thresholding) retained inter-regional
connections as “significant links.”

Joint Source 1
As illustrated in Figure 3A, the structural component for the first
joint source consists of peak activations in the superior parietal
lobule (major constituent), precuneus, postcentral gyrus, and
inferior parietal lobule. The number of significant connections
in the linked functional component were high for the default
mode, cognitive control and visual network domains in state
2, whereas the other states had a lot fewer total number of
significant connections (five in state 4, one each in states
1 and 5, and none in state 3) as seen in Figure 3B. For
this joint source, these constituent co-varying structural and
functional components were found to be significantly correlated
(r = −0.28, p = 1.08 × 10−6) as also evident from the
scatterplot of their loading parameters in Figure 3C. Since
negative correlation was observed, participants showing lower
GM loadings generally exhibited higher connectivity strength in
the functional connections. Finally, the structural component
showed significant group difference (p = 0.0032) with a
significantly lower group mean of the loadings for patients with
schizophrenia (Figure 3D), whereas its linked i.e., co-varying
functional correlate also showed significant group difference (p
= 0.0072) with a significantly lower group mean for controls.

Joint Source 2
The structural component for the second joint source depicted
in Figure 4A consisted of two major positively activated regions.
The first major activation comprised regions from the medial
frontal gyrus and superior frontal gyrus, whereas the second
major activation comprised regions from the superior temporal
gyrus, inferior temporal gyrus, insula, fusiform gyrus, andmiddle
temporal gyrus. The number of significant connections in the
linked functional component were high particularly for the
default mode, cognitive control and visual network domains
in state 1 (an observation similar to state 2 of the functional
component corresponding to the first joint source) and moderate
for the cognitive control, sensorimotor, and visual domains
in state 2, whereas the other states had a lot fewer total
number of significant connections (one each in states 4 and
5, and none in state 3) as seen in Figure 3B. For this joint
source, these constituent co-varying structural and functional
components were found to be significantly correlated (r =

−0.40, p = 3.91 × 10−13). The corresponding scatterplot of
their loading parameters can be seen in Figure 4C. Similar to
the first joint source, since negative correlation was observed,
participants showing lower GM loadings had higher connectivity
strength in the functional connections. Finally, the structural
component showed significant group difference (p = 0.0022)
with a significantly reduced group mean for the schizophrenia
patients, whereas its linked i.e., co-varying functional correlative
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FIGURE 3 | Joint Source 1. (A) Spatial maps of the most activated regions for the structural component in the first joint source; (B) A visualization of significant links

(functional connections with highest connectivity strengths i.e., with z-scores of connectivity strengths: |z| > 3) and their connectivity strengths for the functional

component in the first joint source; (C) Scatterplot of the functional data loadings with the structural data loadings revealed a significant correlation (r = −0.28, p =

1.08 × 10−6); and (D) The group mean for the loading parameters was significantly lower for participants with schizophrenia, thus suggesting significant reductions in

gray matter volume for this structural component.

also showed significant group difference (p= 0.0438) reflecting a
significantly lower group mean for controls.

DISCUSSION

In this study, we investigated whether a relationship between
GM and time-varying FC measures exists and if that relationship

could be used to study characteristic brain aberrations in
schizophrenia. Using a novel, unified framework, we first
estimated distilled, i.e., (relatively) lower-dimensional feature
spaces from the high-dimensional fMRI and sMRI data. Next,
we performed joint analysis on the estimated feature spaces
leveraging a symmetric fusion approach, mCCA+jICA,
to extract jointly co-varying structural and functional
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FIGURE 4 | Joint Source 2. (A) Spatial maps of the most activated regions for the structural component in the second joint source; (B) A visualization of significant

links (functional connections with highest connectivity strengths i.e., with z-scores of connectivity strengths: |z| > 3) and their connectivity strengths for the functional

component in the second joint source; (C) Scatterplot of the functional data loadings with the structural data loadings revealed a significant correlation (r = −0.40,

p = 3.91 × 10−13); and (D) The group mean for the loading parameters was significantly lower for participants with schizophrenia, thus suggesting significant

reductions in gray matter volume for this structural component.

components and characterize interactions between these
components. In this specific section, we will discuss our
results specifically addressing few important questions, such
as how the co-variation in the inter-modality components

could be interpreted and how the underlying associations are
meaningful. We will conclude by highlighting some critical
facets and limitations that could be explored in immediate
future work.
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Specifically, our results revealed two mCCA+jICA joint
sources that featured significant correlation between their
constituent modality-specific components and highlighted group
differences in both of their modality-specific components.
Both the joint sources showed significant negative correlations
between their modality-specific constituent components (joint
source 1: r = −0.28, p = 1.08 × 10−6; joint source 2: r =

−0.40, p= 3.91× 10−13), as seen in Figures 3C, 4C. This implies
that from joint source 1, for a given subject, if the GM volumes
in the positively activated regions in the structural component
(superior parietal lobule, precuneus, postcentral gyrus and
inferior parietal lobule) are estimated to be higher, it will
exhibit significantly decreased connectivity strength in the inter-
regional links in the functional component (i.e., the absolute
magnitude of inter-regional links with positive connectivity
strengths in the functional component will show significant
decrease, and the absolute magnitude of inter-regional links
with negative connectivity strengths in the functional component
will show significant increase). Alternatively, decreased observed
GM volumes in the positively activated regions would imply
higher connectivity strengths in the significant functional links
for that given subject. Similar inferences can be deduced for
source 2 wherein changes in GM volumes in both of the positively
activated distinct regions in the structural component (i.e.,
medial frontal gyrus and superior frontal gyrus; and superior
temporal gyrus, inferior temporal gyrus, insula, fusiform gyrus,
andmiddle temporal gyrus) would drive the estimated significant
inter-regional links accordingly.

An introspection of the modality-specific components of the
joint sources revealed several lines of evidence of conformance
with previously reported findings in the literature as discussed
next. To begin with, the structural components in both joint
sources showed significant group differences in the loading
parameters (joint source 1: p= 0.0032; joint source 2: p= 0.0022),
with significantly lower group mean for the schizophrenia group.
This suggests a significant decrease in GM volume in the
brain regions depicted by these components in participants with
schizophrenia. Our results are consistent with several previous
studies (as discussed in detail next), where reduced GM volume
in schizophrenia has been reported in the similar brain regions
as identified in our structural components. The first joint source
highlighted peak activations in the superior parietal lobule (major
constituent), precuneus, postcentral gyrus, and inferior parietal
lobule brain regions as the structural modality component (as
illustrated in Figure 3A). Interestingly, a recent study on SBM
and VBM evaluating GM abnormalities in schizophrenia patients
also found a similar structural component showing positive
activation patterns and that captured group differences between
schizophrenia and healthy controls (Gupta et al., 2015). Besides,
previous studies have also concluded reduced GM volume in
superior parietal regions (Buchanan et al., 2004), precuneus
(Hulshoff Pol et al., 2001) and postcentral gyrus (Glahn et al.,
2008); thus, our work adds further evidence that abnormal
patterns of GM volume in these regions play an important
role as schizophrenia biomarkers. Similar evidence could be
established for the significant structural component in the
second joint source captured by our framework (as illustrated

in Figure 4A). This structural component included two major
positively activated brain regions, where one of them consisted
of regions from the medial frontal gyrus, anterior cingulate and
superior frontal gyrus, and the other included regions from
the superior temporal gyrus, inferior temporal gyrus, insula,
fusiform gyrus and middle temporal gyrus. Particularly, the
anterior cingulate has been recognized as a vital structure for
social cognitive processing and has been previously identified as
one of the major sources of social dysfunction in schizophrenia
patients (Fujiwara et al., 2007). Additionally, very-similar fronto-
temporal GM changes capturing group difference between
schizophrenia and healthy participants were also found in Gupta
et al. (2015). In fact, there are several other studies/reviews on
GM differences in schizophrenia patients that have suggested
significant reduction in GM volume in the temporal and frontal
cortices (Shenton et al., 2001; Thompson et al., 2001; Giuliani
et al., 2005).

Significant correspondence with previously reported studies
in literature could also be drawn for few evaluated significant
inter-regional (i.e., inter-RSN) links in the estimated functional
components. Firstly, the functional components for both of the
retained joint sources showed significant connectivity links in
time-varying connectivity states 1, 2, 4, and 5. For the first
functional component (joint source 1), most of the significant
inter-RSN links are captured in state 2, where both positive
and negative connectivity strengths across various network
domains can be observed (Figure 3B). In this state, RSNs
in the DMN domain showed significant connectivity within
themselves and with RSNs from CC, SM, and VIS domains as
well. Interestingly, one of the DMN RSNs, IC95, highlighted
by the brain regions in left angular gyrus, showed positive
connectivity weight with a RSN from the CC domain, IC35,
left precuneus. This is in line with a previous study that has
shown aberrant connectivity patterns between angular gyrus
and precuneus in schizophrenia patients (Rashid et al., 2014).
Indeed, studies have widely reported the involvement of angular
gyrus in language processing, memory and social cognition (Hall
et al., 2005; Binder et al., 2009; Price, 2010; Clos et al., 2014),
and abnormal connectivity patterns in schizophrenia in the
precuneus, which is involved in episodic memory (Rugg and
Henson, 2002), mental imagery recall (Fletcher et al., 1996),
and self-processing operations (Cavanna and Trimble, 2006).
Furthermore, several studies have shown strong evidence of
disrupted DMN connectivity in schizophrenia patients (Garrity
et al., 2007; Ongur et al., 2010), and so it would be interesting
to explore significant links involving the DMN RSNs. As an
example, in state 2 of this functional component (joint source
1), we observed negative connectivity strength between another
DMN component (IC61: left middle temporal gyrus) and a VIS
RSN (IC43: right calcarine gyrus), while the same DMN RSN
(IC61) showed negative connectivity strength with a SM RSN
(IC5; bi-lateral precentral gyrus) as well. For this functional
component (joint source 1), we also note that the other states
in this functional component (i.e., states 1, 4, and 5) showed
significant inter-RSN links between VIS and CC domains (state
1), between DMN and CC, between AUD and CB domains,
within DMN, CC, and VIS domains (state 4), and between
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DMN and VIS domains (state 5). Furthermore, an examination
of the functional component from joint source 2 revealed
some interesting significant links in state 1, the most densely
connected state (Figure 4B). In this state, a DMN RSN (IC95; left
angular gyrus) showed significant positive connectivity strength
with a CC RSN (IC35; left precuneus), an observation also
found in state 2 emergent in the first joint source. Again,
similar to state 2 from the first joint source, another DMN
RSN (IC61; left middle temporal gyrus) showed significantly
positive connectivity strength with the same CC RSN (IC35;
left precuneus). In fact, dysfunctional temporal lobe connectivity
has been reported in several schizophrenia connectivity studies
(Shenton et al., 1992; Ford et al., 2002), suggesting that networks
from the temporal regions play a significant role in schizophrenia
etiology. Finally, for this functional component (joint source
2) the other states (i.e., states 2, 4 and 5) showed significant
inter-RSN links from the DMN, CC and SM and CB domains.

While we closely evaluate a few interesting connections
in scope of this work, there is much more that could
be done to evaluate these results to further enhance our
understanding of the structure-function relationships and further
contribute to characterizing schizophrenia. In the specific
context of findings from our mCCA+jICA based framework
as studied in this paper, it would be most appropriate to
first extensively validate the significant findings in a future
analysis evaluating multiple multimodal datasets featuring
schizophrenia participants. We also note that while different
combinations of cost functions and model orders can yield
similar results, they can also introduce decompositions different
to a degree; hence, comparing performance of the mCCA+jICA
approach for a range of these parameters would be another
interesting future work. Further investigations could also
benefit from evaluating associations of sleep indices and
schizophrenia risk factors with the structural and functional
component patterns. We anticipate that similar methods could
be easily extended to the study of other brain conditions;
likewise, different feature spaces, combinations of neuroimaging
modalities and algorithms could be evaluated in the proposed
fashion.

CONCLUSION

Multimodal data fusion through symmetric approaches provides
an opportunity to understand brain complexities. Using a
multivariate symmetric fusion approach, we were able to identify
co-varying GM and time-varying FC components that revealed
disrupted links in schizophrenia. We suggest that studying such
interactions can provide a useful way of evaluating structure-
function relationships and characterizing schizophrenia or other
brain conditions.
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